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Abstract. We define push-forwards along projective morphisms in the Witt theory of smooth

quasi-projective varieties over a field. We prove that they have standard properties such as

functoriality, compatibility with pull-backs and projection formulas.

1. Introduction

Let k be a field with chark 6= 2 and Smk denote the category of smooth quasi-projective
varieties over k. We consider the Witt theory of such varieties developed by P. Balmer
[Ba1-3], which the reader is supposed to be familiar with.

1.1. Twisted pull-backs of line bundles. For X ∈ Smk, let ωX =
∧dim X

ΩX denote
the canonical sheaf of X . For a morphism f : Y → X in Smk, let ωf = ωY/X =
ωY ⊗ f∗ω∨

X be the relative canonical sheaf; clearly we have ωfg
∼= g∗ωf ⊗ωg (canonically)

for any composable f and g. For a line bundle L on X , we introduce the twisted pull-back

Lf = f∗L ⊗ ωf ; one checks that (Lf )g ∼= Lfg canonically.

1.2. The general objective. Our objective is to construct push-forwards along projec-
tive morphisms in Witt theory: for every equi-codimensional projective f : Y → X in Smk

and a line bundle L on X , we define maps

f∗ : W q(Y ; Lf ) → W q+c(X ; L) ,

where c = dim X − dim Y is the codimension of f . We also define push-forwards with
support

f∗ = fS,T
∗

: W
q
S(Y ; Lf) → W

q+c
T (X ; L) ,

where S and T are closed subschemes in Y and X respectively, not necessarily smooth,
satisfying S ⊂ f−1(T ). The following properties of push-forwards are established:

(a) functoriality (Section 4.5);
(b) compatibility with pull-backs in transversal squares (change of base, Section 4.7);
(c) compatibility with the product structure (projection formulas, Section 4.11).

Push-forwards will be also referred to as trace maps or trace operators.
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1.3. The closed embedding case. In the case of a closed embedding i : Y →֒ X one
has ωY/X

∼= det N (canonically), where N = NX/Y is the normal bundle of i, and the
respective push-forward takes the form

i∗ : W q(Y ; LY ⊗ det N) → W q+c(X ; L) ,

where LY = i∗L. Such push-forwards, referred to as Gysin operators, were constructed in
[Ne1] in terms of Thom (dévissage) isomorphisms and deformations to the normal cone.
For the reader’s convenience we survey on our construction of Gysin operators in Section
2.

1.4. The case of projections. In the present paper we first define push-forwards along
projections of the form p : X × P

n → X . Here, the situation essentially differs from
the respective part of the work of I. Panin and A. Smirnov on push-forwards in oriented

theories [PS][PS1][SP]. Recall that in an oriented theory, there are two approaches to the
traces of projections: the one being based on residues [PS, Section 4.3.2], the other on the
use of the cobordism ring MU and the respective formal group law [PS, Section 4.3.1].
In the Witt theory, however, there is no need to apply such advanced techniques. For
the situation in W is simpler: for even n, the Gysin operator along a constant section
X →֒ X × P

n proves to be an isomorphism, and we can define p∗ as its inverse. In this
part we use our computation of the Witt groups of projective bundles performed in [Ne2];
the same groups were calculated by a different method by C. Walter, see [W].

The case of an odd n can then be reduced to this one. The proofs of the expected
properties of the p∗’s can be obtained on the basis of the properties of Gysin operators
proved in [Ne1]. This is done in Section 3.

1.5. The general case. In Section 4 we proceed to the case of an arbitrary projective

morphism f : Y → X . Factoring such a morphism as Y
i
−→ X × P

n p
−→ X , where i is a

closed embedding, we define f∗ as p∗i∗. We prove that the result does not depend on the
choice of a factorization and establish the standard properties of projective push-forwards.

S. Gille introduced push-forwards (transfers) for coherent Witt groups of commutative
rings with dualizing complexes [G1]. This yields transfers for the usual Witt groups if we
consider finite morphisms of regular rings of finite Krull dimension. (More on coherent
Witt groups can be found in [G2].) B. Calmès and J. Hornbostel constructed push-forwards
along proper morphisms of smooth varieties by using dualities and adjunctions in derived
categories and also working in the coherent Witt theory, see [CH]. This is quite different
from our work in which we avoid any use of triangulated or derived categories. Nor do we
use the coherent Witt theory. Our approach is based on the general cohomology theory
properties of Witt groups and is as geometric as possible. We follow the guidelines of I.
Panin and A. Smirnov given in [PS] and [SP] for oriented theories. However we have to
considerably modify their machinery to the case of Witt theory which is not orientable in
the sense of their work.

Acknowledgements. A part of this work was done at the University of Bielefeld and
supported by the SFB-701, to which I express my gratitude. I am indebted to Stefan Gille
and Ivan Panin for their interest in my work and various help.
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2. Review of Gysin operators

In this section we remind the reader how the push-forwards along closed embeddings
are defined in [Ne1]. We provide a brief account of the properties of such push-forwards
which are also referred to as Gysin operators.

2.1. Definition. Let i : Y →֒ X be a codimension c closed embedding of smooth varieties
and let p : NX/Y → Y denote the normal vector bundle to Y in X . Let L be a line bundle
on X and LY = i∗L its restriction to Y .

(i) We define the Gysin operator

i∗ : W q(Y ; LY ⊗ det NX/Y ) → W q+c(X ; L)

as the composition

W q(Y ; LY ⊗ det N)
th(N)
−−−−→ W

q+c
Y (N ; p∗LY )

d(X,Y )
−−−−→ W

q+c
Y (X ; L) → W q+c(X ; L) ,

where N = NX/Y , th(N) and d(X, Y ) are the Thom and the deformation to the normal
cone isomorphisms, respectively (see [Ne1, Sections 2 and 3]), and the last arrow is an
extension of support.

The Thom (dévissage) isomorphisms in Witt theory were also considered by S. Gille,
see [G3]. A general reference on the deformations to the normal cone is Fulton’s book [Fu,
Chapter 4]; see also [PS][PS1][SP] in the context of oriented cohomology theories.

