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Abstract

Quillen’s algebraic K-theory is reconstructed via Voevodsky’s al-
gebraic cobordism. More precisely, for a ground field k the algebraic
cobordism P'-spectrum MGL of Voevodsky is considered as a commu-
tative ring Pl-spectra. Setting MGL! = D2g—p=i MGLP? we regard
the bigraded theory MGLP*? as just a graded theory. There is a unique
ring morphism ¢: MGL®(k) — Z which sends the class [X]ucrL of a
smooth projective k-variety X to the Euler characteristic x(X, Ox) of
the structure sheaf Ox. Our main result states that there is a canon-
ical grade preserving isomorphism of ring cohomology theories on the
category SmOp/k

p: MGL*(X,U) @ypgrogy Z — KIL(X,U) = KL (X = V),

in the sense of [PS1], where K!7 is the Thomason-Trobaugh K-theory
and K/ is Quillen’s K’'-theory. In particular, the left hand side is
a ring cohomology theory. Moreover both theories are oriented in
the sense of [PST] and ¢ respects the orientations. The result is an
algebraic version of a theorem due to Conner and Floyd. That theorem
reconstructs complex K-theory via complex cobordism [CH].
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1 A motivic version of a theorem by Conner
and Floyd

Our main result relates Voevodsky’s algebraic cobordism theory MGL"* to
Quillen’s K'-theory. We refer to [PPRIl Appendix] for the basic terminology,
notation, constructions, definitions, results. Let S be a Noetherian separated
finite-dimensional scheme S. One may think of S being the spectrum of a
field or the integers. A motivic space over S is a functor

A: 8m/S? — sSet

(see [PPRI, Appendix]). The category of motivic spaces over S is denoted
M(S). This definition of a motivic space is different from the one consid-
ered by Morel and Voevodsky in [MV] — they consider only those simplicial
presheaves which are sheaves in the Nisnevich topology on 8m/S. With our
definition the Thomason-Trobaugh K-theory functor obtained by using big
vector bundles is a motivic space on the nose. It is not a simplicial Nisnevich
sheaf. This is why we prefer to work with the above notion of “space”.

We write HS™ (.S) for the pointed motivic homotopy category and SH®™(S)
for the stable motivic homotopy category over S as constructed in [PPRIL
A.3.9, A.5.6]. By [PPRI, A.3.11 resp. A.5.6] there are canonical equiva-
lences to He(S) of [MV] resp. SH(S) of [VI]. Both H{™(S) and SH®(S)
are equipped with closed symmetric monoidal structures such that the P!-
suspension spectrum functor is a strict symmetric monoidal functor

p1: HJ(S) — SH™(S).

Here P! is considered as a motivic space pointed by co € P!. The symmetric
monoidal structure (A,Is = X:151) on the homotopy category SH®"(.S) is
constructed on the model category level by employing the category MSS(.5)
of symmetric P'-spectra. It satisfies the properties required by Theorem
5.6 of Voevodsky congress talk [VI]. From now on we will usually omit the
superscript (—)™.

Given a Pl-spectrum E one has a cohomology theory on the category
of pointed spaces. Namely, for a pointed space (A,a) set EPY(A a) =
Hompgn(g)(X31 (A, a), XP4(E)) and E**(A, a) = @, 4E"9(A,a). A cohomol-
ogy theory on the category of non-pointed spaces is defined as follows. For a
non-pointed space A set EP9(A) = EP9(A4, +) and E**(A) = @, ,EP(A).

Each X € 8m/S defines a motivic space constant in the siplicial direction
taking an S-smooth U to Morg(U, X). This motivic space is non-pointed.
So we regard S-smooth varieties as motivic spaces (non-pointed) and set

EP9(X) = EPI(Xy, ).
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Given a Pl-spectrum E we will reduce the double grading on the co-
homology theory E** to a grading. Namely, set E™ = @,,—p_2, 7 and
E* =@, E™. We often will write E*(k) for E*(Spec(k)) below in this text.

A Plring spectrum is a monoid (E, i, e) in (SH(S), A,Is). A commuta-
tive Pl-ring spectrum is a commutative monoid (E, i, €) in (SH(S), A, 1).

