PROJECTIVE PUSH-FORWARDS IN THE
WITT THEORY OF ALGEBRAIC VARIETIES

ALEXANDER NENASHEV'!

ABSTRACT. We define push-forwards along projective morphisms in the Witt theory of smooth
quasi-projective varieties over a field. We prove that they have standard properties such as
functoriality, compatibility with pull-backs and projection formulas.

1. INTRODUCTION

Let k be a field with chark # 2 and Smy, denote the category of smooth quasi-projective
varieties over k. We consider the Witt theory of such varieties developed by P. Balmer
[Bal-3], which the reader is supposed to be familiar with.

1.1. Twisted pull-backs of line bundles. For X € Smy, let wx = /\dimX Q) x denote
the canonical sheaf of X. For a morphism f : Y — X in Smy, let wy = wy,x =
wy ® f*wY be the relative canonical sheaf; clearly we have wyr, = g*w; ® w, (canonically)

for any composable f and g. For a line bundle L on X, we introduce the twisted pull-back
L) = f*L ® wy; one checks that (L/)9 22 L79 canonically.

1.2. The general objective. Our objective is to construct push-forwards along projec-
tive morphisms in Witt theory: for every equi-codimensional projective f : Y — X in Smy
and a line bundle L on X, we define maps

fo WYY L) - WX L),

where ¢ = dim X — dimY is the codimension of f. We also define push-forwards with
support
fo= ST WY L) - Wi (X L),

where S and T are closed subschemes in Y and X respectively, not necessarily smooth,
satisfying S C f~1(T). The following properties of push-forwards are established:

(a) functoriality (Section 4.5);

(b) compatibility with pull-backs in transversal squares (change of base, Section 4.7);

(c) compatibility with the product structure (projection formulas, Section 4.11).
Push-forwards will be also referred to as trace maps or trace operators.
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1.3. The closed embedding case. In the case of a closed embedding ¢ : ¥ — X one
has wy,x = det N (canonically), where N = N,y is the normal bundle of i, and the
respective push-forward takes the form

i : WI(Y; Ly @ det N) — WITE(X; L),

where Ly = i*L. Such push-forwards, referred to as Gysin operators, were constructed in
[Nel] in terms of Thom (dévissage) isomorphisms and deformations to the normal cone.
For the reader’s convenience we survey on our construction of Gysin operators in Section
2.

1.4. The case of projections. In the present paper we first define push-forwards along
projections of the form p : X x P® — X. Here, the situation essentially differs from
the respective part of the work of I. Panin and A. Smirnov on push-forwards in oriented
theories [PS][PS1][SP]. Recall that in an oriented theory, there are two approaches to the
traces of projections: the one being based on residues [PS, Section 4.3.2], the other on the
use of the cobordism ring MU and the respective formal group law [PS, Section 4.3.1].
In the Witt theory, however, there is no need to apply such advanced techniques. For
the situation in W is simpler: for even n, the Gysin operator along a constant section
X — X x P proves to be an isomorphism, and we can define p, as its inverse. In this
part we use our computation of the Witt groups of projective bundles performed in [Ne2];
the same groups were calculated by a different method by C. Walter, see [W].

The case of an odd n can then be reduced to this one. The proofs of the expected
properties of the p,’s can be obtained on the basis of the properties of Gysin operators
proved in [Nel]. This is done in Section 3.

1.5. The general case. In Section 4 we proceed to the case of an arbitrary projective

morphism f : Y — X. Factoring such a morphism as ¥ — X x P* 2 X, where i is a
closed embedding, we define f, as p.i.. We prove that the result does not depend on the
choice of a factorization and establish the standard properties of projective push-forwards.

S. Gille introduced push-forwards (transfers) for coherent Witt groups of commutative
rings with dualizing complexes [G1]. This yields transfers for the usual Witt groups if we
consider finite morphisms of regular rings of finite Krull dimension. (More on coherent
Witt groups can be found in [G2].) B. Calmes and J. Hornbostel constructed push-forwards
along proper morphisms of smooth varieties by using dualities and adjunctions in derived
categories and also working in the coherent Witt theory, see [CH]. This is quite different
from our work in which we avoid any use of triangulated or derived categories. Nor do we
use the coherent Witt theory. Our approach is based on the general cohomology theory
properties of Witt groups and is as geometric as possible. We follow the guidelines of 1.
Panin and A. Smirnov given in [PS] and [SP] for oriented theories. However we have to
considerably modify their machinery to the case of Witt theory which is not orientable in
the sense of their work.
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supported by the SFB-701, to which I express my gratitude. I am indebted to Stefan Gille
and Ivan Panin for their interest in my work and various help.