(ii) If T is a closed subscheme in X and S is a closed subscheme in Y such that S ⊂
TY = T ∩ Y , then we define the Gysin map with support

i∗ = iS,T
∗

: W
q
S(Y ; LY ⊗ det NX/Y ) → W

q+c
T (X ; L)

by

W
q
S(Y ; LY ⊗ det N)

thS(N)
−−−−→ W

q+c
S (N ; p∗LY )

dS(X,Y )
−−−−−→ W

q+c
S (X ; L) → W

q+c
T (X ; L) .

Here S and T do not need to be smooth.
(iii) If S = T = Y , we will write iY

∗
for the map i

Y,Y
∗ : W q(Y ; LY ⊗ det NX/Y ) →

W
q+c
Y (X ; L) which is an isomorphism (the first two steps in (i)).

(iv) Observe that if i : Y → X is an isomorphism, then i∗ = (i−1)∗, both on the Witt
groups with and without support.

(v) In this section we use the more explicit [Ne1]-notation LY ⊗det NX/Y to denote the
twist on Y . In Section 3 we’ll switch to the notation introduced in 1.1, which is shorter
and more functorial, and will write Li for the same.

Gysin operators enjoy the following properties.

2.2. Functoriality. (See [Ne1, Proposition 5.1].)
(a) (idX)∗ = idW q

T
(X;L)
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(b) Let Z
i
→֒ Y

j
→֒ X be equicodimensional closed embeddings of smooth quasiprojective

varieties, and let r = codim i, s = codim j, t = codim (ji) = r + s. Let L be a line bundle
on X and LY , LZ its restrictions to Y and Z. Then the diagram

W q+r(Y ; LY ⊗ detNX/Y )
j∗ // W q+t(X ; L)

W q(Z; LZ ⊗ detNX/Z)

i∗

OO

(ji)∗

55kkkkkkkkkkkkkkk

commutes. Moreover, if R ⊂ S ⊂ T are compatible closed subvarieties in Z, Y, X respec-
tively, then the diagram

W
q+r
S (Y ; LY ⊗ detNX/Y )

jS,T
∗ // W q+t

T (X ; L)

W
q
R(Z; LZ ⊗ detNX/Z)

iR,S
∗

OO

(ji)R,T
∗

55kkkkkkkkkkkkkk

commutes. (The natural isomorphism detNX/Z
∼= detNY/Z ⊗ det(NX/Y |Z) is involved

implicitly in the definition of i∗ in both diagrams.)

2.3. Compatibility with extensions of support. (See [Ne1, Section 4.2].)
Given closed embeddings

S′ −−−−→ S −−−−→ Y




y





y





y

T ′ −−−−→ T −−−−→ X

the following diagram commutes:

W
q
S′(Y ; LY ⊗ det N)

iS′,T ′

∗−−−−→ W
q+c
T ′ (X ; L)





y





y

W
q
S(Y ; LY ⊗ det N)

iS,T
∗−−−−→ W

q+c
T (X ; L)

Here the vertical maps are extensions of support.

2.4. Transversal base changes. (See [Ne1, Section 6.1].)
Consider a transversal square of the form

Y ′ i′
−−−−→ X ′

φY





y





y

φX

Y
i

−−−−→ X
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in Smk in which i and (consequently) i′ are closed embeddings of codimension c. This
means that it is cartesian in Smk and the natural map NX′/Y ′ → φ∗

Y NX/Y is an isomor-
phism of vector bundles, see Def. 3.5 in [Ne1]. Let L be a line bundle on X . Let S and T

be compatible closed subschemes in Y and X , see 2.1(ii), and S′ and T ′ be their pullbacks
to Y ′ and X ′ respectively. Then with the same notation, the diagram commutes

W
q
S(Y ; LY ⊗ det N)

i∗−−−−→ W
q+c
T (X ; L)

φ∗

Y





y





y

φ∗

W
q
S′(Y ′; (f∗L)Y ′ ⊗ detN ′)

i′
∗−−−−→ W

q+c
T ′ (X ′; f∗L)

The condition of transversality φ∗

Y N ∼= N ′ guarantees that the twists in the left groups
agree with respect to φ∗

Y .

2.5. Additivity formula. (See [Ne1, Section 6.2].)
Let Y1, Y2 and X be smooth varieties, Y = Y1 ∐ Y2, and let i : Y →֒ X be a closed

embedding (equicodimensional, of codimension c). Denote jr : Yr → Y the natural em-
bedding and let ir = i ◦ jr : Yr →֒ X for i = 1, 2. Let L be a line bundle on X and LY , LYi

denote its restrictions to Y and Yi, respectively. Then the diagram commutes:

W q(Y ; LY ⊗ detNX/Y )
i∗ //

(j∗

1 ,j∗

2 )
))TTTTTTTTTTTTTTT

W q+c(X ; L)

W q(Y1; LY1
⊗ detNX/Y1

) ⊕ W q(Y2; LY2
⊗ detNX/Y2

)

((i1)∗,(i2)∗)

55jjjjjjjjjjjjjjj

which can be expressed by the simple formula

i∗ = (i1)∗ ◦ j∗1 + (i2)∗ ◦ j∗2 .

If furthermore S1, S2, and T are closed subvarieties in Y1, Y2, and X , respectively, not
necessarily smooth, S = S1 ∐ S2 and i(S) ⊂ T , then we have additivity with support:

iS,T
∗

= (i1)
S1,T
∗

◦ j∗1 + (i2)
S2,T
∗

◦ j∗2 .

The case of several components follows by induction.

2.6. Smooth divisor case. (See [Ne1, Section 6.3].) Let X be a smooth variety, L a line
bundle on X , and s : OX → L a global section of L transversal to the zero section. Denote
by D = D(s) the smooth divisor on X given by the zeros of s and i : D →֒ X the inclusion.
Then NX/D

∼= LD and we can consider the push-forward map i∗ : W 0(D) → W 1(X ; L∨),

where W 0(D) = W 0(D;OD). With this notation we have

i∗(1) = 0 .
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2.7. Projection formulas. (See [Ne1, Section 6.4] for the proof of the projection formu-
las and [GN] for the definition and properties of the product structure on the Witt groups
introduced by S. Gille and the author.)

