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Abstract

Let K be a field of characteristic different from 2. It is known that

a quadratic Pfister form over K is hyperbolic once it is isotropic. It is

also known that the dimension of an anisotropic quadratic form over K

belonging to a given power of the fundamental ideal of the Witt ring of K

is lower bounded. In this paper, weak analogues of these two statements

are proved for hermitian forms over a multiquaternion algebra with invo-

lution. Consequences for Pfister involutions are also drawn. An invariant

uα of K with respect to a non-zero pure quaternion of a quaternion di-

vision algebra over K is defined. Upper bounds for this invariant are

provided. In particular an analogue is obtained of a result of Elman and

Lam concerning the u-invariant of a field of level at most 2.

1 Introduction

Throughout this paper, the characteristic of the base field is supposed to be
different from 2. Pfister forms play a fundamental role in the theory of quadratic
forms. In the literature, efforts have been made to find analogues of these forms
in the framework of central simple algebras with involution or of hermitian
forms over such algebras. In the first case, a notion of Pfister involution has
been defined by Shapiro (see Subsection 2.4): it is nothing but a central simple
algebra endowed with an orthogonal involution which is a tensor product of
quaternion algebras with involution. Shapiro has also stated a conjecture which
predicts a close relation between Pfister involutions and quadratic Pfister forms
(see Conjecture 2.8) which has recently been proved by Becher [2]. In the
second case, a notion of hermitian Pfister form over a central simple algebra
with involution (A, σ) has been defined by Lewis [10] as the hermitian form
over (A, σ) induced by a quadratic Pfister form over the subfield of the center
of A consisting in elements invariant under σ (see Subsection 2.3).

In the first part of this paper, we prove weak analogues of two important
properties satisfied by quadratic forms in the framework of hermitian forms over
multiquaternion algebras with involution. The first of these two properties is
the fact that quadratic Pfister forms are hyperbolic once they are isotropic. Our
first main result is the following which will be restated later in a more detailed
form (see Theorem 3.3 below):

Theorem 1.1. Let (A, σ) = (Q1, σ1) ⊗K · · · ⊗K (Qn, σn) be a multiquaternion

algebra with involution. Then there exists a non-negative integer s < n which

only depends on the decomposition of (A, σ) such that for every hermitian Pfister

form h over (A, σ), 2s × h is hyperbolic as soon as h is isotropic.
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Several facts are recalled in Section 2 and the beginning of Section 3 is devoted
to the proof of Theorem 3.3 which is a slightly more detailed statement of
Theorem 1.1. Jean-Pierre Tignol pointed out to us that the existence of an
integer s(h) (depending on h) such that 2s(h) × h is hyperbolic can also be
obtained using a local-global principle for hermitian forms proved by Lewis and
Unger [11]. Our result provides more information about the power s(h): it states
that s(h) can be chosen independently of h and also gives an upper bound for
it.

Another important result is Arason and Pfister’s Hauptsatz which gives a
dimension-theoretic necessary condition for a quadratic form to belong to a
given power of the fundamental ideal of the Witt ring (see Theorem 3.6). In the
second part of Section 3, we prove a weak analogue of this result (see Theorem
3.7). In the last part of this Section, we focus on Pfister involutions. Among
other things, we obtain a new proof of Conjecture 2.8 in the case of linked fields.

In the second part of this paper, we define a certain invariant uα associated
to K for which we give upper bounds under certain hypotheses. Recall that
the u-invariant of a field K is the supremum over the dimension of all quadratic
forms ϕ over K such that ϕ is anisotropic and that the level of a field K, denoted
by s(K), is the smallest positive integer s such that −1 can be written as a sum
of s squares in K. If we denote by q the number of square classes in K× and
if K is a non-real field, Kneser has proved that u(K) 6 q (see [14, Chapter 2,
§16]). This result has been refined in [4] when the value of the level of K is
small:

Theorem 1.2 (Elman-Lam). Let K be a field whose level satisfies s(K) 6 2.
Then, either u(K) = q or u(K) 6 q/2.

Given a non-zero symmetric or skew-symmetric element α of a quaternion
division algebra with canonical involution (Q, γ) over K, we define the invariant
uα(K) to be the supremum over the dimension of all quadratic forms ϕ over K
such that ϕ · 〈α〉 is anisotropic over (Q, γ). Denote by s(K, σ) the (hermitian)
level of a field K with an involution σ, that is the smallest integer s such that
−1 is can be written as a sum of s hermitian squares, i.e., elements of the form
σ(x)x where x ∈ K. We first prove an analogue of Kneser’s result above for
the invariant uα (see Proposition 4.5). Our second main result is an analogue
of Theorem 1.2 for the invariant uα:

Theorem 1.3. Let α be a skew-symmetric element in Q× with respect to its

canonical involution γ. Suppose that the level of (K(α), γ|K(α)) is at most 2.

Then, either uα(K) = |K×/Gα| or uα(K) 6 1
2 |K

×/Gα|.

Here Gα is the similarity group of the one-dimensional skew-hermitian form 〈α〉:
Gα = {c ∈ K× | 〈cα〉 ≃ 〈α〉 as skew-hermitian forms over (Q, γ)}. These results
are proved in Section 4.

2 Basic results and notations

¿From now on, every central simple algebra is supposed to be finite-dimensional
over its center and every module over such an algebra is supposed to be a finitely
generated right module.
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2.1 Central simple algebras

The general reference for the theory of central simple algebras with involution
is [8].

Let K be a field and A be a central simple algebra over K. Suppose that A
is endowed with an involution σ, that is a ring antiautomorphism of A of order
2. The map σ restricts to an involution of K and there are two cases: if σ|K
is the identity map, we say that σ is of the first kind, otherwise σ|K is of the

second kind. We will always denote by F the subfield of K consisting in central
invariant elements under σ. Then σ is of the first kind if F = K and σ is of the
second kind if K/F is a quadratic field extension. If σ is of the second kind, we
will denote by − the non-trivial automorphism of K/F .