2. REVIEW OF GYSIN OPERATORS

In this section we remind the reader how the push-forwards along closed embeddings
are defined in [Nel]. We provide a brief account of the properties of such push-forwards
which are also referred to as Gysin operators.

2.1. Definition. Let i : Y — X be a codimension ¢ closed embedding of smooth varieties
and let p : Nx/y — Y denote the normal vector bundle to Y in X. Let L be a line bundle
on X and Ly = i*L its restriction to Y.

(i) We define the Gysin operator

Qv : WUY; Ly @ det Nx,y) — WIT(X; L)

as the composition

WY; Ly @ det N) 20 wate(v; pLy) L50 yate(x; 1) — wote(x; 1),

where N = Nx/y, th(IV) and d(X,Y’) are the Thom and the deformation to the normal
cone isomorphisms, respectively (see [Nel, Sections 2 and 3|), and the last arrow is an
extension of support.

The Thom (dévissage) isomorphisms in Witt theory were also considered by S. Gille,
see [G3]. A general reference on the deformations to the normal cone is Fulton’s book [Fu,
Chapter 4]; see also [PS][PS1][SP] in the context of oriented cohomology theories.

(ii) If T is a closed subscheme in X and S is a closed subscheme in Y such that S C
Ty =T NY, then we define the Gysin map with support

i» =0T WE(Y; Ly @ det Nx/y) — WHT(X; L)
by

ths(N) ds(X,Y)
_ 5

W(Y; Ly ® det N) W& (N;p*Ly) W (X; L) — WiT(X; L) .
Here S and T do not need to be smooth.

(iii) If S = T = Y, we will write ¥ for the map i) : W9(Y; Ly ® det Nxyy) —
WEHe(X; L) which is an isomorphism (the first two steps in (i)).

(iv) Observe that if i : Y — X is an isomorphism, then i, = (i~!)*, both on the Witt
groups with and without support.

(v) In this section we use the more explicit [Nel]-notation Ly ®det Nx,y to denote the
twist on Y. In Section 3 we’ll switch to the notation introduced in 1.1, which is shorter
and more functorial, and will write L? for the same.

Gysin operators enjoy the following properties.

2.2. Functoriality. (See [Nel, Proposition 5.1].)
(a) (idx). = idW%(X;L)



(b) Let Z N Y <& X be equicodimensional closed embeddings of smooth quasiprojective
varieties, and let r = codim i, s = codim j, t = codim (ji) = r + s. Let L be a line bundle
on X and Ly, Ly its restrictions to Y and Z. Then the diagram

W (Y; Ly ® detNy)y) —> Wt (X; L)

Wq(Z, LZ ® detNx/Z>

commutes. Moreover, if R C S C T are compatible closed subvarieties in Z,Y, X respec-
tively, then the diagram

S, T

W (Y; Ly ® detNy jy) —— W (X; L)

commutes. (The natural isomorphism detNx,; = detNy,; ® det(Nx/y|z) is involved
implicitly in the definition of i, in both diagrams.)

2.3. Compatibility with extensions of support. (See [Nel, Section 4.2].)
Given closed embeddings

I

the following diagram commutes:

s’ T’
’L* ’

W (Y; Ly ®det N) ——— WLH(X; L)

l l

.S, T

W(Y; Ly ® det N) ——— WIt(X; L)

Here the vertical maps are extensions of support.

2.4. Transversal base changes. (See [Nel, Section 6.1].)
Consider a transversal square of the form

Y’#X’

ol e

Y%X
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in Smy, in which ¢ and (consequently) i’ are closed embeddings of codimension ¢. This
means that it is cartesian in Smy, and the natural map Nx /vy — ¢35 Nx,y is an isomor-

phism of vector bundles, see Def. 3.5 in [Nel]. Let L be a line bundle on X. Let S and T
be compatible closed subschemes in Y and X, see 2.1(ii), and S” and T’ be their pullbacks
to Y/ and X’ respectively. Then with the same notation, the diagram commutes

WI(Y;Ly ®det N)  —=—  WEI(X; L)

5 | |o

Wg/(YIQ (f*L)y ® det N') Z_> W%,JFC(X’; F4L)

The condition of transversality ¢3 N = N’ guarantees that the twists in the left groups
agree with respect to ¢3,.