Let i : Y →֒ X be a codimension c closed embedding of smooth varieties. Let L and L′

be line bundles over X , and let α ∈ W q′

(X ; L′) and β ∈ W q(Y ; LY ⊗ det N). Then

i∗(i
∗α ⋆ β) = α ⋆ i∗β and i∗(β ⋆ i∗α) = (−1)cq′

i∗β ⋆ α

in W q′+q+c(X ; L⊗ L′).
If, moreover, S and T are compatible closed subschemes in Y and X , see 4.1(ii), T ′ is

another closed subscheme in X , α ∈ W
q′

T ′(X ; L′) and β ∈ W
q
S(Y ; LY ⊗ det N), then the

same formulas hold in W
q′+q+c
T∩T ′ (X ; L⊗ L′).

3. Traces of projections

In this section we define traces

p∗ = pT
∗

: W
q+n
T×Pn(X × P

n; L(n)) → W
q
T (X ; L) (3.1)

along projections of the form p = p
(n)
X : X × P

n → X and prove their properties. Here T

is a closed subscheme of X , not necessarily smooth, and

L(n) = Lp
(n)
X = (p

(n)
X )∗L ⊗ ω

p
(n)
X

is the twisted pull-back of L as defined in Section 1.1.
If S ⊂ T × P

n is another closed subscheme of X × P
n, we can combine (3.1) with the

extension of support and get the trace operator

p∗ = pS,T
∗

: W
q+n
S (X × P

n; L(n)) → W
q
T (X ; L) .

The properties of the operators pT
∗

can be easily generalized to the p
S,T
∗ , which is left to

the reader.

Definitions. For a ∈ P
n(k) denote i = i

(n)
X,a : X →֒ X × P

n the embedding x 7→ (x, a).

As p ◦ i = idX , we have a canonical isomorphism (L(n))i ∼= L and can consider the Gysin
operator

i∗ : W
q
T (X ; L) → W

q+n
T×Pn(X × P

n; L(n)) . (3.2)

Lemma 3.1. Let n be even.
(i) The operator (3.2) is an isomorphism.
(ii) It does not depend on the choice of a point a ∈ P

n(k), i.e., if a′ ∈ P
n(k) is another

point, then (i
(n)
X,a)∗ = (i

(n)
X,a′)∗.

Proof. (i) By Definition 2.1(ii), a Gysin operator is the composition of three maps two of
which are always isomorphisms. Thus it suffices to show that the extension of support
map

W
q+n
T×a(X × P

n; L(n)) → W
q+n
T×Pn(X × P

n; L(n))
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is an isomorphism. This map fits into the localization sequence

. . . → W
q+n
T×a(X × P

n;L(n)) → W
q+n
T×Pn(X × P

n; L(n)) →

→ W
q+n
T×(Pn−a)(X × P

n − T × a; L(n)|X×Pn−T×a) → . . .

By excision

W
q+n
T×(Pn−a)(X × P

n − T × a; L(n)|X×Pn−T×a) ∼= W
q+n
T×(Pn−a)(X × (Pn − a); L(n)|X×(Pn−a)) .

Considering P
n − a as a line bundle over P

n−1, we get by homotopy invariance

W
q+n
T×(Pn−a)(X × (Pn − a);L(n)|X×(Pn−a)) ∼=

W
q+n
T×Pn−1(X × P

n−1; L(n)|X×Pn−1) .

Here we consider P
n−1 as a linear subspace in P

n not meeting a. Let U = X − T and
consider the localization sequence

. . . → W q+n−1(U × P
n−1; L(n)|U×Pn−1) → W

q+n
T×Pn−1(X × P

n−1; L(n)|X×Pn−1) →

→ W q+n(X × P
n−1; L(n)|X×Pn−1) → . . .

As L(n) ∼= (p
(n)
X )∗L ⊗O(−n − 1) on X × P

n, we have

L(n)|X×Pn−1
∼= (p

(n−1)
X )∗L ⊗O(−n − 1) and L(n)|U×Pn−1

∼= (p
(n−1)
U )∗L ⊗O(−n − 1) .

Hence the side groups vanish by [Ne2, Cor. 4.2] since n is even. Thus the middle group
vanishes as well, which proves (i).

(ii) There exists an automorphism α of P
n given by a matrix of SLn+1(k) which takes

a to a′. Thus (i
(n)
X,a′)∗ = (1X × α)∗ ◦ (i

(n)
X,a)∗, and it suffices to show that (1X × α)∗ = id

on W q(X × P
n;−) or, equivalently, that (1X × α)∗ = id. (Recall that (f−1)∗ = f∗

for an isomorphism f .) Clearly we can assume that α is an elementary matrix. The
following argument works for any theory satisfying homotopy invariance. Consider the
automorphism α̃ of P

n × A
1 such that α̃0 = idPn and α̃1 = α. (If α = ei,j(λ), then

α̃t = ei,j(tλ).) Denote by i0 and i1 the embeddings P
n →֒ P

n ×A
1 given by y 7→ (y, 0) and

y 7→ (y, 1) respectively, and π : P
n×A

1 → P
n the projection. Since π◦i0 = π◦i1 = idPn and

π∗ is an isomorphism by homotopy invariance, we have i∗0 = i∗1 which is an isomorphism
as well.

Applying pull-backs to the diagram

P
n i0−−−−→ P

n × A
1 i1←−−−− P

n

id





y





y

α̃





y

α

P
n i0−−−−→ P

n × A
1 i1←−−−− P

n

proves the assertion.¥
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Definition 3.2. Let X be a smooth quasi-projective variety over k, T →֒ X be a closed

subvariety, not necessarily smooth, and let p = p
(n)
X : X × P

n → X denote the projection.
(i) If n is even, we define

p∗ = (p
(n)
X )∗ : W

q+n
T×Pn(X × P

n; L(n)) → W
q
T (X ; L)

as the inverse to the Gysin operator i∗,

(p
(n)
X )∗ = (i

(n)
X,a)−1

∗
.