A field L containing K is called a splitting field of A if A⊗K L is isomorphic
to a full matrix algebra over L. By Wedderburn’s Theorem, such a field always
exists (see [8, Theorem 1.1]). An involution of the first kind is said to be orthog-

onal (resp. symplectic) if it is adjoint to a symmetric (resp. skew-symmetric)
bilinear form after scalar extension to a splitting field of A. An involution of
the second kind is said to be unitary.

Let (A, σ) and (B, τ) be two central simple algebras with involution over
K. We will say that (A, σ) and (B, τ) are isomorphic (or simply that σ and
τ are isomorphic if the algebras are clear from the context) if there exists a
K-algebra isomorphism f : A ≃ B such that τ ◦ f = f ◦ σ. When σ|K = τ |K ,
the tensor product of (A, σ) and (B, τ) refers to (A ⊗K B, σ ⊗ τ) also denoted
(A, σ) ⊗K (B, τ).

A central simple algebra of degree 2 is called a quaternion algebra. As
char(K) 6= 2, any quaternion algebra Q over K has a quaternion basis {1, i, j, k},
that is a basis of the K-algebra Q subject to the relations i2 = a ∈ K×, j2 =
b ∈ K×, ij = k = −ji. This algebra Q is usually denoted by (a, b)K . Every
quaternion algebra has an unique involution of symplectic type (usually denoted
by γ) called the canonical involution of Q. One has γ(i) = −i, γ(j) = −j.
A tensor product of quaternion algebras with involution over K is called a
multiquaternion algebra with involution. Let (A, σ) be a multiquaternion algebra
with involution. Given a decomposition (A, σ) = (Q1, σ1)⊗K · · ·⊗K (Qn, σn) of
(A, σ) (where the (Qi, σi)’s are quaternion algebras with involution), we define
an integer r as follows. Take the set of all non-split quaternion algebras Qi

appearing in this decomposition. Partition this set into equivalence classes Cj

with isomorphism as the equivalence relation. Let mod Cj be the number of
elements in equivalence class Cj . Then r is the number of equivalence classes
for which mod Cj is odd.

Example 2.1. Take n = 4.
Suppose that Q1, Q2, Q3, Q4 are division algebras with Q1 ≃ Q2 and

Q3 ≃ Q4 and Q1 6≃ Q3 then r = 0.
Suppose that Q1, Q2, Q3 are division algebras with Q1 ≃ Q2 ≃ Q3 and Q4

is split then r = 1.
Suppose that Q1, Q2, Q3, Q4 are division algebras and they are pairwise

non-isomorphic then r = 4.

Remark 2.2. Note that two different decompositions of (A, σ) may have differ-
ent associated r. For instance consider the situation where (Q1, σ1) and (Q2, σ2)
are two quaternion division algebra with involutions of the first kind over a field
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K and A = Q1 ⊗ Q2 is of index 2. Then (A, σ) = (Q1, σ1) ⊗ (Q2, σ2) has a
decomposition (A, σ) ≃ (M2(K), τ1) ⊗ (Q, τ) where Q is a quaternion division
algebra and τ1 and τ are involutions of the first kind (see also Proposition 3.1
below). For the first decomposition we have r = 2 and for the second one we
have r = 1.

¿From now on, (A, σ) will denote a central simple algebra with involution
over a field K.

2.2 The Witt group of a central simple algebra with invo-

lution

The standard reference for the theory of hermitian forms and for the Witt
group of a central simple algebra is [14, Chapter 7, 10].

Let ε = ±1. An ε-hermitian form over (A, σ) is a pair (M, h) where M is a
right A-module and h is a map h : M × M → A which is σ-sesquilinear in the
first argument, linear in the second argument and which satisfies

h(y, x) = εσ(h(x, y)) for any x, y ∈ M.

If ε = 1 (resp. −1), an ε-hermitian form is called a hermitian (resp. skew-

hermitian) form. We will always implicitly assume that the forms considered are
non-degenerate. If A = D is a division algebra, every hermitian form over (D, σ)
can be diagonalized and such a diagonalization will be denoted by 〈a1, · · · , an〉.
Any hermitian or skew-hermitian form (M, h) over (A, σ) has an adjoint invo-

lution defined on EndA(M), see [8, §4].
The form h is said to be isotropic if there is an x ∈ M \ {0} such that

h(x, x) = 0, anisotropic otherwise. Let (M, h) and (M ′, h′) be two ε-hermitian
forms over (A, σ). If these forms are isometric then we write h ≃ h′ for short.

The orthogonal sum induces a commutative monöıd structure on the set
of isometry classes of non-degenerate ε-hermitian forms over (A, σ). The Witt

group of (A, σ) is the quotient group of the Grothendieck group of this commu-
tative monöıd by the subgroup generated by hyperbolic forms and is denoted
by W ε(A, σ). In the case where A = K and ε = 1, the tensor product can be
used to define a ring structure on W (K, σ). Moreover, if σ = IdK , this ring
is the usual Witt ring W (K). The tensor product endows W ε(A, σ) with a
W (K, σ|K)-module structure and hence with a W (F )-module structure via the
usual restriction map W (F ) → W (K, σ|K).

2.3 Hermitian Pfister forms

The fundamental ideal of the Witt ring W (K) is denoted by I(K) and, for
all n > 0, the n-th power of this ideal is denoted by In(K). The ideal In(K)
is additively generated by the so-called n-fold Pfister forms 〈〈a1, · · · , an〉〉 =
〈1, a1〉 ⊗ · · · ⊗ 〈1, an〉. The notion of hermitian Pfister form was first defined by
Lewis in [10] in the following way:

Definition 2.3. An n-fold hermitian Pfister form (or a hermitian Pfister form)
over (A, σ) is a hermitian form (V, h) over (A, σ) such that h ≃ ϕ.〈1〉 where ϕ
is an n-fold quadratic Pfister form over F .
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It is well-known that quadratic Pfister forms are hyperbolic once they are
isotropic. For convenience, we introduce the following definition :

Definition 2.4. Let h be an ε-hermitian form over (A, σ). We say that h
satisfies the property (I ⇒ H) if h is hyperbolic whenever it is isotropic.