2.5. Additivity formula. (See [Nel, Section 6.2].)

Let Y7, Y5 and X be smooth varieties, Y = Y7 I Y5, and let 7 : ¥ — X be a closed
embedding (equicodimensional, of codimension c¢). Denote j,. : ¥, — Y the natural em-
bedding and let ¢, =707, : Y, — X for ¢+ = 1,2. Let L be a line bundle on X and Ly, Ly,
denote its restrictions to Y and Y}, respectively. Then the diagram commutes:

s

W(Y; Ly @ detNx/y) Wate(X; L)

M (1) x,(i2)x)

Wi(Yy; Ly, ® detNx)y,) ® W9(Y; Ly, ® detNxy,)
which can be expressed by the simple formula
ix = (i1) 0 J7 + (i2)x 0 J5 -

If furthermore S7, So, and T are closed subvarieties in Y7, Y5, and X, respectively, not
necessarily smooth, S = S; I1.S5 and i(S) C T, then we have additivity with support:

&7 = (1) o gt + (12)72T 0 45 .

* *

The case of several components follows by induction.

2.6. Smooth divisor case. (See [Nel, Section 6.3].) Let X be a smooth variety, L a line
bundle on X, and s: Ox — L a global section of L transversal to the zero section. Denote
by D = D(s) the smooth divisor on X given by the zeros of s and i : D < X the inclusion.
Then Nx,p = Lp and we can consider the push-forward map i, : WO(D) - WHX; L),
where W°(D) = W°(D; Op). With this notation we have

i(1)=0.



2.7. Projection formulas. (See [Nel, Section 6.4] for the proof of the projection formu-
las and [GN] for the definition and properties of the product structure on the Witt groups
introduced by S. Gille and the author.)

Let i : Y — X be a codimension ¢ closed embedding of smooth varieties. Let L and L’
be line bundles over X, and let o € W (X; L') and 8 € W(Y; Ly ® det N). Then

is(ifax B) = axiB and i, (B*i*a) = (—1)9 i, B+ o

in Wetete(X: Lo L').
If, moreover, S and T are compatible closed subschemes in Y and X, see 4.1(ii), 7" is
another closed subscheme in X, a € W#,(X;L') and § € W(Y; Ly ® det N), then the

same formulas hold in W%%E?,*’C(X ;Lo L.

3. TRACES OF PROJECTIONS

In this section we define traces

pe =pL WER (X x P L) — W(X; L) (3.1)
along projections of the form p = pg?) : X X P*" — X and prove their properties. Here T
is a closed subscheme of X, not necessarily smooth, and

n (n) (n)\x
L — px’ — (pX)) L®wp<;>

is the twisted pull-back of L as defined in Section 1.1.
If S C T x P" is another closed subscheme of X x P", we can combine (3.1) with the
extension of support and get the trace operator

pe=p2T WETX x P L) - WA(XGL).

The properties of the operators pI can be easily generalized to the pf’T, which is left to
the reader.

Definitions. For a € P"(k) denote i = 2&?21 : X — X X P" the embedding x — (z,a).
As poi = idy, we have a canonical isomorphism (L(™)? 2 L and can consider the Gysin
operator

iy WA(X; L) — WETR (X x P L) (3.2)
Lemma 3.1. Let n be even.

(i) The operator (3.2) is an isomorphism.
(ii) It does not depend on the choice of a point a € P"(k), i.e., if a’ € P"(k) is another

point, then (zg?)a)* = (zg?)a,)*
Proof. (i) By Definition 2.1(ii), a Gysin operator is the composition of three maps two of
which are always isomorphisms. Thus it suffices to show that the extension of support

map
WA (X x Py L)) — Wt (X x Py L)
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is an isomorphism. This map fits into the localization sequence

= WETM(X X P L™y S W (X x P L) -

— WY({—;?P"—G)(X x P* — T x a; L(n)‘XX]P’"—TXa) — ...

By excision

W’g’i?]}”"—a) (X X P =T x a; L(n)|X><[P’”—T><a) = W;:;T(L]Pn_a) (X X (Pn — CL), L(n)|X><(]P’"—a)) .

Considering P — a as a line bundle over P"~!, we get by homotopy invariance
watn (X x (Pn—&);L(n)|X><([P>n—a)) o~

Tx(P?—a)
Wit (X x PP L pan)
Here we consider P*~! as a linear subspace in P" not meeting a. Let U = X — T and
consider the localization sequence
C= WITH U < P LM | paa) — W (X x PP L0 1) —
— WX x P L0 | paaa) — ..

As L) =~ (pg?))*L ® O(—n —1) on X x P", we have

L | x g1 2 YL ® O(—n — 1) and L0|yyens = (D)L © O(—n - 1).

