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Introduction

Let k be a field of characteristic 6= 2, and let L be a Galois extension of k with group
G. Let

qL : L × L → k

qL(x, y) = TrL/k(xy)

be the trace form. It is well–known that L has a normal basis over k, in other words there
exists x ∈ L such that {gx}g∈G is a basis of L as a k-vector space. Such a basis is called
a self–dual normal basis if qL(gx, hx) = δg,h for all g, h ∈ G.

The following question was studied in [1], [2], [3], [5], [7] :

Question. Which Galois extensions have a self–dual normal basis ?

This question is settled in some cases, for instance when G has odd order [3], when
the 2–Sylow subgroups of G are elementary abelian [7], but it is open in general.

Note that the existence of a normal basis is equivalent with the fact that L is a free
k[G]–module of rank one. A similar reformulation can be given for the self–dual normal
basis question. Indeed, remark that the quadratic form qL is invariant by G, that is
qL(gx, gy) = qL(x, y) for all x, y ∈ L and for all g ∈ G. In other words, qL is a G–quadratic
form (cf. 1.3). Let us define the unit G–quadratic form as being q0 : k[G] × k[G] → k
characterized by q0(g, h) = δg,h. Then the existence of a self–dual normal basis is equivalent
with the isomorphism of qL and q0 as G–quadratic forms.

It is more natural to work in the category of G–Galois algebras instead of Galois
extensions with group G. Let us denote by L0 the split G–Galois algebra; then qL0

≃G q0.
This leads us to the following question :

Question. Let L and L′ be two G–Galois algebras. When are the G–forms qL and qL′

isomorphic ?

The results of [3] and [7] apply to this more general situation. However, a complete
answer to the question seems out of reach at this point. For this reason, a weaker question
was raised in [1]. Indeed, if φ is a non–degenerate quadratic form and q is a G–quadratic
form, then the tensor product φ ⊗ q is a G–quadratic form. One can ask the following

Question. Let L and L′ be two G–Galois algebras, and let φ be a non–degenerate quadratic
form. When are the G–forms φ ⊗ qL and φ ⊗ qL′ isomorphic ?
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If φ is an odd dimensional form, then this question is equivalent with the previous one.
Let W (k) be the Witt ring of k, and let I be the ideal of W (k) consisting of the Witt classes
of the even dimensional forms. Let ks be a separable closure of k, and set Γk = Gal(ks/k).
For every positive integer n, let us denote by en : In/In+1 → H1(Γk,Z/2Z) the Milnor–
Voevodsky isomorphism (see 1.2). Let cd2(Γk) be the 2–cohomological dimension of Γk

(cf. 1.1), and let d ≥ 0 be an integer. The following two statements are easy consequences
of the above isomorphisms (cf. 1.2.2, 1.2.5) :

I. Suppose that cd2(Γk) ≤ d. Let q and q′ be two quadratic forms with dim(q) = dim(q′),
and let φ ∈ Id. Then

φ ⊗ q ≃ φ ⊗ q′.

II. Suppose that cd2(Γk) ≤ d. Let q and q′ be two quadratic forms with dim(q) = dim(q′),
and let φ ∈ Id−1. Then

φ ⊗ q ≃ φ ⊗ q′ if and only if ed−1(φ) ∪ (disc(q)) = ed−1(φ) ∪ (disc(q′)) in Hd(k).

It is natural to look for similar statements concerning trace forms of G–Galois algebras,
as proposed in [1]. As an analog of I, we have the following :

Theorem. (Chabloz, [9]) Suppose that cd2(Γk) ≤ d. Let L and L′ be two G–Galois
algebras, and let φ ∈ Id. Then φ ⊗ qL ≃G φ ⊗ qL′ .

In order to go further, we need some invariants defined in [7]. Let fL : Γk → G be a
continuous homomorphism corresponding to the G–Galois algebra L. The homomorphism
fL induces f∗

L : H1(G,Z/2Z) → H1(Γk,Z/2Z). For all x ∈ H1(G,Z/2Z), set xL = f∗

L(x).
Then xL is an invariant of the G–quadratic form qL (cf. [7], 2.2.3).

The following statement is inspired by II, and is proved in §3 :

Theorem. Suppose that cd2(Γk) ≤ d. Let L and L′ be two G–Galois algebras, and let
φ ∈ Id−1. Then the G–quadratic forms φ ⊗ qL and φ ⊗ qL′ are isomorphic if and only if
ed−1(φ) ∪ xL = ed−1(φ) ∪ xL′ for all x ∈ H1(G,Z/2Z).

This was conjectured in [1], and proved in special cases by Chabloz, Monsurro,
Morales, Parimala and Schoof (see [4], [5], [6], [9] and [12]).