If A = K (resp. a quaternion division algebra) and σ = − (resp. the canon-
ical involution of A), we see easily, via the usual injection of Witt groups
W (A, σ) →֒ W (F ), that a hermitian Pfister form over (A, σ) satisfies the prop-
erty (I ⇒ H). For quaternion division algebras endowed with orthogonal or
unitary involutions, the answer has been given by Serhir :

Theorem 2.5 (Serhir). (1) Let A be a quaternion division algebra over K and

let i, j be two non-zero pure quaternions satisfying ji = −ij. Let σ be the

orthogonal involution over A defined by the relations σ(i) = −i and σ(j) = j.
Then, any hermitian Pfister form over (A, σ) satisfies the property (I ⇒ H).
(2) Let A be a quaternion division algebra and σ be an involution of the second

kind over A. Then, any hermitian Pfister form over (A, σ) satisfies the property

(I ⇒ H).

Proof. See [15, Proposition 3.1] for (1), and [16, Théorème 1.4] for (2). ¤

We leave it to the reader to verify that Theorem 2.5(1) can be restated as

Theorem 2.6. Let h be a skew-hermitian form over (Q, γ). If h ≃ ϕ · 〈α〉,
where α ∈ Q× is a pure quaternion and ϕ is a quadratic Pfister form over K,

then h satisfies the property (I ⇒ H).

Remark 2.7. Let us keep the notations of Theorem 2.6. Let C be the conic
associated to Q and K(C) be the function field of C. In [13, Proposition 3.3],
Parimala, Sridharan and Suresh have shown that the canonical homomorphism
W−1(Q, γ) → W−1(Q ⊗K K(C), γ ⊗ IdK(C)) is injective. Then Theorem 2.6
can also be proved using this result.

2.4 Pfister involutions

In [18, Chapter 9, (9.17)], Shapiro formulates the following conjecture:

Conjecture 2.8. Let (Q1, σ1), · · · , (Qn, σn) be quaternion algebras over K
with involutions of the first kind such that σ1 ⊗ · · · ⊗ σn is orthogonal. If
Q1 ⊗K · · · ⊗K Qn is split, then σ1 ⊗ · · · ⊗ σn is adjoint to an n-fold quadratic
Pfister form over K.

In the above conjecture, such an involution σ1 ⊗ · · · ⊗ σn is called a Pfister

involution. For short, we will refer to this conjecture for n quaternion algebras
as PC(n).

Recall that a field K is said to be linked if any tensor product of quaternion
algebras over K is Brauer-equivalent to a single quaternion algebra. Standard
examples of linked fields are finite fields, local fields, global fields, fields of
transcendence degree at most 2 over an algebraically closed field or fields of
transcendence degree 1 over a real closed field, see [18, 9.14].

Conjecture 2.8 was proved by Shapiro for n ≤ 5 in [18] and over number
fields by Wadsworth and Shapiro in [20]. For n ≤ 4, there is another proof due
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to Bayer-Fluckiger, Parimala and Quéguiner-Mathieu in [1]. This conjecture
was also proved differently by Serhir and Tignol in [17] for n ≤ 5. Moreover,
they prove that PC(n) holds for all n over special fields among which number
fields and linked fields. Finally, Becher has recently proved this conjecture in
general, see [2].

3 Hermitian Pfister forms over multiquaternion

algebras with involution

3.1 Preliminary results

In this Subsection, (A, σ) will be a biquaternion algebra with involution,
that is (A, σ) = (Q1, σ1) ⊗K (Q2, σ2) where Q1, Q2 are quaternion algebras.
We suppose that A is not division and prove that (A, σ) can be decomposed (as
algebra with involution) in a special way.

Proposition 3.1. Suppose that the index of A is 2 and that σ is of the first

kind. Then (A, σ) ≃ (M2(K), τ1) ⊗K (Q, τ) where Q is a quaternion division

algebra. Moreover, the involution τ1 can be chosen of orthogonal type.

Proof. If σ is symplectic, the result is due to Serhir and Tignol, see [17,
Proposition]. Suppose now that σ is orthogonal and let Q be the quaternion
division algebra Brauer-equivalent to A. Then A ≃ EndQ(V ) where V is a free
Q-module of rank 2. We consider Q endowed with its canonical involution γ
and we see σ as an involution on EndQ(V ). The involution σ is adjoint to a
skew-hermitian form (V, h) over (Q, γ). Write h ≃ 〈a1, a2〉. As σ is a Pfister
involution, the discriminant of h is trivial hence NrdQ/K(a1) = NrdQ/K(a2) ∈

K×/K×2
. By [3, Proposition 5.1], there exists λ ∈ K× such that h ≃ 〈1, λ〉.〈a1〉.

We obtain the desired decomposition with τ1 adjoint to the quadratic form 〈1, λ〉
over K and τ adjoint to the skew-hermitian form 〈a1〉 over (Q, γ). ¤

Proposition 3.2. Suppose now that A is split and that σ is an arbitrary invo-

lution over A. Then (A, σ) ≃ (M2(K), τ1) ⊗K (M2(K), τ2).

Proof. If σ is orthogonal, the statement follows from PC(2). If σ is symplectic,
this is due to Serhir and Tignol in [17, Proposition]. Suppose now that σ is
unitary. By a theorem due to Albert (see [8, Proposition 2.22]), we can write
(Qi, σi) = (Di, γi)⊗F (K,−) where Di is a quaternion algebra over F and γi is
its canonical involution for i = 1, 2. Then, (A, σ) ≃ ((D1, γ1) ⊗F (D2, γ2)) ⊗F

(K,−). As A is split, the index of D1 ⊗F D2 is at most 2 and we conclude by
using Proposition 3.1 in the orthogonal case. ¤

3.2 Isotropic hermitian Pfister forms over multiquater-

nion algebras with involution

This Subsection is devoted to the proof of the following theorem which is a
more detailed version of Theorem 1.1:
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Theorem 3.3. Let (A, σ) = (Q1, σ1) ⊗K · · · ⊗K (Qn, σn) be a multiquaternion

algebra with involution.