The cohomology theory E* defined by a Pl-ring spectrum is a ring co-
homology theory. The cohomology theory E* defined by a commutative
Plring spectrum is a ring cohomology theory, however it is not necessary
graded commutative. The cohomology theory E* defined by an oriented
commutative Pl-ring spectrum is a graded commutative ring cohomology
theory.

Occasionally a P'-ring spectrum (E, 1, ¢) might have a model (E', 1/, €)
which is a symmetric Pl-ring spectrum, that is, a symmetric P'-spectrum
E’ equipped with a strict multiplication y': E' A E' — E’ which is strictly
associative and strictly unital for the unit e’: 33 (5;) — E’. This is the
case for the algebraic cobordism P!-ring spectrum MGL, as described below.
Such a model for the algebraic K-theory P!-ring spectrum BGL is currently
not known to us.

For the rest of the paper let k be a field and S = Spec(k). Usually S will
be replaced by k in the notation. We work in this text with the algebraic
cobordism P!-spectrum MGL and the algebraic K-theory Pl-spectrum BGL
as described in [PPRIl, Defn. 1.2.4] and [PPR2] Sect. 2.1] respectively. The
spectrum MGL is a commutative ring P!-spectrum by that construction. The
spectrum BGL is equipped with a structure of a commutative P!-ring spec-
trum as explained in [PPRI, Thm. 2.1.1]. Let KI7 be Thomason-Trobaugh
K-theory functor [I"T]. There is a canonical isomorphism

Ad: KT — BGL*?

of ring cohomology theories on the category 8mOp/S in the sense of [PSI].
An invertible Bott element 3 € BGL*!(Spec(k)) is constructed in [PPRIT,
Section 1.3]. For every pointed motivic space A the morphism

BGL*(A) ® BGL’(Spec(k)) — BGL**(A) (1)

given by a®b +— aUb is a ring isomorphism by [PPRIL Sect. 1.3]. Furthermore
BGL%(Spec(k)) = Z[3,37"] is the ring of Laurent polynomials on the Bott
element (3. To say the same in a different way,

BGL™(A)[3, 57 = BGL™ (A). (2)

The special case A = X/(X \ Z) where X is a smooth k-variety and Z C X
is a closed subset implies the following result [PPRI], Cor. 1.3.6].
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Corollary 1.0.1. Let X be a smooth k-scheme, Z a closed subset of X and
U= X\ Z its open complement. Then there are isomorphisms

KT ,(X)[8,671 = BGL™(X/U) = BGL*(X/U) (3)
KT ,(X) = BGL"(X/U)/(3+1)BGL"*(X/U) (4)

of ring cohomology theories on 8mOp/k in the sense of [PS1).

We refer to [PPR2] for a construction of the commutative ring P!-spectrum
MGL. For the purposes of the present preprint we will need to know only
two properties of that spectrum. Those properties are: Quillen universality
and MGL-cellularity (see Subsection X1l below).

1.1 Oriented commutative ring spectra

Following Adams and Morel we define an orientation of a commutative P!-
ring spectrum. However we prefer to use Thom classes instead of Chern
classes. Consider the pointed motivic space P> = colim,,>o P" having base
point g;: S = P? — P,

The tautological “vector bundle” T(1) = Opx(—1) is also known as the
Hopf bundle. It has zero section z: P> < T(1). The fiber over the point g; €
P> is Al. For a vector bundle V over a smooth S-scheme X with zero section
z: X — V consider a Nisnevich sheaf associated with the presheaf YV +—
V(Y)/(V N 2(X))(Y) on the Nisnevich site 8m/S. The Thom space Th(V')
of V' is defined as that Nisnevich sheaf regarded as a presheaf. In particular
Th(V) is a pointed motivic space in the sense of [PPRI, Defn. A.1.1]. Tts
Nisnevich sheafification coincides with Voevodsky’s Thom space [Vl p. 422],
since Th(V') is already a Nisnevich sheaf. The Thom space of the Hopf bundle
is then defined as the colimit Th(T(1)) = colim,>o Th(Op~(—1)). Abbreviate
T = Th(AL) = AL/(A} ~ {0}).