Hence the side groups vanish by [Ne2, Cor. 4.2] since n is even. Thus the middle group
vanishes as well, which proves (i).

(ii) There exists an automorphism a of P™ given by a matrix of SL,1(k) which takes
a to a’. Thus (zg?)a,)* =(lx Xa),o (zg?)a)*, and it suffices to show that (1x x «), = id
on W4(X x P —) or, equivalently, that (1x x a)* = id. (Recall that (f~!), = f*
for an isomorphism f.) Clearly we can assume that « is an elementary matrix. The
following argument works for any theory satisfying homotopy invariance. Consider the
automorphism & of P x A! such that &y = idps and &; = a. (If @ = €;;()), then
& = e; j(t\).) Denote by ip and i the embeddings P™ — P" x A! given by y — (y,0) and
y +— (y, 1) respectively, and 7 : P* x Al — P™ the projection. Since woig = moi; = idp» and
m* is an isomorphism by homotopy invariance, we have ¢j = ¢] which is an isomorphism
as well.

Applying pull-backs to the diagram

Pr 0 Prx Al L Ppr
o
Pr 0 PP x Al 2 P

proves the assertion.ll



Definition 3.2. Let X be a smooth quasi-projective variety over k, T' — X be a closed

subvariety, not necessarily smooth, and let p = pg?) : X x P" — X denote the projection.
(i) If n is even, we define

pe = (P) s WILL (X x P L) — WA(X; L)
as the inverse to the Gysin operator i,,
(") = (0T

By Lemma 3.1, this does not depend on the choice of a point a € P (k).
(ii) If n is odd, p. = (pg?))* is defined as the composition

.(n,n+1) (n+1)
WD, (X x Py pim) L gpabntl (x et oy PX ) gy

Thus ) . . .
B = X ™) 0 G0 = (V)T o G

where j(n 1D . P PPt g g k-linear embedding and jg?’m_l) = 1x xj™n*+1)  Observe

that (jggl’n+1))* does not depend on the choice of such a linear embedding. For, every

two such embeddings can be connected by an SL-automorphism of P**! and the same
argument as in Lemma 3.1, (ii) applies.

Properties of push-forwards along projections. As our definition of the traces of
projections is stated in terms of Gysin maps, it is not a surprice that basic properties of
the operators p, can be deduced from the properties of Gysin operators.

3.3. Composition. Consider the diagram

(n)

p m
X x P x pr 2T, X x pm
W | [
P
X x Pn X

by means of which we introduce notation for the obvious projections, and also let pg}n’n) :

(m,n)

X xP™ xP"* — X denote the diagonal projection and let L("™™) = LPx " for a line bundle
L on X. Then for any ¢ the following diagram commutes:

() pm )«
WEEmEn (X x P ox Py [mn)y IR ek x pm. 1 (m))
<pggf;>ﬂm>{ l(p;m)* (3.3)
(n)
WL (X x P75 L) Bx -, WA(X; L)



Proof. Case 1: m,n even. Choose a € P (k),b € P"(k). All the four arrows in (3.3) are the
isomorphisms inverse to the Gysin operators along the embeddings zgzng, ig?)b, zg?lx) Pr g 2&?1 P b
respectively. As Gysin maps are functorial, see 2.2, the diagram conéistiné of the 4,’s com-
mutes, which proves the assertion.

Case 2: m odd, n even. Consider the diagram

(n)
(prJPerl )+

Wat(m+1)+n Wwatm+1
e / i
(p(n) m )
Wq-l-m-l-n X xXP Wq+m
( (m-‘rl)) (p(m+1))
) DPx ypn )= ( (m)) X *
(X on )+ Px )=
watn W4

).

We leave it to the reader to add spaces, supports and twists accordingly. The side (trian-
gular) faces commute by the definition of (p(_m))* for odd m, see Definition 3.2(ii). The
(”))

back face commutes by Case 1. The horizonal (p>").’s are the isomorphisms inverse to

the respective (i(_n))*’s. Thus the upper face commutes due to the compatibility of the i,’s

and 7j,’s, see 2.2. This implies the commutativity of the front face.
Case 3: m and n odd - is left to the reader as an exercise of the same type.

3.4. Base change. Given ¢ : X’ — X in Smy, denote

A = x1pn : X' xP" — X x P*,

and let pX : X x P* — P" and pfl : X' x P — P" denote the projections. As pfl =
pX 0 (™), we have

Wxrxpn/xr Z (PN )V wpn 2 (6 (0 ) wpn 2 (M) wx g x (3.4)

all the isomorphisms being canonical. The resulting isomorphism wxpn ) x/ = (™) Wy pn /X
reflects the fact that the square

(n)
X' xPr -2, X xPpn

p(;,) l lp(;?)