The proof uses results concerning hermitian forms over algebras with involution (see
1.5 and §2 for details). Let (D, σ) be a division algebra with involution over k, and let
W (D, σ) be the Witt group of hermitian forms over (D, σ). Then W (D, σ) is a W (k)–
module. Let us denote by J the W (k)–submodule of W (D, σ) consisting of even dimen-
sional hermitian forms over D.

Theorem. Suppose that cd2(Γk) ≤ d. Then
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(a) We have IdJ = 0.
(b) If σ is of the second kind, then Id−1J = 0.
(c) If σ is of the first kind and of the symplectic type, then Id−2J = 0.

Part (a) is due to Chabloz [9]. Parts (b) and (c) are proved in §2, and are used in the
proof of the main result of this paper in §3. In order to deal with involutions of the first
kind and of the orthogonal type, we need the following :

Theorem. Suppose that cd2(Γk) ≤ d. Let (D, σ) be a quaternion algebra with an or-
thogonal involution, and let (V, h) and (V ′, h′) be two hermitian forms over (D, σ) with
dimD(V ) = dimD(V ′). Let φ ∈ Id−1. Then φ ⊗ h ≃ φ ⊗ h′ if and only if

ed−1(φ) ∪ (disc(h)) = ed−1(φ) ∪ (disc(h′)).

This follows from results of Parimala, Sridharan and Suresh [14] and of Berhuy [8].

§1. Definitions, notation and basic facts

1.1. Galois cohomology

Let ks be a separable closure of k, and set Γk = Gal(ks/k). For any discrete Γk–
module C, set Hi(k, C) = Hi(Γk, C). We say that the 2–cohomological dimension of Γk

is at most d, denoted by cd2(Γk) ≤ d, if Hi(k, C) = 0 for all i > d and for every finite
2–primary Γk–module C.

Set Hi(k) = Hi(k,Z/2Z), and recall that H1(k) ≃ k∗/k∗2. For all a ∈ k∗, let us
denote by (a) ∈ H1(k) the corresponding cohomology class. We use the additive notation
for H1(k). If a1, . . . , an ∈ k∗, we denote by (a1) ∪ . . . ∪ (an) ∈ Hn(k) their cup product.

If U is a linear algebraic group defined over k, let H1(k, U) be the pointed set
H1(Γk, U(ks)) (cf. [16], [17] Chap. 10).

1.2. Quadratic forms

All quadratic forms are supposed to be non–degenerate. We denote by W (k) the Witt
ring of k, and by I = I(k) the fundamental ideal of W (k). For all a1, . . . , an ∈ k∗, let us
denote by << a1, . . . , an >>=< 1,−a1 > ⊗ . . .⊗ < 1,−an > the associated n–fold Pfister
form. It is well–known that In is generated by the n-fold Pfister forms. The following has
been conjectured by Milnor, and proved by Voevodsky (see also Orlov–Vishik–Voevodsky
[13], [18], [19], and the survey paper [10]) :

Theorem 1.2.1. (Voevodsky) : For every positive integer n, there exists an isomorphism

en : In/In+1 → Hn(k)
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such that
en(<< a1, . . . , an >>) = (a1) ∪ . . . ∪ (an)

for all a1, . . . , an ∈ k∗.

It is easy to see that the above theorem has the following consequences :

Corollary 1.2.2. Suppose that cd2(Γk) ≤ d. Let q and q′ be two quadratic forms with
dim(q) = dim(q′), and let φ ∈ Id. Then

φ ⊗ q ≃ φ ⊗ q′.

Proof. Note that by 1.2.1, cd2(Γk) ≤ d implies that Id+1 = 0. As dim(q) = dim(q′), we
have q⊕ (−q′) ∈ I. Therefore φ⊗ (q⊕ (−q′)) ∈ Id+1 = 0. This implies that φ⊗ q ≃ φ⊗ q′.

For every quadratic form q, let us denote by disc(q) ∈ H1(k) its discriminant. Recall

that if n = dim(q), then disc(q) = (−1)
n(n−1)

2 det(q). We need the following proposition :

Proposition 1.2.3. Let q and q′ be two quadratic forms with dim(q) = dim(q′), and let
φ ∈ Id−1. Then

ed(φ ⊗ (q ⊕ (−q′)) = ed−1(φ) ∪ (disc(q)) + ed−1(φ) ∪ (disc(q′)).

Proof. Set Q = q ⊕ (−q′), and let m = dim(q) = dim(q′), n = 2m = dim(Q). Note

that (−1)
n(n−1)

2 = (−1)m, hence (disc(Q)) = (disc(q)) + (disc(q′)). We have Q ∈ I, and
e1(Q) = (disc(Q)) = (disc(q)) + (disc(q′)). Therefore

ed(φ ⊗ Q) = ed−1(φ) ∪ e1(Q) = ed−1(φ) ∪ (disc(q)) + ed−1(φ) ∪ (disc(q′)),

hence the proposition is proved.