Let E be a commutative ring P'-spectrum. The unit gives rise to an
element 1 € E%%(Spec(k),). Applying the P!-suspension isomorphism to
that element we get an element Ypi(1) € E*'(P!/{oco})). The canonical
covering of P! defines motivic weak equivalences

P'/{oo} = P! /AT <> Al /AL {0} =T,

which in turn define pull-back isomorphisms FE(P!/{cc}) « E(A'/A' <
{0}) — E(T) . Denote Y7(1) the image of ¥p1 (1) in E>}(T).

Definition 1.1.1. Let E be a commutative ring P'-spectrum. A Thom ori-
entation of E is an element th € E*'(Th(T(1)) such that its restriction to
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the Thom space of the fibre over the distinguished point coincides with the ele-
ment Yr(1) € E*'(T). A Chern orientation of F is an element c € E*!(P>)
such that c|p1 = —¥p1(1). An orientation of E is either a Thom orientation
or a Chern orientation. Two Thom orientations of E coincide if respecting
Thom elements coincides. Two Chern orientations of E coincide if respecting
Chern elements coincides. One says that a Thom orientation th of E coin-
cides with a Chern orientation ¢ of E provided that ¢ = z*(th) or equivalently
the element th coincides with the one th(O(—1)) given by (@) below.

Remark 1.1.2. The element th should be regarded as a Thom class of the
tautological line bundle T(1) = O(—1) over P*°. The element ¢ should be

regarded as a Chern class of the tautological line bundle T(1) = O(—1) over
Pe.

Example 1.1.3. The following orientations given right below are relevant for
our work. Here MGL denotes the Pl-ring spectrum representing algebraic
cobordism obtained in [PPR2, Defn 2.1.1] and BGL denotes the Pl-ring
spectrum representing algebraic K-theory constructed in [PPRI, Theorem
2.2.1].

e Let uy : 3% (Th(T(1)))(—1) — MGL be the canonical map of P!-
spectra. Set thMSL = 4 € MGL*'(Th(7(1))). Since tAMEE|pyqy =
Ypi(1) in MGL*!(Th(1)), the class thMS is an orientation of MGL.

e Set ¢ = (—B3) U ([0] — [9(1)]) € BGL*!(P>). The relation (11) from
[PPRI] shows that the class ¢ is an orientation of BGL.

2 Oriented cohomology theories

Let (F,c) be an oriented commutative P!-ring spectrum. In this Section we
compute the F-cohomology of infinite Grassmannians and their products.
The results are the expected ones 2Z0L6.

The oriented P!-ring spectrum (F, ¢) defines an oriented cohomology the-
ory on 8mOp in the sense of [PSIl, Defn. 3.1] as follows. The restriction of
the functor E** to the category 8m/S is a ring cohomology theory. By
[PST, Th. 3.35] it remains to construct a Chern structure on E**|g;0, in
the sense of [PS1l Defn.3.2]. Let H(k) be the homotopy category of spaces
over k. The functor isomorphism Hompyw(—,P>) — Pic(—) on the cat-
egory 8m/S provided by [MV, Thm. 4.3.8] sends the class of the iden-
tity map P> — P to the class of the tautological line bundle O(—1)
over P*. For a line bundle L over X € 8m/S let [L] be the class of



L in the group Pic(X). Let fr: X — P> be a morphism in H(k) cor-
responding to the class [L] under the functor isomorphism above. For a
line bundle L over X € 8m/S set ¢(L) = fi(c) € E*'(X). Clearly,
c¢(O(=1)) = ¢. The assignment L/X +— ¢(L) is a Chern structure on
E**|smop since c|pr = —3pi(1) € E*' (P! 00). With that Chern structure
E**|smep 1s an oriented ring cohomology theory in the sense of [PS1]. In
particular, (BGL, ¢®) defines an oriented ring cohomology theory on 8mOp.