X/ L) X

is transversal; we refer to 4.7 for a discussion of general transversal squares, which is
unnecessary in this trivial case.



Given a line bundle L on X, it follows from (3.4) that

(¢*L)(n) _ (pg?/))*qb*L ® Wy xpn /X v (cb(”))*(pg?))*L ® (¢(n))*waPn/X v (¢(n)>*L(n) ’

where all the isomorphisms are canonical. Thus the upper arrow (gb(”))* in the diagram

(¢
(—

Wt o (X X P (67 L)) WETE (X x P L)

<p§?,>>*l l(zé?))*
* 9"
Wi (X5 ¢7L) — Wi(X; L)
has a correct target. We claim that the diagram commutes for any closed T" in X.

Proof. Let ix/ : X' — X' x P", ix : X — X x P" be constant sections given by the same
k-point of P"™. Then

is a transversal square in the sense of [Nel; Def. 3.5], 5o (ix:). 0 ¢* = (¢™)* o (ix). by
2.4. Thus for n even, ¢* o (ix);* = (ix/):' o (¢{™)*, which proves the property in this
case.

If n is odd, then
0" 0 (0))e = 0" 0 (W) 0 ) = )0 (0 Y)T 0 ().
n+1 (n,n+1 n)\* n n)\*
= (P )e 0 G ) 0 (0) = ) 0 (01
Here the third equation is true by 2.4 since the square

(n)
X' xpPr -2, X xPpn

j;wl,n+1)l ng?,nﬂ)

/ n—+1 ¢(n+1) n+1
X' xP 4 5 X xP

is transversal.
3.5. Compatibility with linear embeddings. Let j = j(™") : P — P" be a k-linear
embedding and denote j&m’") =1xxj™" : X xP™ — X xP". Then (pg?))*o(jg(m’"))* =

(pg?l))*, i.e., the following diagram commutes:

G

WL (X x P L) WERS (X x P L)

). %))~

WE(X; L)
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Proof. Choose constant embeddings ig;n) : X — X xP™ and ig?) : X — X xP"™ compatible

(m,n) (n) _ (m,n) _ -(m)

with jy 77, i.e., so that iy’ = j

Case 1: m and n even. By 2.2 we have (zg?))* = (Jé(mm))* o (ig}n))*, the assertion follows.

Case 2: m even, n odd. Consider the diagram

j(7n,n) .(n,n+1)
X X
X x P = X x P" ——= X x pntl

P
™ S
X

Take the respective Witt groups and get

n (m,n n—+1 .(n,n+1 (m,n n—+1 .(m,n+1 m
()0 G)e = 0% )0 G0 G = (0% e 0 GY) = ()

The latter is true by Case 1 and (jg(m’”Jrl))>k = (jﬁ?’”ﬂ))* o (jg(m’”))>k by 2.2.
Case 3: m odd, n even. Consider the diagram

.(m,m+1) -(m+1,n)
X X
X X P —— X x Pt —— X x P"

pg{erl)l/

" rs’
X

and get

n .(m,n n .(m+1,n .(m,m-+1 m—+1 .(m,m+41 m
N0 GE™)e = D)0 G )w0 GE ™) = 0F )0 G ) = 057

Case 4: If m and n are odd, then

PX)e 0 G = X )e 0 G )w 0 GE")e = GFT)e 0 V).

n—+1 .(m+1,n+1 (m,m+1 m—+1 (m,m+1 m
= ()0 G0 G = X0 G = R

3.6. Compatibility with Gysin operators. Let i : Y — X be a codimension ¢ closed
embedding of smooth varieties. Let S and T be closed subschemes in Y and X, respectively,
such that S C T'NY. Then the diagram commutes:

n n i\ (n (i(n))* n-c n n
WETR. (Y x Py (L)) 5 Wathre(X x Py L)
<pgzl>>*j l(zé?))*
W(Y; LY) S EEN WEH(X; L)

Proof. (i) ix o (pgfl))* = (pgzl))* o (i), amounts to (zgzl)(l)* 0iy = (i), o (zgf()l)* if n is
even. The latter is true by 2.2.
(ii) If n is odd, then

(P (pgf))* =140 (pg;“rl))* o (j}(;l,n-l-l))* _ (pg?ﬂ))* o (i), o (jg/n,nﬂ))*

= (™), 0 G, 0 (i), = (W) 0 (i), .