By Lemma 3.1, this does not depend on the choice of a point a ∈ P
n(k).

(ii) If n is odd, p∗ = (p
(n)
X )∗ is defined as the composition

W
q+n
T×Pn(X × P

n; L(n))
(j

(n,n+1)
X

)∗
−−−−−−−→ W

q+n+1
T×Pn+1(X × P

n+1; L(n+1))
(p

(n+1)
X

)∗
−−−−−−→ W

q
T (X ; L) .

Thus
(p

(n)
X )∗ = (p

(n+1)
X )∗ ◦ (j

(n,n+1)
X )∗ = (i

(n+1)
X,a )−1

∗
◦ (j

(n,n+1)
X )∗ ,

where j(n,n+1) : P
n →֒ P

n+1 is a k-linear embedding and j
(n,n+1)
X = 1X ×j(n,n+1). Observe

that (j
(n,n+1)
X )∗ does not depend on the choice of such a linear embedding. For, every

two such embeddings can be connected by an SL-automorphism of P
n+1, and the same

argument as in Lemma 3.1, (ii) applies.

Properties of push-forwards along projections. As our definition of the traces of
projections is stated in terms of Gysin maps, it is not a surprice that basic properties of
the operators p∗ can be deduced from the properties of Gysin operators.

3.3. Composition. Consider the diagram

X × P
m × P

n
p
(n)
X×Pm

−−−−→ X × P
m

p
(m)
X×Pn





y





y

p
(m)
X

X × P
n

p
(n)
X−−−−→ X

by means of which we introduce notation for the obvious projections, and also let p
(m,n)
X :

X×P
m×P

n → X denote the diagonal projection and let L(m,n) = Lp
(m,n)
X for a line bundle

L on X . Then for any q the following diagram commutes:

W
q+m+n
T×Pm×Pn(X × P

m × P
n; L(m,n))

(p
(n)
X×Pm )∗

−−−−−−→ W
q+m
T×Pm(X × P

m; L(m))

(p
(m)
X×Pn )∗





y





y

(p
(m)
X

)∗

W
q+n
T×Pn(X × P

n; L(n))
(p

(n)
X

)∗
−−−−→ W

q
T (X ; L)

(3.3)
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Proof. Case 1: m, n even. Choose a ∈ P
m(k), b ∈ P

n(k). All the four arrows in (3.3) are the

isomorphisms inverse to the Gysin operators along the embeddings i
(m)
X,a, i

(n)
X,b, i

(m)
X×Pn,a, i

(n)
X×Pm,b,

respectively. As Gysin maps are functorial, see 2.2, the diagram consisting of the i∗’s com-
mutes, which proves the assertion.

Case 2: m odd, n even. Consider the diagram

W q+(m+1)+n
(p

(n)

X×Pm+1 )∗
//







(p
(m+1)
X×Pn )∗

¥¥










W q+m+1

(p
(m+1)
X

)∗

§§±±
±±
±±
±±
±±
±±
±±
±±
±±
±±
±±

W q+m+n
(p

(n)
X×Pm )∗

//

(jm,m+1)∗

44hhhhhhhhhhhhhhhhhh

(p
(m)
X×Pn )∗

ÁÁ=
==

==
==

==
==

==
==

W q+m

(jm,m+1)∗

55jjjjjjjjjjjjjjjj

(p
(m)
X

)∗

¾¾7
77

77
77

77
77

77
7

W q+n

(p
(n)
X

)∗

// W q

We leave it to the reader to add spaces, supports and twists accordingly. The side (trian-

gular) faces commute by the definition of (p
(m)
−

)∗ for odd m, see Definition 3.2(ii). The

back face commutes by Case 1. The horizonal (p
(n)
−

)∗’s are the isomorphisms inverse to

the respective (i
(n)
−

)∗’s. Thus the upper face commutes due to the compatibility of the i∗’s
and j∗’s, see 2.2. This implies the commutativity of the front face.

Case 3: m and n odd - is left to the reader as an exercise of the same type.

3.4. Base change. Given φ : X ′ → X in Smk, denote

φ(n) = φ × 1Pn : X ′ × P
n → X × P

n ,

and let pX
n : X × P

n → P
n and pX′

n : X ′ × P
n → P

n denote the projections. As pX′

n =
pX

n ◦ φ(n), we have

ωX′×Pn/X′
∼= (pX′

n )∗ωPn ∼= (φ(n))∗(pX
n )∗ωPn ∼= (φ(n))∗ωX×Pn/X , (3.4)

all the isomorphisms being canonical. The resulting isomorphism ωX′×Pn/X′
∼= (φ(n))∗ωX×Pn/X

reflects the fact that the square

X ′ × P
n φ(n)

−−−−→ X × P
n

p
(n)

X′





y





y

p
(n)
X

X ′
φ

−−−−→ X

is transversal; we refer to 4.7 for a discussion of general transversal squares, which is
unnecessary in this trivial case.
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Given a line bundle L on X , it follows from (3.4) that

(φ∗L)(n) = (p
(n)
X′ )

∗φ∗L ⊗ ωX′×Pn/X′
∼= (φ(n))∗(p

(n)
X )∗L ⊗ (φ(n))∗ωX×Pn/X

∼= (φ(n))∗L(n) ,

where all the isomorphisms are canonical. Thus the upper arrow (φ(n))∗ in the diagram

W
q+n
φ−1T×Pn(X ′ × P

n; (φ∗L)(n))
(φ(n))∗

←−−−− W
q+n
T×Pn(X × P

n; L(n))

(p
(n)

X′
)∗





y





y

(p
(n)
X

)∗

W
q
φ−1T (X ′; φ∗L)

φ∗

←−−−− W
q
T (X ; L)

has a correct target. We claim that the diagram commutes for any closed T in X .