Given this Chern structure, one obtains a theory of Thom classes V/X —
th(V) € Erank(V)rank(V)(Thy (V) on the cohomology theory E**|sy0,/s in
the sense of [PS1l Defn. 3.32] as follows. There is a unique theory of Chern
classes V +— ¢;(V) € E*(X) such that for every line bundle L on X one
has ¢ (L) = ¢(L). For a rank r vector bundle V over X consider the vector
bundle W := 1 @& V and the associated projective vector bundle P(W') of
lines in W. Set

th(V) = e (p"(V) ® Opr)(1)) € E"(P(W)). (5)
It follows from [PST, Cor. 3.18] that the support extension map
B (P(W)/(P(W) N\ P(1))) — E* (P(W))
is injective and th(E) € E*"(P(W)/(P(W) \ P(1))). Set
th(E) = j*(th(E)) € E*""(Thx(V)), (6)

where j: Thx (V) — P(W)/(P(W) ~ P(1)) is the canonical motivic weak
equivalence of pointed motivic spaces induced by the open embedding V' —
P(W). The assignment V/X to th(V) is a theory of Thom classes on
E**|smop (see the proof of [PSI, Thm. 3.35]). So the Thom classes are nat-
ural, multiplicative and satisfy the following Thom isomorphism property.

Theorem 2.0.4. For a rank r vector bundle p: V- — X on X € 8m/S with
zero section z: X — V', the map

Uth(V): E**(X) — E*Pr 7 (V/(V N 2(X)))

is an isomorphism of the two-sided E**(X)-modules, where — U th(V') is

*

written for the composition map (Uth(V)) op*.
Proof. See [PS1], Defn. 3.32.(4)]. O

Analogous to [VI, p. 422] one obtains for vector bundles V' — X and
W — Y in 8m/S a canonical map of pointed motivic spaces Th(V') A
Th(W) — Th(V xg W) which is a motivic weak equivalence as defined
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in [PPRI], Defn. 3.1.6]. In fact, the canonical map becomes an isomorphism
after Nisnevich (even Zariski) sheafification. Taking Y =S and W = 1 the
trivial line bundle yields a motivic weak equivalence Th(V)AT — Th(V & 1).
The canonical covering of P! defines motivic weak equivalences

T =A'/A'\ {0} —=>P!/A! <= p?

and the arrow T = A'/A' <\ {0} — P!/P! \ {0} is an isomorphism. Hence
one may switch between 7" and P! as desired.

Corollary 2.0.5. For W = V & 1 consider the composite motivic weak
equivalence €: Th(V) AP — Th(V) AP'/A' « Th(V) AT — Th(W) in
H.(S). Then the diagram

E*+2r,*+r<Th(V)) Yp1 E*+2r+2,*+r+1<Th(V> /\Pl)

id/[ E*T
E*+2r,*+r<Th<V)) Er E*+2r+2,*+r+1<Th<W))
Uth(V)T Uth(W)T
E**(X) SLEN E**(X).

commutes.

Theorem 2.0.6. Let ¢; = ¢;(T(n)) € E**(Gr(n)) be the i-th Chern class of
the tautological bundle T(n). Then

E**(Gr(n)) = E**(k)|[c1, ca, . . ., ]

is the formal power series on the ¢;’s. The inclusion i: Gr(n) — Gr(n + 1)
satisfies i*(¢p) = ¢ form <n+1 and i*(c,41) = 0.

2.1 A general result

The main result of this Section is Theorem EZT 4. The complex cobordism
spectrum, equipped with its natural orientation, is a universal oriented ring
cohomology theory by Quillen’s universality theorem [Qul]. A motivic ver-
sion of this universality theorem is proved in [PPR2] (see [Ve] for the original
statement). We consider MGL with the commutative monoid structure de-
scribed in [PPR2), Defn 2.1.1] and with the orientation thM%" described in
L 1o

By a cofibration we mean below in the text a cofibration with respect to
the closed model structure on the category M(S) (see [PPRIl Appendix]).
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Recall that for a Pl-spectrum E and a cofibration ¥ — X the group
EP1(X,Y) is defined as the cohomology EP4(X/Y,Y/Y') of the pointed space

(X/Y,+) (if Y is the empty set, then one should take the group EP9( X, +)
for EP9(X,Y)).