11



3.7. Projection formulas. Let T and T” be closed subvarieties in a smooth X and let
L and L' be line bundles on X. Then in W, %(X; L' ® L) we have

PPy x8) =yxp.d  and  p.(8xp*y) = (—1)" p.d Ky

for any v € Wi (X;L') and § € WS (X x P L), Here p = pg?). Observe that
p*L' @ L™ = (I’ ® L) i.e., the twists agree; clearly f*L’' ® LY = (L' ® L)f canonically
forany f:Y — X.

Proof. Case 1: n even. Put a = p*v € qu,xlpn(X x P p*L’) and B = p.d = (i,) 716 €

WA(X; L), where i = zg?)a Then v = i*a and 6§ = i,8. Applying p. = (i.)~! to the
projection formulas of 2.7 proves the result.
Case 2: n odd. We have

P (P % 8) = )G (G ) e T) v % 8)  Def. 3.2(i)

= () (T oy (G7T),06) 2.7 for "
:’y*(pg?'i_l))*(j‘g?,n'i‘l))*(s:ry*<p‘(>?))*6 Case 1'

The second formula can be reduced to Case 1 the same way.

3.8. The section property. Let s : X — X xP™ be a k-rational section of pg?). Clearly,
s = (1x, f), where f = pX os: X — P" and pX denotes the projection X x P"* — P",
According to 1.1, (L(”))S 2 [ canonically, and we can consider the Gysin operator

Set WX L) — WIEE (X x P L™).
Proposition 3.9. (pg?))* 0s, =id on WH(X; L).

Corollary 3.10. s, = (zg?)a)* if n is even.

Lemma 3.11. (p{"),s,(1) =1 in W(X; Ox).

Proof of the proposition modulo the lemma. Let o € WA(X; L). As s* o (pg?))* = (pg?) o
s)* =id, we have

) () x s.(1)) by the projection formula 2.7
=ax (pg?))*s*(l) by the projection formula 3.7
=axl=« by Lemma 3.11

The proof of the lemma occupies the rest of the section.
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3.12. The trace of diagonal. Consider the diagonal embedding A : P — P" x P" and
let p; : P? x P" — P" denote the projection to the ith factor. Asp;oA = idpn, (LPV)A = [
canonically for a line bundle L on P, and we can consider the trace

A, : WI(P" L) — WIT™(P" x P™; LP).

For a € P"(k), let i, = i]gl)’a :P" — P" x P*, x — (z,a). Then (LP')% 22 [ canonically,
and we can equally consider the trace

(ia)w : WI(P"; L) — WOt (P x P"; LP1) .

Lemma 3.13. A, = (iy)« if n is even.

Proof. We can assume that L = O(l) for some [ € Z.
Case 1: [ is odd. Denote also by a the embedding pt — P, pt — a, where pt = Speck.
Then Aoa =1i,0a and A, oa, = (i)« © ax by 2.2. As [ is odd, the trace

a, : Wi (pt; L) — W9P"; L)

is an isomorphism by the same argument as in the proof of Lemma 3.1(i), which proves
the assertion in this case.

Case 2: [ is even. Denote i/, the embedding P — P x P" ,x — (a, x), and consider the
diagram of embeddings

A
Pr — P" x P7

laq
./
a Za

pt———P"

which is transversal for either choice of the top arrow. By 2.4 we get the diagram

A
Wa(P"; L) ——Z WItn(P" x P"; LP1)

(ia)*
l l(z‘;r

Wi(pt;a* L) ———= Wa(P"; L)

which commutes for either choice of the top arrow; here L' = (i/)*LP*. The pull-back (i, )*
is an isomorphism by [Ne2, Section 3] since LP* = piL' ® pfO(l) and [ is even, whence
Ay = (ig)x-
|
By Definition 3.2(i) we get

Corollary 3.14. (p1)« o A, =id if n is even.
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Proof of Lemma 3.11 for even n. Consider the diagram

X —°% . X xpr BX |

7| [ 1 K

pr 2 , pnxprn 2L, pn
The first square is transversal, thus we can apply the property 2.4 of Gysin operators.
Using 3.4 for the second square, we get

(px)xosx0f"=f"o(p1)soAs=f"

by Corollary 3.14. This equation is true on W2(P™; L) with arbitrary ¢ and L, the twists
on X, X x P™ and P™ x P should be chosen accordingly. Applying it to the identity
element in WO(P"; Opn ), we get (px)«5«(1) = 1, which proves Lemma 3.11 in this case.