Proof. Let iX′ : X ′ → X ′ × P
n, iX : X → X × P

n be constant sections given by the same
k-point of P

n. Then

X ′ × P
n φ(n)

−−−−→ X × P
n

iX′

x





x





iX

X ′
φ

−−−−→ X

is a transversal square in the sense of [Ne1; Def. 3.5], so (iX′)∗ ◦ φ∗ = (φ(n))∗ ◦ (iX)∗ by
2.4. Thus for n even, φ∗ ◦ (iX)−1

∗
= (iX′)−1

∗
◦ (φ(n))∗, which proves the property in this

case.
If n is odd, then

φ∗ ◦ (p
(n)
X )∗ = φ∗ ◦ (p

(n+1)
X )∗ ◦ (j

(n,n+1)
X )∗ = (p

(n+1)
X′ )∗ ◦ (φ(n+1))∗ ◦ (j

(n,n+1)
X )∗

= (p
(n+1)
X′ )∗ ◦ (j

(n,n+1)
X′ )∗ ◦ (φ(n))∗ = (p

(n)
X′ )∗ ◦ (φ(n))∗ .

Here the third equation is true by 2.4 since the square

X ′ × P
n φ(n)

−−−−→ X × P
n

j
(n,n+1)

X′





y





y

j
(n,n+1)
X

X ′ × P
n+1 φ(n+1)

−−−−→ X × P
n+1

is transversal.

3.5. Compatibility with linear embeddings. Let j = j(m,n) : P
m → P

n be a k-linear

embedding and denote j
(m,n)
X = 1X ×j(m,n) : X×P

m → X×P
n. Then (p

(n)
X )∗◦(j

(m,n)
X )∗ =

(p
(m)
X )∗, i.e., the following diagram commutes:

W
q+m
T×Pm(X × P

m; L(m))
(j

(m,n)
X

)∗ //

(p
(m)
X

)∗ ((RRRRRRRRRRRRR
W

q+n
T×Pn(X × P

n; L(n))

(p
(n)
X

)∗vvmmmmmmmmmmmmm

W
q
T (X ; L)
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Proof. Choose constant embeddings i
(m)
X : X → X×P

m and i
(n)
X : X → X×P

n compatible

with j
(m,n)
X , i.e., so that i

(n)
X = j

(m,n)
X ◦ i

(m)
X .

Case 1: m and n even. By 2.2 we have (i
(n)
X )∗ = (j

(m,n)
X )∗ ◦(i

(m)
X )∗, the assertion follows.

Case 2: m even, n odd. Consider the diagram

X × P
m

j
(m,n)
X //

p
(m)
X &&LLLLLLLLLLL X × P

n
j
(n,n+1)
X //

p
(n)
X

²²

X × P
n+1

p
(n+1)
Xxxqqqqqqqqqqq

X

Take the respective Witt groups and get

(p
(n)
X )∗ ◦ (j

(m,n)
X )∗ = (p

(n+1)
X )∗ ◦ (j

(n,n+1)
X )∗ ◦ (j

(m,n)
X )∗ = (p

(n+1)
X )∗ ◦ (j

(m,n+1)
X )∗ = (p

(m)
X )∗ .

The latter is true by Case 1 and (j
(m,n+1)
X )∗ = (j

(n,n+1)
X )∗ ◦ (j

(m,n)
X )∗ by 2.2.

Case 3: m odd, n even. Consider the diagram

X × Pm
j
(m,m+1)
X //

p
(m)
X &&NNNNNNNNNNNN X × Pm+1

j
(m+1,n)
X //

p
(m+1)
X

²²

X × Pn

p
(n)
Xxxqqqqqqqqqqqq

X

and get

(p
(n)
X )∗ ◦(j

(m,n)
X )∗ = (p

(n)
X )∗ ◦(j

(m+1,n)
X )∗ ◦(j

(m,m+1)
X )∗ = (p

(m+1)
X )∗ ◦(j

(m,m+1)
X )∗ = (p

(m)
X )∗ .

Case 4: If m and n are odd, then

(p
(n)
X )∗ ◦ (j

(m,n)
X )∗ = (p

(n+1)
X )∗ ◦ (j

(n,n+1)
X )∗ ◦ (j

(m,n)
X )∗ = (p

(n+1)
X )∗ ◦ (j

(m,n+1)
X )∗

= (p
(n+1)
X )∗ ◦ (j

(m+1,n+1)
X )∗ ◦ (j

(m,m+1)
X )∗ = (p

(m+1)
X )∗ ◦ (j

(m,m+1)
X )∗ = (p

(m)
X )∗ .

3.6. Compatibility with Gysin operators. Let i : Y →֒ X be a codimension c closed
embedding of smooth varieties. Let S and T be closed subschemes in Y and X , respectively,
such that S ⊂ T ∩ Y . Then the diagram commutes:

W
q+n
S×Pn(Y × P

n; (Li)(n))
(i(n))∗
−−−−→ W

q+n+c
T×Pn (X × P

n; L(n))

(p
(n)
Y

)∗





y





y

(p
(n)
X

)∗

W
q
S(Y ; Li)

i∗−−−−→ W
q+c
T (X ; L)

Proof. (i) i∗ ◦ (p
(n)
Y )∗ = (p

(n)
X )∗ ◦ (i(n))∗ amounts to (i

(n)
X,a)∗ ◦ i∗ = (i(n))∗ ◦ (i

(n)
Y,a)∗ if n is

even. The latter is true by 2.2.
(ii) If n is odd, then

i∗ ◦ (p
(n)
Y )∗ = i∗ ◦ (p

(n+1)
Y )∗ ◦ (j

(n,n+1)
Y )∗ = (p

(n+1)
X )∗ ◦ (i(n+1))∗ ◦ (j

(n,n+1)
Y )∗

= (p
(n+1)
X )∗ ◦ (j

(n,n+1)
X )∗ ◦ (i(n))∗ = (p

(n)
X )∗ ◦ (i(n))∗ .
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3.7. Projection formulas. Let T and T ′ be closed subvarieties in a smooth X and let

L and L′ be line bundles on X . Then in W
q′+q
T ′∩T (X ; L′ ⊗ L) we have

p∗(p
∗γ ⋆ δ) = γ ⋆ p∗δ and p∗(δ ⋆ p∗γ) = (−1)nq′

p∗δ ⋆ γ

for any γ ∈ W
q′

T ′(X ; L′) and δ ∈ W
q+n
T×Pn(X × P

n; L(n)). Here p = p
(n)
X . Observe that

p∗L′ ⊗L(n) ∼= (L′ ⊗L)(n), i.e., the twists agree; clearly f∗L′ ⊗Lf ∼= (L′ ⊗L)f canonically
for any f : Y → X .