(1) Suppose that r = 0. Then, any hermitian Pfister form over (A, σ) satisfies

the property (I ⇒ H).
(2) Suppose that r ≥ 1. If h is a hermitian Pfister form over (A, σ) which is

isotropic, then 2r−1 × h is hyperbolic.

We first need the following:

Lemma 3.4. Let (B, τ) ⊗K (C, υ) be a central simple algebra with involution

over K such that (C, υ) = (M2(K), υ1)⊗K · · ·⊗K (M2(K), υt). Let Φ : W (B⊗K

C, τ ⊗ υ) ≃ W η(B, τ) be a W (K, σ|K)-module isomorphism obtained by Morita

equivalence, where η = 1 if υ is orthogonal or unitary, η = −1 if υ is symplectic.

Let h be an n-fold hermitian Pfister form over (B, τ)⊗K (C, υ). In the case where

υ is orthogonal or unitary, Φ(h) is similar to an (n + t)-fold hermitian Pfister

form over (B, τ). In the case where υ is symplectic, h is hyperbolic over (B, τ).

Proof. For the definition of Φ, we refer to [7, Chapter 1, Theorem 9.3.5] or
[5, Théorème 2.2.1]. Note that τ ⊗ υ is adjoint to the hermitian form 〈1〉 over
(B, τ) ⊗K (C, υ). Furthermore, τ ⊗ υ is isomorphic to the involution adjoint
to the η-hermitian form Φ(〈1〉) over (B, τ). Suppose first that υ is symplectic.
Then υ is adjoint to a skew-symmetric bilinear and hence hyperbolic form over
K. This implies that Φ(〈1〉), 〈1〉 and finally h are hyperbolic. Suppose now
that υ is orthogonal or unitary. Then, for all i = 1, · · · , t, υi is adjoint to a
1-fold hermitian Pfister form over (K, σ|K). Therefore υ1 ⊗ · · · ⊗ υt is adjoint
to a t-fold hermitian Pfister form over (K, σ|K). Thus Φ(〈1〉) is similar to a
t-fold hermitian Pfister form over (B, τ) hence Φ(h) is similar to a (n + t)-fold
hermitian Pfister form over (B, τ). ¤

We are now ready to prove the theorem.
Proof. (1) For any division algebras Qi, Qj ∈ {Q1, · · · , Qn} with Qi ≃ Qj

with i 6= j, we can write (Qi, σi)⊗K (Qj , σj) = (M2(K), υi)⊗K (M2(K), υj), by
Proposition 3.2. It follows that (A, σ) ≃ (M2(K), υ1) ⊗K · · · ⊗K (M2(K), υn).
Let h be an isotropic hermitian Pfister form over (A, σ). We then apply Lemma
3.4 with (B, τ) = (K, σ|K) and (C, υ) = (A, σ). If σ is symplectic then h is
hyperbolic. If σ is orthogonal or unitary, let Φ : W (A, σ) ≃ W (K, σ|K) be as in
the lemma. As Φ(h) is isotropic and is similar to a hermitian Pfister form over
(K, σ|K), Φ(h) hence h is hyperbolic.
(2) We proceed by induction on r. We first need the following
Claim. We claim that we can suppose that n = r. We may suppose that
Q1, · · · , Qs are division and that Qs+1, · · · , Qn are split. Proceeding as in
(1) and after reindexing, we can write (A, σ) ≃ (Q1, σ1) ⊗K · · · ⊗K (Qr, σr) ⊗
(M2(K), υ1) ⊗K · · · ⊗K (M2(K), υn−r) where Q1, · · · , Qr are quaternion divi-
sion algebras such that Qi 6≃ Qj for i 6= j. Let h be an isotropic hermitian
Pfister form over (A, σ). We apply Lemma 3.4 taking (B, τ) = (Q1, σ1) ⊗K

· · · ⊗K (Qr, σr) and (C, υ) = (M2(K), υ1) ⊗K · · · ⊗K (M2(K), υn−r). Let Φ :
W (A, σ) ≃ W η(Q1⊗K · · ·⊗K Qr, σ1⊗· · ·⊗σr) be as in the lemma. As Φ(h) is an
isotropic hermitian Pfister form over (Q1, σ1)⊗K · · ·⊗K (Qr, σr), this establishes
the claim.
Suppose r = 1. By the claim, we can suppose that n = 1. If σ is symplectic, the
result is clear. If σ is unitary or orthogonal, the result follows from Theorem
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2.5. Suppose now that r ≥ 2. Again, by the claim, we can suppose that n = r.
We distinguish three cases.

Suppose first that σ is unitary. By a theorem due to Albert (see [8, Proposi-
tion 2.22]), one may write (Qr, σr) = (Q ⊗F K, γ ⊗−) where Q is a quaternion
algebra over F and γ is its canonical involution. Write Q = (a, b)F and let
{1, i, j, k} be a quaternion basis of Q. Set λ1 = i ⊗ 1 ∈ Qr, µ1 = j ⊗ 1 ∈ Qr

and L1 = F (λ1). Then the centralizer of L1 in Qr is L1 ⊗F K. Moreover,
as Qr is division, L1 ⊗F K is a field. Now set λ = 1 ⊗ · · · ⊗ 1 ⊗ λ1, µ =
1 ⊗ · · · ⊗ 1 ⊗ µ1 ∈ Q1 ⊗K · · · ⊗K Qr = A and L = F (λ). The centralizer

of L in A is Ã = Q1 ⊗K · · · ⊗ Qr−1 ⊗K (L1 ⊗F K). In this case, a trans-

fer map π1 : W (A, σ) → W (Ã, σ1) can be defined where σ1 = σ| eA is unitary

(more precisely, we have A = Ã ⊕ µÃ and π1 is induced by the first projection
map). Let h = ϕ.〈1〉 be an isotropic hermitian Pfister form over (A, σ), where
ϕ is a quadratic Pfister form over F . Then π1(h) ≃ ϕ.〈1,−µ2〉 is an isotropic

hermitian Pfister form over (Ã, σ1) hence 2r−2 × π1(h) = 0 ∈ W (Ã, σ1) by in-
duction hypothesis. We also have (2r−2 × ϕ).〈1,−µ2〉 = 0 ∈ W (A, σ) and, as
〈1〉 = 〈−µ2〉 ∈ W (A, σ), we finally obtain that 2r−1 × h = 0 ∈ W (A, σ).