Proof of Lemma 3.11 for odd n. Let us now write s(") for s and let s(»*1) = jg?’m'l) o

s(") Clearly s("*1) is a section for pg?ﬂ). Applying W to the diagram

5(m) p
X — Xxpr —-5 X

L e b

g(nt+1) pet
X —— Xxprtt X o X

completes the proof. Here we consider W(X; Ox) in the corners with the respective shifts
and twists in the middle and use 2.2 and Definition 3.2(ii).

4. PUSH-FORWARDS ALONG PROJECTIVE MORPHISMS

4.1. Definition of projective push-forwards. Now that we have push-forwards along
projections and closed embeddings, we are prepared to deal with arbitrary projective mor-
phisms. Given such a morphism f : ¥ — X of pure codimension ¢, one can represent
it as a composition Y — X x P* 2 X where p = pg?) and 7 is a closed embedding of
codimension ¢ + n. For a given line bundle L over X and closed S C Y and T' C X with

S c f~YT), we define the push-forward
fo= f2T WY L) — WET(X; L)
as the composition

WI(Y; LF) 25 Watehn(x x P L) 25 wite(X; L) . (4.1)

14



Proposition 4.2. The trace map f, : W(Y; L) — Wit(X; L) does not depend on the
choice of a factorization f = po .

Proof. We will first prove the assertion in the following special case. Let ¢ : ¥ — X be
a closed embedding. We can write it as ¢ = pg?) 0479, where i(¥ : Y — X x P is given
by y — (i(y), pt) and pg?) : X x PY — X is the (identity) projection. As (pg?))* = id, the
composition in (4.1) yields the Gysin operator i,. On the other hand, one can choose an

embedding i : Y < X x P™ covering i, i.e., satisfying pg?) o1 =1, and apply (4.1).

Lemma 4.3. i, = (pg?))* 0 ix.

Proof of the lemma. Consider the diagram

;)
Y xP?"— X xP"

(n) A i (n)
Py || Py
! i

Y X

where i =i x 1. Let s : Y — Y x P™ be the section of pgf) determined by (™) o s = 1.
Then

(pg?))* 0y = (pg?))* o ifkn) os, functoriality of Gysin maps, Section 2.2
=140 (pgf))* 0 Sy compatibility of Gysins and p.’s, Section 3.6

= iy by Proposition 3.9.

The lemma is proved.ll

Now suppose we have f = poi=p oi' with Y > X x P™ 2 X, where p = p§’ and

p = pg?"). Let I :Y — X x P™ x P™ be the unique embedding satisfying pg?)xpm ol =7

and pg}nX)Pn ol =1. We have

p,oi, =pl.o (pg?)xpm)* ol, by Lemma 4.3

=P« © (pg?lx)pn)* o I, by Section 3.3
= Px O s by Lemma 4.3.

Thus we have proved that f, is well defined.l
Properties of projective push-forwards.

4.4. The general definition agrees with special cases.
(i) If f is a closed embedding, then the trace f. obtained as in Section 4.1 coincides
with the Gysin operator defined in [Nel], see Section 2.1.

(ii) If f is a projection of the form pg?), then the trace f, defined in 4.1 agrees with the

trace of pgzl) given by Definition 3.2. This is straightforward.
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4.5. Functoriality. (1) (1dX>* = ldW%(X,L)

(i) If Z Ly 4, X are projective morphisms, R C Z, S C Y and T' C X are compatible
closed subvarieties, and L is a line bundle on X, then the diagram commutes:

S, T
fs

Wit (v, LY —— Wi (X; L)

QFVST A:’T

WI%(Z; Lfg)

Here r = codim g, s = codim f,t =r + s.

Proof. The first assertion is straightforward.
Proof of (ii). We will write the proof in terms of the maps involved; we leave it to the
reader to write down the Witt groups that are the domains and codomains of such maps.

We won’t write the supports in the notation for push-forwards.
. (m) i (n)
Let Z -5 Y xP™ X5 Vand Y -5 X x P* 2X5 X be factorizations for ¢ and f.

Clearly we can assume that m and n are even. The diagram

Y xPm —L X x P x P™

Py l lpﬁ?l)mn
7
y —1 5 XxP

is of the type considered in 3.6. Thus (if). o (pg/m)>* = (ng—”X)Pn)* o (i;m))* and

g = Sl (Y™ )u i) = (P5)) (P ) (1) (i)

= (p§)) e (P ) (1Y g )

the latter by Section 2.2.
It now suffices to prove the following

Lemma 4.6. Let h: Z — X be a projective morphism decomposed as

(n,m)
ZLxxprxpr X x
with even m and n, where I is a closed embedding and pg?’m) = pg?) Opﬁ?gpn = pg’(n) o

pg?)xpm. Then h, = (pg?’m))* o I, where (pg?’m))* is defined as either of the compositions

(pgzl))*(pg?;)w)* or (pg?"))*(pg?)xpm)*, which are equal according to Section 3.3.