Definition 2.1.1 (Universality Property). Let (U,u) be an oriented commu-
tative ring Pl-spectrum over a field k. We say that (U,u) satisfies Quillen
universality property, if for each commutative ring P*-spectrum E over k the
assignment ¢ +— @(u) € U»Y(Th(T(1))) identifies the set of monoid mor-
phisms

p:U—E (7)

in the motivic stable homotopy category SH™(S) with the set of orientations
of E.

Let (U,u) be an oriented commutative ring P!-spectrum over k. Let
(E, th) oriented commutative ring P'-spectrum over k. Let

p:U—=E (8)

be a monoid morphism in SH*"(k) such that ¢(u) = th. For every space X
over k and a cofibration Y — X and a unique morphism f: X/Y — Spec(k)
one has a commutative diagram of U°(k)-module homomorphisms.

U*(X,Y) =5 E4(X,Y)
f{ T i
UO(k) — 255 B9 (k)

It is known that for each oriented commutative ring P!-spectrum (F,v) and
each space A the ring F°(A) is contained in the center of F*(A). The last
commutative diagram induces two homomorphisms

oxy: U(X,)Y) ®uog E°(k) — E*(X,Y) 9)

Pyt UNX,Y) @uog E° (k) — E°(X,Y) (10)
which are natural in a cofibration ¥ — X.
_ Since this moment choose (BGL, thIf) for (E, th) (see Example [CT3]). Set
U*(X,Y) = U*(X,Y) ®uo) BGLO(k), U°(X,Y) = U%(X,Y) ®uo(ry BGLO (k).
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Definition 2.1.2 (Weakly MGL-Cellular). A Quillen universal oriented com-
mutative ring P*-spectrum (U, ) is called weakly MG L-cellular if there exists
an integer N such that the map @?JM s an isomorphism forn > N .

Remark 2.1.3. By the Universality Theorem [Vé] or [PPR2] the P!-spectrum
MGL is Quillen universal. That is why we choose to write MGL-cellular in
the definition above. The following theorem motivates two last Definitions.

Theorem 2.1.4. Let (U,u) be an oriented commutative ring Pl-spectrum
over a field k satisfying the Quillen universality property. Suppose (U,u) is
weakly MG L-cellular. Then for each cofibration Y — X of small spaces over
the field k the homomorphism ¢xy is an isomorphism.

Proof. The proof consists of several steps. Our first aim is to prove that
homomorphisms @g(y are isomorphisms. We beging with constructing a
section of the natural transformation

S00,0: U0,0 N BGL0,0

of functors on the category of cofibrations of small spaces. To do this we begin
with recalling that for every oriented commutative Pl-ring spectrum (E, th)
the ring cohomology theory E**|g;,e, is an oriented cohomology theory on
the category 8mOp (see Section B). Let Fg 4, be the induced commutative
formal group law over the ring E°(k). Let 2 be the complex cobordism ring
and let Ip4,: © — E°(k) be the unique ring homomorphism, which takes the
universal formal group Fq to Fg . Set

[Pz = loum([CP"), (11)

where [CP"] is the class of the complex projective space CP" in €. Although
the class [P"]r depends on the orientation class th, we use the notation
[P"]g instead. If (E',th) is another oriented commutative P'-ring spectrum
and ¢: £ — E’is a monoid homomorphism in the category SH**(S) which
preserves orientation classes, then it sends the formal group law Fg,, to
Fg 4. In particular ¢ ([P"]g) = [P"]r. Applying this observation to the
monoid homomorphism ¢ one obtains

o([P']u) = [P']scr.