Proof. Case 1: n even. Put α = p∗γ ∈ W
q′

T ′×Pn(X × P
n; p∗L′) and β = p∗δ = (i∗)

−1δ ∈

W
q
t (X ; L), where i = i

(n)
X,a. Then γ = i∗α and δ = i∗β. Applying p∗ = (i∗)

−1 to the
projection formulas of 2.7 proves the result.

Case 2: n odd. We have

(p
(n)
X )∗((p

(n)
X )∗γ ⋆ δ) = (p

(n+1)
X )∗(j

(n,n+1)
X )∗((j

(n,n+1)
X )∗(p

(n+1)
X )∗γ ⋆ δ) Def. 3.2(ii)

= (p
(n+1)
X )∗((p

(n+1)
X )∗γ ⋆ (j

(n,n+1)
X )∗δ) 2.7 for j

(n,n+1)
X

= γ ⋆ (p
(n+1)
X )∗(j

(n,n+1)
X )∗δ = γ ⋆ (p

(n)
X )∗δ Case 1 .

The second formula can be reduced to Case 1 the same way.

3.8. The section property. Let s : X → X×P
n be a k-rational section of p

(n)
X . Clearly,

s = (1X , f), where f = pX
n ◦ s : X → P

n and pX
n denotes the projection X × P

n → P
n.

According to 1.1, (L(n))s ∼= L canonically, and we can consider the Gysin operator

s∗ : W
q
T (X ; L) → W

q+n
T×Pn(X × P

n; L(n)) .

Proposition 3.9. (p
(n)
X )∗ ◦ s∗ = id on W

q
T (X ; L).

Corollary 3.10. s∗ = (i
(n)
X,a)∗ if n is even.

Lemma 3.11. (p
(n)
X )∗s∗(1) = 1 in W 0(X ;OX).

Proof of the proposition modulo the lemma. Let α ∈ W
q
T (X ; L). As s∗ ◦ (p

(n)
X )∗ = (p

(n)
X ◦

s)∗ = id, we have

(p
(n)
X )∗s∗(α) = (p

(n)
X )∗s∗(s

∗(p
(n)
X )∗(α) ⋆ 1)

= (p
(n)
X )∗((p

(n)
X )∗(α) ⋆ s∗(1)) by the projection formula 2.7

= α ⋆ (p
(n)
X )∗s∗(1) by the projection formula 3.7

= α ⋆ 1 = α by Lemma 3.11

The proof of the lemma occupies the rest of the section.
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3.12. The trace of diagonal. Consider the diagonal embedding ∆ : P
n → P

n × P
n and

let pi : P
n×P

n → P
n denote the projection to the ith factor. As p1 ◦∆ = idPn , (Lp1)∆ ∼= L

canonically for a line bundle L on P
n, and we can consider the trace

∆∗ : W q(Pn; L) → W q+n(Pn × P
n; Lp1) .

For a ∈ P
n(k), let ia = i

(n)
Pn,a : P

n → P
n × P

n, x 7→ (x, a). Then (Lp1)ia ∼= L canonically,
and we can equally consider the trace

(ia)∗ : W q(Pn; L) → W q+n(Pn × P
n; Lp1) .

Lemma 3.13. ∆∗ = (ia)∗ if n is even.

Proof. We can assume that L ∼= O(l) for some l ∈ Z.
Case 1: l is odd. Denote also by a the embedding pt →֒ P

n , pt 7→ a, where pt = Spec k.
Then ∆ ◦ a = ia ◦ a and ∆∗ ◦ a∗ = (ia)∗ ◦ a∗ by 2.2. As l is odd, the trace

a∗ : W q−n(pt; La) → W q(Pn; L)

is an isomorphism by the same argument as in the proof of Lemma 3.1(i), which proves
the assertion in this case.

Case 2: l is even. Denote i′a the embedding P
n → P

n ×P
n , x 7→ (a, x), and consider the

diagram of embeddings

P
n

∆ //
ia

// Pn × P
n

pt

a

OO

a
// Pn

i′a

OO

which is transversal for either choice of the top arrow. By 2.4 we get the diagram

W q(Pn; L)
∆∗ //

(ia)∗

//

a∗

²²

W q+n(Pn × P
n; Lp1)

(i′a)∗

²²
W q(pt; a∗L)

a∗

// W q+n(Pn; L′)

which commutes for either choice of the top arrow; here L′ = (i′a)∗Lp1 . The pull-back (i′a)∗

is an isomorphism by [Ne2, Section 3] since Lp1 ∼= p∗2L
′ ⊗ p∗1O(l) and l is even, whence

∆∗ = (ia)∗.
¥

By Definition 3.2(i) we get

Corollary 3.14. (p1)∗ ◦ ∆∗ = id if n is even.
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Proof of Lemma 3.11 for even n. Consider the diagram

X
s

−−−−→ X × P
n pX

−−−−→ X

f





y





y

f×1





y

f

P
n ∆

−−−−→ P
n × P

n p1
−−−−→ P

n

The first square is transversal, thus we can apply the property 2.4 of Gysin operators.
Using 3.4 for the second square, we get

(pX)∗ ◦ s∗ ◦ f∗ = f∗ ◦ (p1)∗ ◦ ∆∗ = f∗

by Corollary 3.14. This equation is true on W q(Pn; L) with arbitrary q and L, the twists
on X , X × P

n and P
n × P

n should be chosen accordingly. Applying it to the identity
element in W 0(Pn;OPn), we get (pX)∗s∗(1) = 1, which proves Lemma 3.11 in this case.