Now put h = fg, I = i(m)ig and get figx = (fg)«.
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Proof of the lemma. Choose a closed embedding j : P* x P — PV with N sufficiently
large even and let J = idyx x j : X x P* x P — X x PV. Choose a € P*(k),b € P™(k)

and let ¢ = j(a,b) € PN (k). Then J o ig;nx)w’b o zg?)a = zgévc), hence by 2.2

(m .(n (N
0 (i85 )x 0 ((500)s = (i) -

As m, n and N are even, all the i,’s are invertible and we get by Definition 3.2(i)

N n m n,m
P 0 T = (05 0 0 pn ) = ™). .

Thus

n,m N N
™)L = 5 dL = (B))u(JT)s = h

where the last equation is true by Proposition 4.2 since J o I is a closed embedding.l

Remark. (a) Lemma 4.6 can be viewed as a generalization of Proposition 4.2, for we get
the latter if m = 0 or n = 0. It yields more flexibility in factoring projective morphisms
to obtain their push-forwards. The obvious generalization with multiple projective spaces
is also true.

(b) The assumption that m, n and N are even is not really necessary. For our purposes
it suffices to prove the lemma under this assumption; the general case is left to the reader.

4.7. Transversal base changes.

Definition 4.8. A square of the form

v L x

¢YJ/ l(]ﬁx (4.2)

YLX

with f projective is called transversal in Smy, if it is cartesian and the induced square of

vector bundles
TY/ —_— (f, ) * TX/

| |

3Ty —— (foy) Tx

is bicartesian in the category of vector bundles on Y’. Equivalently, one can require that
the sequence

(df ,dox)

M’ oyTy & (f')'Txr —— (féy)"Tx — 0 (4.3)

0— Ty/
is exact, cf. [Me, Axiom (iv) in Section 2] or [LM].
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, (n)
If f is factored as Y = X x P" PX X with i a closed embedding, then pulling back

along ¢x we get a factorization of the entire diagram:

(n)
) »
y" —* o X' xpr X, X/

(ibYJ/ lqbg?) J/QJ)X (4'4)

. (n)
y —" o, Xxpr 2, x

In these terms, the transversality of (4.2) is equivalent to the transversality of the left
square in (4.4) in the sense of Section 2.4. (The right square is always transversal.) The
latter is stated in terms of normal bundles: the natural map Ny — ¢35 N, is required to
be an isomorphism.

Lemma 4.9. If (4.2) is transversal and L is a line bundle on X, then the line bundles
¢t L! and (¢% L)!" on Y’ can be identified canonically.

Proof. The dual of (4.3) provides a natural isomorphism
det ((ﬁ;Qy D (f/)*QX/) = det Oy ® det (f(by)*QX

which yields a natural isomorphism ¢j-ws = wy. (Compare to (3.4) where the same was
verified in the case of projections by a more explicit computation.) It follows that

(6% L) = (f) 95 L @wpr = ¢} [*L @ dywy = ¢} (f* L@ wy) = 3 L7 .
The lemma is proved.ll

As we have transversal base changes for projections and closed embeddings, see Sections
2.4 and 3.4, we can derive the same property for arbitrary projective morphisms by using
(4.4). Lemma 4.9 guarantees that the twists agree.

Proposition 4.10. Suppose that f and (therefore) f' are projective equicodimensional
morphisms of codimension c¢ in a transversal square of the form (4.2). Let S,T,S",T" be
compatible closed subschemes in 'Y, X,Y’, X', respectively. Then the diagram commutes:

W (V' gy L) L Wi (X5 03 L)
qs*yl }z&
Wiy, L) —L wite(x;L)

4.11. Projection formulas. Let f : Y — X be a projective morphism of codimension
¢, T and T” be closed subschemes in X and S C f~(T) a closed subscheme in Y, and let

L and L’ be line bundles on X. Then for any o € W, (X;L') and 3 € W(Y; LT) we have

folfraxB) = ax f.0 and f.(B* f*a) = (—1)Y f.Bxa

in quq/:ﬁfrc(X :L® L"). We get these formulas by factoring f and applying the respective
formulas of Sections 2.7 and 3.7.
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