To compute [P!gqr, recall that the coefficient at XY in the formal group
law Fq coincides with the class —[CP!] in . The formal group law Fpqr,
coincides with X +Y + 371XY, since ¢B¢Y(L) = ([1] — [LV])(—23). Thus one
gets

[PlpeL = 67"
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We are ready to construct a section. Consider the map

s: Xpi(Z x Gr) - U (12)
in the stable homotopy category category SH*"(S) given by the element

el (oo — 1)U [Py € UY(Z x Gr).
Claim 2.1.5. One has ¢(c (00 — 7Y)U[PYy) = 7o — 00 € BGL*(Z x Gr),
In fact,
p(ci (00 =) U[P]y) = ¢ (00 — 73 ) U [P']pr = (00 — 7o) UBU (=57)
= Too — OO.
Claim EZT.H shows that the composite map
pos: Xpi(Z x Gr) — BGL

coincides with the adjoint of the motivic weak equivalence ¢: Z x Gr — K =
Ko from [PPRI, Lemma 1.2.2]. Thus for every cofibration Y — X of small
motivic spaces the map

sxy: BGL™(X/Y) = [X/Y, K] = [X/Y, ZxCr] — [Zm(X/Y), U] = U*°(X/Y)

is a section of the map cpgg?yz U%0(XY) — BGL™(X,Y). Moreover, the
section sy y is natural in the cofibration ¥ — X.

Next we extend t}%]e section s to a section 3°: BGL® — U® of the natural
transformation ¢°: U — BGL® of functors on the category of cofibrations.
To achieve this, recall that

BGL® = BGL™[3, 7]

for the Bott element 3 € BGL*'(k) (see ([)). Thus for every cofibration
Y — X every element a € BGL(X,Y) can be presented in a unique way in
the form a U 3 with a € BGL*’(X,Y). Define

#%y:BGLY — T (13)
by 5% y(aUfB’) = sxy(a)®f" € UO(A), where a € BGL™ (X, Y). It is imme-

diate that s is natural in cofibration Y — X. The following computation
proves the claim which is right below the row of computation

PA(3"(aU ) = gu(s(a) ® B) = p(s(a)) U B = aU B"
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Claim 2.1.6. The map 5()](’5/ is a section of @},Y.

Now observe the following. If for a cofibration ¥ — X the map @9(7), is
an isomorphism, then 5% y is an isomorphism inverse to ¢% ,-. In particular,
one has 5%y o g%, = id.

The homomorphism @Y% - is an isomorphism for cofibrations of the form
x — U, with n > N, since U is weakly MGL-cellular. Taking * — U,
as a cofibration Y — X and the class [u,] € U?"(U,, %) of the canonical
morphism u, : X3 Up(—n) — U we get the following relation:

(8%, 0%, I[un)) = [un] ® 1 € T (Uy, ). (14)

Now we are ready to check that @Y is an isomorphism for all cofibrations
Y — X of small motivic spaces. Recall that for a cofibrations ¥ — X of
small motivic spaces there is a canonical isomorphism of the form

U24(X,Y) = colim,[S2""(X/Y,Y/Y), UitnlHa(s) (15)

where X" = ¥, (if Y is empty then one should replace the pair (X/Y,Y/Y)
by the one (X,,+)). This isomorphism implies that for every element
a € U*(XY) there exists an integer n > 0 such that ¥2""(a) = f*([uy)])
for an appropriate map f: X**"(X/Y) — U, in the homotopy category
He™(S). Here X™"(a) is the n-fold Ypi-suspension of a.

The surjectivity of @g(’y is clear, since 59(73, is its section. It remains to
check the injectivity of @gm,. Take a homogeneous element o € U2Z’Z(X YY) C
UO(X, Y') such that @% y (a) = 0. It has the form a = a ® ™ for a homoge-
neous element a € U%(XY). Since the element 3 is invertible in BGL**(k),
one concludes ¢% y(a) = 0.

Choose an integer n > 0 such that %2""(a) = f*([u,]) and write A for
X/Y to short the notation. The map ¢ of Pl-spectra respects the suspension
isomorphisms. Thus @sz2en4(X2*"(a)) = 22"’”(¢A(a)) 0 and (8%, 4 ©

@xenng) (X2 (a)) = 0 too. The chain of relations in 0’ (X2 A) given by

= (8% © Px2nna) (22""( ) = (Sz2n wa © osenna) (f*([un]))
= [ ((80,,, 0 pu,)([un]) = ®1) = f*([un]) ®1
¥ (g ) ® 1

implies that ¥*™"(a ® 1) = ¥?""(a) ® 1 = 0. Because the n-fold suspension
map

s TUXY, YY) — T(E2(X)Y,Y/Y))
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is an isomorphism, a®1 = 0 in UO(X/Y) = UO(X, Y'). This proves the injec-
tivity and hence the bijectivity of @%y for cofibrations of all small motivic
spaces.