Suppose now that at least one of the σi’s, say σr, is symplectic. Write Qr =
(a, b)K and {1, i, j, k} be a quaternion basis of Qr. Set λ = 1 ⊗ · · · ⊗ 1 ⊗ i, µ =

1⊗· · · 1⊗j and L = K(λ). As in the previous case, Ã = Q1⊗K · · ·⊗KQr−1⊗L is

the centralizer of L in A and we have the transfer map π1 : W (A, σ) → W (Ã, σ1)
where σ1 = σ| eA has unitary type. We conclude by using the previous case and
similar calculations.

Last, suppose that all the σi’s are orthogonal. Write Qr = (a, b)K with
i2 = a, j2 = b, ij = −ji, σr(i) = i, σr(j) = −j. Then γ = Int(j) ◦ σr is the
canonical involution of Qr. Choose λ and µ as in the previous case. We then
have a W (K)-module isomorphism W (A, σ) ≃ W−1(A, σ1 ⊗ · · · ⊗ σr−1 ⊗ γ) :

h 7→ µh. Take Ã as in the previous case and let τ = σ1⊗· · ·⊗σr−1⊗γ on A and

τ2 = σ1 ⊗ · · · ⊗ σr−1 ⊗ idL on Ã. Note that τ2 is orthogonal. As A = Ã ⊕ µÃ,

the second projection map induces a transfer map π2 : W−1(A, τ) → W (Ã, τ2).
If h = ϕ.〈1〉 is an isotropic hermitian Pfister form over (A, σ), then π2(µh) =

ϕ.〈1,−µ2〉 is an isotropic hermitian Pfister form over (Ã, τ2). We conclude as
in the unitary case. ¤

Remark 3.5. A part of the previous result has already been proved by the
first and the third author independently (see [5, Proposition 5.2.10] and [12,
Theorem 25.2]).

3.3 About certain submodules of the Witt group of a mul-

tiquaternion algebra with involution

The first step in understanding the quadratic forms that belong to a given
power of the fundamental ideal of W (K) is the following result (see [9, Chapter
X, §5] for more details):

Theorem 3.6 (Arason-Pfister). Let q be a positive-dimensional anisotropic

quadratic form over K. If q ∈ In(K), then dim q ≥ 2n.
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An immediate consequence of this result is the “Krull Intersection Property”for
the ideals In(K), that is

⋂
n≥0 In(K) = 0 in W (K).

For an integer n ≥ 1, denote by In(A, σ) the W (F )-submodule of W (A, σ)
generated by n-fold hermitian Pfister forms over (A, σ). The purpose of this
Subsection is to prove a weak analogue of Theorem 3.6 for the modules In(A, σ)
in a multiquaternion algebra with involution.

Before that, we need to recall further facts and notations. Recall that the
rank of a hermitian form (V, h) over (A, σ) is defined as the integer p such that
V ≃ Sp, where S is a simple right A-module. The rank of (V, h) over (A, σ) will
be denoted by rkA(h). It can be seen that the rank is invariant under Morita
equivalence (the proof of this fact can be adapted from [6, Lemma A.5]). Using
Morita equivalence, one can also see that for every non-hyperbolic hermitian
form over (A, σ), there exists an anisotropic hermitian form han over (A, σ)
which is unique up to isometry such that [h] = [han] ∈ W (A, σ) (see [6, Corollary
A.7]). The form han is called the anisotropic part of h.

Theorem 3.7. Let (A, σ) = (Q1, σ1)⊗K · · ·⊗K (Qm, σm) be a multiquaternion

algebra with involution. Let h be a positive-dimensional anisotropic hermitian

form over (A, σ). If h ∈ In(A, σ) and if 2r × h is not hyperbolic over (A, σ),
then rkA(h) ≥ 2n+m−r.

Proof. We prove the property by induction on r. We may assume that h is an
n-fold hermitian Pfister form over (A, σ). We first need to prove the following
Claim. We claim that we can suppose that m = r. Proceeding as in the proof
of Theorem 3.3(2), we write (A, σ) ≃ (Q1, σ1)⊗K · · · (Qr, σr)⊗K (M2(K), υ1)⊗K

· · · ⊗K (M2(K), υm−r) where Q1, · · · , Qr are quaternion division algebras such
that Qi 6≃ Qj for i 6= j. Applying Lemma 3.4, we can assume that (A, σ) =
(Q1, σ1)⊗K · · · (Qr, σr) where the Qi’s are division algebras such that Qi is not
isomorphic to Qj for i 6= j and that h is an (n + m − r)-fold hermitian Pfister
form over (A, σ) thus establishing the claim.