¥

Proof of Lemma 3.11 for odd n. Let us now write s(n) for s and let s(n+1) = j
(n,n+1)
X ◦

s(n). Clearly s(n+1) is a section for p
(n+1)
X . Applying W to the diagram

X
s(n)

−−−−→ X × P
n

p
(n)
X−−−−→ X

1





y





y

j
(n,n+1)
X





y

1

X
s(n+1)

−−−−→ X × P
n+1

p
(n+1)
X−−−−→ X

completes the proof. Here we consider W 0(X ;OX) in the corners with the respective shifts
and twists in the middle and use 2.2 and Definition 3.2(ii).

¥

4. Push-forwards along projective morphisms

4.1. Definition of projective push-forwards. Now that we have push-forwards along
projections and closed embeddings, we are prepared to deal with arbitrary projective mor-
phisms. Given such a morphism f : Y → X of pure codimension c, one can represent

it as a composition Y
i
−→ X × P

n p
−→ X , where p = p

(n)
X and i is a closed embedding of

codimension c + n. For a given line bundle L over X and closed S ⊂ Y and T ⊂ X with
S ⊂ f−1(T ), we define the push-forward

f∗ = fS,T
∗

: W
q
S(Y ; Lf) → W

q+c
T (X ; L)

as the composition

W
q
S(Y ; Lf )

i∗−→ W
q+c+n
T×Pn (X × P

n; L(n))
p∗

−→ W
q+c
T (X ; L) . (4.1)
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Proposition 4.2. The trace map f∗ : W
q
S(Y ; Lf) → W

q+c
T (X ; L) does not depend on the

choice of a factorization f = p ◦ i.

Proof. We will first prove the assertion in the following special case. Let i : Y →֒ X be

a closed embedding. We can write it as i = p
(0)
X ◦ i(0), where i(0) : Y → X × P

0 is given

by y 7→ (i(y), pt) and p
(0)
X : X × P

0 → X is the (identity) projection. As (p
(0)
X )∗ = id, the

composition in (4.1) yields the Gysin operator i∗. On the other hand, one can choose an

embedding ĩ : Y →֒ X × P
n covering i, i.e., satisfying p

(n)
X ◦ ĩ = i, and apply (4.1).

Lemma 4.3. i∗ = (p
(n)
X )∗ ◦ ĩ∗.

Proof of the lemma. Consider the diagram

Y × P
n

p
(n)
Y

²²

i(n)
// X × P

n

p
(n)
X

²²
Y

s

OOÂ
Â
Â

ĩ
99rrrrrrrrrrr i // X

where i(n) = i × 1. Let s : Y → Y × P
n be the section of p

(n)
Y determined by i(n) ◦ s = ĩ.

Then

(p
(n)
X )∗ ◦ ĩ∗ = (p

(n)
X )∗ ◦ i

(n)
∗ ◦ s∗ functoriality of Gysin maps, Section 2.2

= i∗ ◦ (p
(n)
Y )∗ ◦ s∗ compatibility of Gysins and p∗’s, Section 3.6

= i∗ by Proposition 3.9 .

The lemma is proved.¥

Now suppose we have f = p ◦ i = p′ ◦ i′ with Y
i′
−→ X × P

m p′

−→ X , where p = p
(n)
X and

p′ = p
(m)
X . Let I : Y → X × P

n × P
m be the unique embedding satisfying p

(n)
X×Pm ◦ I = i′

and p
(m)
X×Pn ◦ I = i. We have

p′
∗
◦ i′

∗
= p′

∗
◦ (p

(n)
X×Pm)∗ ◦ I∗ by Lemma 4.3

= p∗ ◦ (p
(m)
X×Pn)∗ ◦ I∗ by Section 3.3

= p∗ ◦ i∗ by Lemma 4.3 .

Thus we have proved that f∗ is well defined.¥

Properties of projective push-forwards.

4.4. The general definition agrees with special cases.

(i) If f is a closed embedding, then the trace f∗ obtained as in Section 4.1 coincides
with the Gysin operator defined in [Ne1], see Section 2.1.

(ii) If f is a projection of the form p
(n)
X , then the trace f∗ defined in 4.1 agrees with the

trace of p
(n)
X given by Definition 3.2. This is straightforward.
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4.5. Functoriality. (i) (idX)∗ = idW q

T
(X;L).

(ii) If Z
g
−→ Y

f
−→ X are projective morphisms, R ⊂ Z, S ⊂ Y and T ⊂ X are compatible

closed subvarieties, and L is a line bundle on X , then the diagram commutes:

W
q+r
S (Y ; Lf )

fS,T
∗ // W q+t

T (X ; L)

W
q
R(Z; Lfg)

gR,S
∗

OO

(fg)R,T
∗

77ooooooooooo

Here r = codimg, s = codimf , t = r + s.

Proof. The first assertion is straightforward.
Proof of (ii). We will write the proof in terms of the maps involved; we leave it to the

reader to write down the Witt groups that are the domains and codomains of such maps.
We won’t write the supports in the notation for push-forwards.

Let Z
ig

−→ Y × P
m

p
(m)
Y−−−→ Y and Y

if

−→ X × P
n

p
(n)
X−−→ X be factorizations for g and f .

Clearly we can assume that m and n are even. The diagram

Y × P
m

i
(m)
f

−−−−→ X × P
n × P

m

p
(m)
Y





y





y

p
(m)
X×Pn

Y
if

−−−−→ X × P
n

is of the type considered in 3.6. Thus (if )∗ ◦ (p
(m)
Y )∗ = (p

(m)
X×Pn)∗ ◦ (i

(m)
f )∗ and

f∗g∗ = (p
(n)
X )∗(if )∗(p

(m)
Y )∗(ig)∗ = (p

(n)
X )∗(p

(m)
X×Pn)∗(i

(m)
f )∗(ig)∗

= (p
(n)
X )∗(p

(m)
X×Pn)∗(i

(m)
f ig)∗ ,

the latter by Section 2.2.
It now suffices to prove the following

Lemma 4.6. Let h : Z → X be a projective morphism decomposed as

Z
I
−→ X × P

n × P
m p

(n,m)
X−−−−→ X

with even m and n, where I is a closed embedding and p
(n,m)
X = p

(n)
X ◦ p

(m)
X×Pn = p

(m)
X ◦

p
(n)
X×Pm . Then h∗ = (p

(n,m)
X )∗ ◦ I∗, where (p

(n,m)
X )∗ is defined as either of the compositions

(p
(n)
X )∗(p

(m)
X×Pn)∗ or (p

(m)
X )∗(p

(n)
X×Pm)∗, which are equal according to Section 3.3.