To prove that ¢x y is an isomorphism for cofibrations of all small motivic
spaces we will use the fact that @xy respects the P!-suspension isomor-
phisms. Set A= X/Y.

For every integer ¢ € Z choose an integer n > 0 with n > 4. Then for
a pointed motivic space A one may form the suspension G)™ A S7P A A =
Snm A 840 A A in the category of pointed motivic spaces, which supplies
the commutative diagram

BGL!(A) 225 BGLI(S27 A A) ¢ BGLY(S™" A S0 A A)

=1 5t ~ | 30
4,01/_1T ipSQ”’"/\AT :Tcpsn,n/\sni,o/\A

i T Q2non 50 0(Qn,n A Qn—i0
U(A) ——— U (S AN A) «——— U (5" A SO A A)
with the suspension isomorphisms 2" = X%, and ¥*°. The map @} is an
isomorphism for B a small pointed motivic space, hence so is ¢’,. We proved

that the map ¢x y is an isomorphism. Theorem ZT.4lis proven.
O

2.2 The MGL-cellularity of the MGL

Theorem 2.2.1. The oriented commutative ring P-spectrum (MGL, thMSL)
from Example 1.3 is weakly MGL-cellular.

Proof. We must check that the homomorphism @%y is an isomorphism for

(X,Y) being (Th(T,), *) = (MGL,, ). We check that inspecting step by step

motivic spaces Spec(k), P>, Gr(n) and the pair (Th(T,),*) = (MGL,,, *).
The map ¢} is an isomorphism, since it is the identity map. By the case

n =1 of Theorem B8 one has MGL' (P>) = MGL" (k)[[¢ME"]], whence

MGL" (P=) = MGL’ (k) [[M€Y]

MGL

(the formal power series on the first Chern class ¢ of the tautological line

bundle O(—1)). The same holds for BGL. Namely
BGL(P*>) = BGL®(k)[[c®“]].

By its definition the morphism ¢ takes the orientation class thMS to the ori-
entation class th’ and so it preserves the first Chern class. Whence the map

12



Ppoo coincides with a map of formal power series induced by the isomorphism
@Y of the coefficients rings. Hence p%. is an isomorphism as well.

Consider now X = Gr(n). By Theorem 2.6 its MGL-cohomology ring
is the ring of formal power series on the Chern classes of the tautological
bundle T, over the coefficient ring MGL** (k). The same holds for the BGL-
cohomology ring. As observed above, the map ¢ preserves the first Chern
class, thus it takes Chern classes to the Chern classes. Whence @%r(n) is an
isomorphism as well.

Now consider (X,Y) = (Th(7,),*). The morphism ¢ respects Thom
classes (see (H) and (f)). The vertical arrows in the commutative diagram

MGL ((Th(T,), *)SfQM*BGLO(Th(iT w)

thomMGLT TthomBGL

Pe(n
MGL(CGr(n)) — = BGLY(G(n))

are isomorphisms induced by the the Thom isomorphism X004l The map
@%r(n) is an isomorphism by the preceding case, whence @E}h(%) ) is an iso-
morphism too.

*

O

2.3 Main Result

Let k be a field and S = Spec(k). By Theorem [PPR2, Theorem 2.2.1] and
Example there exists a unique monoid morphism

¢: MGL — BGL (16)

in SH™(S) such that @(thMEL) = thX. For every cofibration Y — X of
motivic spaces over k a unique morphism f: X/Y — S induces the homo-
morphism

pxy: MGL (X,Y): = MGL*(X,Y) ®yqrou BGLO(k) — BGL*(X,Y)(17)

which is natural in cofibration Y — X. Recall that a space A is called small if
the covariant functor ¥, A represents on SH"(S) commutes with arbitrary
coproducts.

Theorem 2.3.1. The homomorphism ¢xy is an isomorphism for all cofi-
brations Y — X of small motivic spaces.