Suppose that r = 0. By the claim, we can see h as an (n+m)-fold anisotropic
hermitian Pfister form over (K, σ|K) and the property follows from Theorem 3.6.
Suppose now that r ≥ 1. Again, by the claim, we may assume that m = r. As
in the proof of Theorem 3.3, we have to distinguish three cases. In this proof,
we will only focus on the unitary case, the two other cases being similar. Let
λ, µ ∈ A×, L and Ã be as in the proof of Theorem 3.3. Put τ1 = σ| eA. In this case,

we know that A = Ã⊕µÃ and there is a transfer map π1 : W (A, σ) → W (Ã, τ1)
induced by the first projection. Write h = q.〈1〉 ∈ W (A, σ) such that q is
an (n + m − r)-fold quadratic Pfister form over F . Then π1(h) = q.〈1,−µ2〉

is an (n + m − r + 1)-fold hermitian Pfister form over (Ã, τ1). The fact that
2r × h is not hyperbolic over (A, σ) implies that 2r−1 × π1(h) is not hyperbolic

over (Ã, τ1). Otherwise, as in the proof of Theorem 3.3, we would have 0 =
2r−1 × (q · 〈1,−µ2〉) = 2r × h ∈ W (A, σ). In particular, we can consider the

anisotropic part π1(h)an of π1(h) and π1(h)an ∈ In+m−r+1(Ã, τ1). By induction
hypothesis, we have the following inequalities

2 × rkA(h) ≥ rk eA(π1(h)) ≥ rk eA(π1(h)an) ≥ 2n+m−r+1,

which lead to rkA(h) ≥ 2n+m−r. ¤
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Remark 3.8. In the previous statement, suppose that A = D is division. In
this case, one has r = m, and the rank of h is nothing but the dimension of the
underlying D-vector space. The statement says that, if h is anisotropic with
h ∈ In(D, σ) and if 2r × h is not hyperbolic over (D, σ) then dimh ≥ 2n. In
this manner, we see that Theorem 3.7 is a weak analogue of Theorem 3.6 for
the considered submodules.

As an immediate Corollary, we get:

Corollary 3.9. Let (A, σ) = (Q1, σ1) ⊗K · · · ⊗K (Qm, σm) be a multiquater-

nion algebra with involution. Then
⋂

n≥0 In(A, σ) is a 2r-torsion submodule of

W (A, σ).

3.4 Consequences for Pfister involutions

In this Subsection, we draw some consequences of Theorem 3.3 for multi-
quaternion algebras with involution. We are particularly interested in Pfister
involutions.

We first want to talk about the weak hyperbolicity of these involutions.
Recall that, for any central simple algebra with involution (A, σ), the n-fold
orthogonal sum ⊞n(A, σ) is defined by ⊞n(A, σ) = (Mn(K), ∗)⊗K (A, σ) where
∗ is the conjugate transpose involution. An algebra with involution (A, σ) is
then said to be weakly hyperbolic if there is an integer n such that ⊞n(A, σ) is
hyperbolic. This notion has been defined by Unger in [19] (see also [11]). We
refer to [8, §6] for basic notions and properties about isotropic and hyperbolic
involutions.

Corollary 3.10. Suppose that (A, σ) is a multiquaternion algebra with invo-

lution. Then, if (A, σ) is isotropic, it is weakly hyperbolic. More precisely, if

(A, σ) is isotropic, ⊞m(A, σ) is hyperbolic where m = max(1, 2r−1).

Proof. If r = 0, the result is clear by Theorem 3.3(1). Otherwise, σ is nothing
but the involution which is adjoint to the hermitian form 〈1〉 over (A, σ). By
Theorem 3.3(2), 2r−1 × 〈1〉 is hyperbolic whence the corollary. ¤

Now, we would like to state consequences of Theorem 3.3 for linked fields.
We begin by a general statement.

Theorem 3.11. Let n be a non-zero positive integer. Suppose that, for any mul-

tiquaternion algebra with orthogonal involution (A, σ) of degree 2n, the property

(I ⇒ H) holds for the hermitian form 〈1〉 over (A ⊗K L, σ ⊗ idL) for any field

extension L/K. Then PC(n) holds.

Proof. Suppose that A is split. By Morita equivalence, we have a W (K)-
module isomorphism Φ : W (A, σ) ≃ W (K). Let q = Φ(〈1〉). We show that q is
similar to a Pfister form over K. Let L be an extension of K such that qL is
isotropic. Write AL for A⊗K L and σL for σ⊗ idL. We can find a commutative
diagram

W (A, σ)
≃

//

²²

W (K)

Ψ
²²

W (AL, σL)
≃

ΦL

// W (L)
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where the horizontal maps are Morita equivalences, the vertical maps are scalar
extensions to L and where Ψ(q) = qL. Then Ψ(q) = ΦL(〈1〉) is isotropic, hence
hyperbolic by hypothesis. This shows that q is similar to a Pfister form over K
and that PC(n) holds. ¤

In the case of linked fields, Theorem 3.3 has a particularly nice statement:

Theorem 3.12. Assume that K is a linked field. Then the property (I ⇒
H) holds for any hermitian Pfister form over any multiquaternion algebra with

involution of the first kind.

Proof. It follows from Theorem 3.3. ¤

Combining the two previous results, we get the following one which has already
been proved (in different ways) by Shapiro in [18, Corollary 9.13] and by Serhir
and Tignol in [17, Theorem]:

Corollary 3.13. Assume that K is a linked field. Then, Conjecture 2.8 holds.

4 The invariant uα

In this section, we will always assume that Q is a quaternion division algebra
over K endowed with its canonical involution γ.

4.1 The invariant u
α

Let us fix further notations. We denote by Skew1(Q, γ) the set of isometry
classes of non-degenerate 1-dimensional skew-hermitian forms over (Q, γ) and,
for any a ∈ K×, we put

Ha(Q, γ) = {h ∈ Skew1(Q, γ) | disc h = a}.

If (E, σ) is a commutative field with involution we denote Σ(E, σ) the set
{σ(d1)d1 + · · ·+σ(dn)dn | di ∈ E, n > 1} and s(E, σ) the level of (E, σ), that is
s(E, σ) = sup{n ∈ N | n × 〈1〉 is anisotropic over (E, σ)} ∈ N ∪ {∞}. If (V, h)
is a skew-hermitian form over (Q, γ), we write ∆(h) = {h(x, x) | x ∈ V \{0}}.

Let α ∈ Q× be a pure quaternion. Let Gα denote the subgroup of K×

defined by

Gα = {c ∈ K× | 〈cα〉 ≃ 〈α〉 as skew-hermitian forms over (Q, γ)}.