Now put h = fg, I = i
(m)
f ig and get f∗g∗ = (fg)∗.
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Proof of the lemma. Choose a closed embedding j : P
n × P

m → P
N with N sufficiently

large even and let J = idX × j : X × P
n × P

m → X × P
N . Choose a ∈ P

n(k) , b ∈ P
m(k)

and let c = j(a, b) ∈ P
N (k). Then J ◦ i

(m)
X×Pn,b ◦ i

(n)
X,a = i

(N)
X,c , hence by 2.2

J∗ ◦ (i
(m)
X×Pn,b)∗ ◦ (i

(n)
X,a)∗ = (i

(N)
X,c )∗ .

As m, n and N are even, all the i∗’s are invertible and we get by Definition 3.2(i)

(p
(N)
X )∗ ◦ J∗ = (p

(n)
X )∗ ◦ (p

(m)
X×Pn)∗ = (p

(n,m)
X )∗ .

Thus

(p
(n,m)
X )∗I∗ = (p

(N)
X )∗J∗I∗ = (p

(N)
X )∗(JI)∗ = h∗ ,

where the last equation is true by Proposition 4.2 since J ◦ I is a closed embedding.¥

Remark. (a) Lemma 4.6 can be viewed as a generalization of Proposition 4.2, for we get
the latter if m = 0 or n = 0. It yields more flexibility in factoring projective morphisms
to obtain their push-forwards. The obvious generalization with multiple projective spaces
is also true.

(b) The assumption that m, n and N are even is not really necessary. For our purposes
it suffices to prove the lemma under this assumption; the general case is left to the reader.

4.7. Transversal base changes.

Definition 4.8. A square of the form

Y ′
f ′

−−−−→ X ′

φY





y





y

φX

Y
f

−−−−→ X

(4.2)

with f projective is called transversal in Smk if it is cartesian and the induced square of
vector bundles

TY ′ −−−−→ (f ′)∗TX′





y





y

φ∗

Y TY −−−−→ (fφY )∗TX

is bicartesian in the category of vector bundles on Y ′. Equivalently, one can require that
the sequence

0 −→ TY ′

(dφY ,−df ′)
−−−−−−−→ φ∗

Y TY ⊕ (f ′)∗TX′

(df,dφX )
−−−−−→ (fφY )∗TX −→ 0 (4.3)

is exact, cf. [Me, Axiom (iv) in Section 2] or [LM].
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If f is factored as Y
i
−→ X × P

n
p
(n)
X−−→ X with i a closed embedding, then pulling back

along φX we get a factorization of the entire diagram:

Y ′ i′
−−−−→ X ′ × P

n
p
(n)

X′

−−−−→ X ′

φY





y





y

φ
(n)
X





y

φX

Y
i

−−−−→ X × P
n

p
(n)
X−−−−→ X

(4.4)

In these terms, the transversality of (4.2) is equivalent to the transversality of the left
square in (4.4) in the sense of Section 2.4. (The right square is always transversal.) The
latter is stated in terms of normal bundles: the natural map Ni′ → φ∗

Y Ni is required to
be an isomorphism.

Lemma 4.9. If (4.2) is transversal and L is a line bundle on X , then the line bundles

φ∗

Y Lf and (φ∗

XL)f ′

on Y ′ can be identified canonically.

Proof. The dual of (4.3) provides a natural isomorphism

det (φ∗

Y ΩY ⊕ (f ′)∗ΩX′) ∼= det ΩY ′ ⊗ det (fφY )∗ΩX

which yields a natural isomorphism φ∗

Y ωf
∼= ωf ′ . (Compare to (3.4) where the same was

verified in the case of projections by a more explicit computation.) It follows that

(φ∗

XL)f ′

= (f ′)∗φ∗

XL ⊗ ωf ′
∼= φ∗

Y f∗L ⊗ φ∗

Y ωf
∼= φ∗

Y (f∗L ⊗ ωf ) = φ∗

Y Lf .

The lemma is proved.¥

As we have transversal base changes for projections and closed embeddings, see Sections
2.4 and 3.4, we can derive the same property for arbitrary projective morphisms by using
(4.4). Lemma 4.9 guarantees that the twists agree.

Proposition 4.10. Suppose that f and (therefore) f ′ are projective equicodimensional
morphisms of codimension c in a transversal square of the form (4.2). Let S, T, S′, T ′ be
compatible closed subschemes in Y, X, Y ′, X ′, respectively. Then the diagram commutes:

W
q
S′(Y ′; φ∗

Y Lf )
f ′

∗−−−−→ W
q+c
T ′ (X ′; φ∗

XL)

φ∗

Y





y





y

φ∗

X

W
q
S(Y ; Lf )

f∗

−−−−→ W
q+c
T (X ; L)

4.11. Projection formulas. Let f : Y → X be a projective morphism of codimension
c, T and T ′ be closed subschemes in X and S ⊂ f−1(T ) a closed subscheme in Y , and let

L and L′ be line bundles on X . Then for any α ∈ W
q′

T ′(X ; L′) and β ∈ W
q
S(Y ; Lf ) we have

f∗(f
∗α ⋆ β) = α ⋆ f∗β and f∗(β ⋆ f∗α) = (−1)cq′

f∗β ⋆ α

in W
q′+q+c
T∩T ′ (X ; L⊗ L′). We get these formulas by factoring f and applying the respective

formulas of Sections 2.7 and 3.7.
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