13



In fact, the (MGL, thMSL) is Quillen universal by [Ve] or by Theorem 2.2.1
from [PPR2] and weakly MGL-cellular by Theorem EZZT] above. Theorem
T4 completes the proof.

Remark 2.3.2. There is an unpublished result due to Morel and Hopkins,
which states that there is a canonical isomorphism of the form

MGL"*(X) ®.. Z[B, 37} — BGL**(X)

where L denotes the Lazard ring carrying the universal formal group law.
If the canonical homomorphism L — MGL®(k) is an isomorphism, Theorem
P31 implies their result.

Let X be a smooth k-scheme and Z C X a closed subset, with open
complement U C X. Consider the motivic space X/U and take the quotients
of both sides of the isomorphism (') modulo the principal ideal generated by
the element 1®(5+1). Corollary [Tl then implies the following isomorphism

SBX/UZ MGL (X,Y) = MGL*(X/U) QOMGLO (k) 7 — KT*T,Z(X) (18)

where K*T7 T(X) are the Thomason-Trobaugh K-groups with supports. This
family of isomorphisms shows that the functor

(X, X N Z) = MGL*(X/(X . Z)) @yaow Z =: MGL (X/(X \ Z))

is a ring cohomology theory in the sense of [PST]. This implies the first part
of our main result.

Theorem 2.3.3 (Main Theorem). Let X € 8my and Z C X be a closed
subset.

e The family of isomorphisms
Px/(x—z MGL (X/(X \ 2)) — KT ,(X) (19)
form an isomorphism ¢ of ring cohomology theories on 8mOp/k.

e The § respects orientations provided that MGL* and KT are consid-
ered as oriented cohomology theories in the sense of [PS1)] with orien-
tations given by the Thom class thMC ® 1 from [L13 and the Chern
structure L/ X w [0] — [L™Y. In particular, the composition

MGL’(k) —> MGL (k) ® Z —— Z

a————a®1 b@c——@(b)-c
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sends the class [X] € MGLY(X) of a smooth projective k-variety X to
the Euler characteristic x(X,Ox) of the structure sheaf Ox.

Proof. The first part is already proven. To prove the second one consider
the orientations thM%" and th”* from Note that by the very definition
of ¢ it sends thMSL to th®. Thus it respects the Chern structures on MGL*
and BGL" described in Section A

The quotient map BGL* — KT takes the Bott element 3 to (—1). Thus
it takes the Chern structure on BGL* to the Chern structure on K771 given
by L/X + [0] — [L7!] € Ko(X). This shows that &: MGL — K™T respects
the orientations described in the Theorem 233

Let f — fucL resp. f — fx be the integrations on MGL* resp. KT
given by these Chern structures via Theorem [PS3, Thm. 4.1.4]. By Theorem
[PS2, Thm. 1.1.10] the composition MGL* — BGL* — KT respects the
integrations on MGL* and K7 since it preserves the Chern structures. In
particular, given a smooth projective S-scheme f: X — Spec(k), the diagram

MGL (X) —— K{T(X)

fMGLJ/ l K

NGL (k) —— K37 (k)

commutes where fyqr and fx are the push-forward maps for MGL* and
KTT respectively. The integration f — fx on KTI respecting the Chern
structure L +— [O] — [L™!] coincides with the one given by the higher direct
images by Theorem [PS2, Thm. 1.1.11]. The last one sends the class [V] €
Ky(X) of a vector bundle V' over a smooth projective variety X to the Euler
characteristic x(X, V) of the sheaf V of sections of V.

Recall that for an oriented cohomology theory A with a Chern structure
L — ¢(L) and for a smooth projective variety f: X — Spec(k) its class
[X]a € A% (Spec(k)) is defined as fa(1), where f4: A(X) — A(Spec(k))
is the push-forward respecting the Chern structure (see [PS3, Thm. 4.1.4]).
The fa depends on the Chern structure. However we write just f4 for the
push-forward operator. Taking the element 1 € MGL™’(X) and using the
commutativity of the very last diagram we see that

([ X]merL ® 1) = x(X, Ox).

Whence the Theorem.
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