Let β ∈ Q× be a pure quaternion anticommuting with α and b = β2 ∈ K×.
Denote by N(K(α)) the norm group of the quadratic extension K(α)/K. Ac-
cording to a lemma due to Scharlau, for any c ∈ K×, c ∈ Gα if and only if c is
represented by one of the quadratic forms 〈1,−a〉 and 〈b,−ab〉 (see [14, Ch. 10,
3.4]). In other words, we have

Gα = N(K(α)
×

) ∪ bN(K(α)
×

).

It follows that N(K(α)
×

) is a subgroup of index 2 in Gα and that |K×/Gα| =
1
2 |K

×/N(K(α)×)| , in the case where K×/N(K(α)×) is a finite group.
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Proposition 4.1. Let α ∈ Q× be a pure quaternion and let a = NrdQ/K(α).
Then there is a bijection between the sets Ha(Q, γ) and K×/Gα.

Proof. By [3, Proposition 5.1], Ha(Q, γ) is the set of isometry classes of
1-dimensional skew-hermitian forms 〈cα〉 for c ∈ K×. We then easily see that
the map 〈cα〉 7→ cGα induces a bijection from Ha(Q, γ) to K×/Gα. ¤

In the sequel, we will need the following technical lemma.

Lemma 4.2. Let ψ be a skew-hermitian form over (Q, γ) and let α ∈ Q×

be a pure quaternion. Let Eα be the centralizer of K(α) in Q. Suppose that

s(Eα, γ|Eα
) < ∞. If ϕ = ψ ⊥ 〈α〉 is anisotropic then

∆(ψ) ∩ αΣ(Eα, γ|Eα
) ( ∆(ϕ) ∩ αΣ(Eα, γ|Eα

).

Proof. We write 0 = γ(d0)d0 + · · · + γ(ds)ds where s = s(Eα, γ|Eα
) and

d0, · · · , ds ∈ Eα
×. We always have ∆(ψ)∩αΣ(Eα, γ|Eα

) ⊆ ∆(ϕ)∩αΣ(Eα, γ|Eα
).

Suppose that ∆(ψ) ∩ αΣ(Eα, γ|Eα
) = ∆(ϕ) ∩ αΣ(Eα, γ|Eα

). In this situation,
we claim that α(γ(d0)d0 + · · ·+γ(di)di) ∈ ∆(ϕ)∩αΣ(Eα, γ|Eα

) for i = 0, · · · , s.
For i = s this implies that ϕ is isotropic which is a contradiction. For i = 0 the
claim follows from the fact that α(γ(d0)d0) = γ(d0)αd0 ∈ ∆(ϕ)∩αΣ(Eα, γ|Eα

).
Now, if we assume that α(γ(d0)d0 + · · ·+γ(di−1)di−1) ∈ ∆(ϕ)∩αΣ(Eα, γ|Eα

) =
∆(ψ) ∩ αΣ(Eα, γ|Eα

), we readily obtain that α(γ(d0)d0 + · · · + γ(di−1)di−1) +
αγ(di)di ∈ ∆(ϕ) ∩ αΣ(Eα, γ|Eα

). ¤

Let ε = ±1. Denote by Symε(Q, γ) the set of ε-symmetric elements of Q
with respect to γ, that is the elements α of Q such that γ(α) = εα.

Definition 4.3. Let α ∈ Q× be an ε-symmetric element. We define the invari-
ant uα(K) to be the supremum over the dimension of all quadratic forms ϕ over
K such that the form ϕ · 〈α〉, as an ε-hermitian form over (Q, γ), is anisotropic.

It is clear from the definition that uα(K) 6 u(K). The following example shows
that these two invariants can be equal or different and that the invariant uα can
be finite or infinite.

Example 4.4. Take K = R and Q to be Hamilton’s quaternion algebra en-
dowed with its canonical involution. Then u(K) = ∞ = uα(K) for any
α ∈ Sym1(Q, γ). If α ∈ Sym−1(Q, γ), it is easy to see that uα(K) = 1.

4.2 Upper bounds for the invariant u
α

Let α ∈ Sym1(Q, γ). If uα(K) = ∞, then u(K) = uα(K) = ∞. If uα(K) is
finite it is easily seen, via the usual injection W (Q, γ) →֒ W (K), that 4uα(K) ≤
u(K).

¿From now on, we suppose that α is a skew-symmetric element in Q× with
respect to its canonical involution γ and we write a = NrdQ/K (α).

In this situation, we obtain an analogue of Kneser’s result mentioned in the
Introduction.

Proposition 4.5. Suppose that K is a non-real field. Then uα(K) 6 |K×/Gα|.
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Proof. Let ϕ·〈α〉 be an anisotropic skew-hermitian form over (Q, γ) where ϕ =
〈a1, · · · , an〉 is a quadratic form over K, ai ∈ K×. Denote hi = 〈a1, · · · , ai〉·〈α〉.
According to Lemma 4.2,

∆(hi) ∩ αi+1Σ(K(α), γ|K(α)) ( ∆(hi+1) ∩ αi+1Σ(K(α), γ|K(α)),

where αi+1 = ai+1α. As K is non-real, we have Σ(K(α), γ|K(α)) = K. Conse-
quently for every i we have αi+1Σ(K(α), γ|K(α)) = α · K. Therefore we have a
sequence of inclusions

∆(h1) ∩ K · α ( ∆(h2) ∩ K · α ( · · · ( ∆(hn) ∩ K · α ⊂ Ha(Q, γ).

We conclude that |Ha(Q, γ)| > n. Thus uα(K) 6 |Ha(Q, γ)| = |K×/Gα| by
Proposition 4.1. ¤

Remark 4.6. It follows from the proof that the condition s(K(α), γ|K(α)) < ∞
is actually sufficient to have the conclusion of the previous Proposition.

We now come to the proof of Theorem 1.3:

Theorem. Suppose that s(K(α), γ|K(α)) 6 2. Then, either uα(K) = |K×/Gα|

or uα(K) 6 1
2 |K

×/Gα|.

We first need the following:

Lemma 4.7. Suppose that uα(K) < |K×/Gα| < ∞ and that ϕ is a quadratic

form over K. If ϕ has a diagonalization such that it has more than |K×/Gα|/2
distinct entries modulo the group Gα, then ϕ · 〈α〉 is isotropic over (Q, γ).

Proof. We can naturally consider K×/Gα as a Z/2Z-vector space. Let
{x1, · · · , xr} be a basis of this vector space. Let ℓ = |K×/Gα|. The ℓ-dimensional
skew-hermitian form h = 〈〈x1, · · · , xr〉〉 · 〈α〉 is isotropic over (Q, γ) because
ℓ > uα(K). It follows from Theorem 2.6 that h is hyperbolic.

Now let ϕ be any quadratic form which has a diagonalization consisting in
distinct entries modulo Gα. In particular ϕ · 〈α〉 is a subform of the hyperbolic
form h. Consequently if dimϕ > ℓ/2, ϕ · 〈α〉 must be isotropic. ¤

We are now ready to prove Theorem 1.3:
Proof. We may assume that |K×/Gα| < ∞. We already know that
uα(K) 6 |K×/Gα| (see Remark 4.6), so assume that uα(K) < |K×/Gα|. If
s(K(α), γ|K(α)) = 1 then for every quadratic form ϕ which has two entries
which are equal modulo Gα in some diagonalization, the form ϕ · 〈α〉 is isotropic
over (Q, γ). Indeed, the subform of ϕ · 〈α〉 given by these two coefficients is al-
ready defined and isotropic over (K(α), γ|K(α)). Thus that if ϕ·〈α〉 is anisotropic
over (Q, γ) then all its entries are distinct modulo Gα. It follows from Lemma
4.7 that uα(K) 6 1

2 |K
×/Gα|.

So let assume that s(K(α), γ|K(α)) = 2. We consider two cases: −1 ∈ Gα

and −1 /∈ Gα.
If −1 ∈ Gα then 〈α〉 ≃ 〈−α〉 as skew-hermitian forms over (Q, γ). Let ϕ

be a quadratic form over K. If ϕ has more than two equal entries modulo
Gα in some diagonalization, say ϕ ≃ 〈a, b, · · ·〉 where a = b mod Gα, then
ϕ · 〈α〉 ≃ 〈a, a, · · ·〉 · 〈α〉 ≃ 〈a,−a, · · ·〉 · 〈α〉, so ϕ · 〈α〉 is isotropic. It follows
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that, if ϕ · 〈α〉 is anisotropic, then all its entries are distinct modulo Gα. Now,
Proposition 4.7 implies that uα(K) 6 1

2 |Ha(Q, γ)|.
Assume that −1 /∈ Gα. Let {−1, a2, · · · , ar} be a Z/2Z-basis for K×/Gα

and let ℓ = |K×/Gα|. Then the ℓ-dimensional form h = 〈〈1, a2, · · · , ar〉〉 ⊗ 〈α〉
is isotropic over (Q, γ) as uα(K) < ℓ. By Theorem 2.6, h is hyperbolic. Let ϕ
be a quadratic form over K such that ϕ · 〈α〉 is anisotropic. We are going to
show that dimϕ 6 ℓ

2 which completes the proof.
First note, that in every diagonalization of ϕ, every entry repeats at most 2

times modulo Gα otherwise ϕ · 〈α〉 contains a subform isometric to 〈a, a, a〉 · 〈α〉
for some a ∈ K× which is isotropic because s(K(α), γ|K(α)) = 2.

We may now write ϕ ≃ 2〈x1〉 ⊥ · · · ⊥ 2〈xm〉 ⊥ 〈xm+1, · · · , xn〉 where
xi 6= xj modulo Gα for i 6= j. We also have xi 6= −xj modulo Gα for i 6= j
because ϕ · 〈α〉 is anisotropic. So we may assume that xi 6= ±xj modulo Gα for
i 6= j.

As already mentioned for any a ∈ K× the form 〈a, a, a〉 · 〈α〉 is isotropic.
Using Theorem 2.6, we obtain

〈a, a〉 · 〈α〉 ≃ 〈−a,−a〉 · 〈α〉. (1)

Let S be the Z/2Z-subspace of K×/Gα generated by a2, · · · , ar. We have
K×/Gα = −S∪S. The definition of the form h implies that h =⊥s∈S 〈s, s〉·〈α〉.
For every i, 1 6 i 6 n we have either xi ∈ S or xi ∈ −S. In the first case,
we have 2〈xi〉 · 〈α〉 ⊂ h. In the second case, using (1), we obtain 2〈xi〉 · 〈α〉 ≃
2〈−xi〉 · 〈α〉 ⊂ h.

Since xi 6= ±xj modulo Gα for i 6= j we conclude that 2〈x1, · · · , xn〉 · 〈α〉 is
isometric to a subform of h. Therefore ϕ·〈α〉 is isometric to a subform of h. Since
h is hyperbolic and ϕ · 〈α〉 is anisotropic, we obtain dimϕ 6 1

2 dimh = ℓ/2. ¤
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lutions. Proc. Indian Acad. Sci. Math. Sci., 113(4) (2003) 365–377.

[2] K. J. Becher. A proof of the Pfister Factor Conjecture. Preprint, Linear
Algebraic Groups Preprint Server, 245 (2007).

[3] K. J. Becher, M. G. Mahmoudi. On the hermitian u-invariant of a quater-
nion algebra. Preprint, Linear Algebraic Groups Preprint Server, 188

(2005) .

14



[4] R. Elman, T. Y. Lam. Quadratic forms and the u-invariant, I. Math. Z.

131 (1973) 283–304.

[5] N. Grenier-Boley. Groupe de Witt d’une algèbre simple centrale à involu-
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