Corollary 1.2.4. Let q and q′ be two quadratic forms with dim(q) = dim(q′), and let
φ ∈ Id−1. If φ ⊗ q ≃ φ ⊗ q′, then ed−1(φ) ∪ (disc(q)) = ed−1(φ) ∪ (disc(q′)) ∈ Hd(k).

Proof. As φ ⊗ q ≃ φ ⊗ q′, the quadratic form φ(⊗(q ⊕ (−q′)) is hyperbolic. Hence
ed(φ ⊗ (q ⊕ (−q′)) = 0. By prop. 1.2.3, we have

ed(φ ⊗ (q ⊕ (−q′)) = ed−1(φ) ∪ (disc(q)) + ed−1(φ) ∪ (disc(q′)),

therefore ed−1(φ) ∪ (disc(q)) = ed−1(φ) ∪ (disc(q′)), as claimed.

Corollary 1.2.5. Suppose that cd2(Γk) ≤ d. Let q and q′ be two quadratic forms with
dim(q) = dim(q′), and let φ ∈ Id−1. Then

φ ⊗ q ≃ φ ⊗ q′ if and only if ed−1(φ) ∪ (disc(q)) = ed−1(φ) ∪ (disc(q′)) ∈ Hd(k).
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Proof. Set Q = q ⊕ (−q′). By prop. 1.2.3, we have

ed(φ ⊗ Q) = ed−1(φ) ∪ (disc(q)) + ed−1(φ) ∪ (disc(q′)).

Hence ed(φ ⊗ Q) = 0 is equivalent with ed−1(φ) ∪ (disc(q)) = ed−1(φ) ∪ (disc(q′)). But by
1.2.1, ed(φ ⊗ Q) = 0 is equivalent with φ ⊗ Q hyperbolic, hence with φ ⊗ q ≃ φ ⊗ q′.

1.3. G–quadratic forms

Let G be a finite group, and let us denote by k[G] the associated group ring. A
G–quadratic form is a pair (M, q), where M is a k[G]–module that is a finite dimensional
k–vector space, and q : M × M → k is a non–degenerate symmetric bilinear form such
that

q(gx, gy) = q(x, y)

for all x, y ∈ M and all g ∈ G. We say that two G–quadratic forms (M, q) and (M ′, q′)
are isomorphic if there exists an isomorphism of k[G]–modules f : M → M ′ such that
q(f(x), f(y)) = q′(x, y) for all x, y ∈ M . If this is the case, we write (M, q) ≃G (M ′, q′),
or q ≃G q′.

If φ is a quadratic form over k, and q a G–quadratic form, then the tensor product
φ ⊗ q is a G–quadratic form.

1.4. Trace forms

Let L be a G–Galois algebra, and let

qL : L × L → k, qL(x, y) = TrL/k(xy),

be its trace form. Then qL is a G–quadratic form.

Let : k[G] → k[G] be the canonical involution of the group ring k[G], in other words
the k–linear involution of k[G] characterized by g = g−1 for all g ∈ G. Let UG be the
linear algebraic group defined over k such that for every commutative k–algebra A, we
have UG(A) = {x ∈ A[G] | xx = 1}. Recall that we denote by H1(k, UG) the pointed set
H1(Γk, U(ks)).

Let fL : Γk → G be a continuous homomorphism corresponding to L. The composition
of fL with the inclusion of G in UG(ks) is a 1–cocycle Γk → UG(ks). Let us denote by
u(L) its class in the cohomology set H1(k, UG). The following is proved in [7], prop. 1.5.1

Proposition 1.4.1 Let L and L′ be two G–Galois algebras. Then the G–quadratic forms
qL and qL′ are isomorphic if and only if u(L) = u(L′) ∈ H1(k, UG).

The trace form of a G–Galois algebra, considered as a G–form, determines the trace
forms of all of its subalgebras of fixed points (se [7], 1.4). We have a similar result for
multiples of trace forms, as follows :
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Proposition 1.4.2 Let L and L′ be two G–Galois algebras. Let H be a subgroup of G, and
set E = LH , E′ = L′H . Let φ be a quadratic form over k. Suppose that φ⊗ qL ≃G φ⊗ qL′ .
Then we have

(a) The quadratic forms φ ⊗ qE and φ ⊗ qE′ are isomorphic.

(b) If moreover H is a normal subgroup of G, then the (G/H)–quadratic forms φ⊗qE

and φ ⊗ qE′ are isomorphic.

Proof. The proof of this statement is similar to the proof of [7], 1.5.1.

The homomorphism fL : Γk → G induces f∗

L : H1(G,Z/2Z) → H1(k). For any
x ∈ H1(G,Z/2Z), set xL = f∗

L(x). Then the elements xL are invariants of the G–quadratic
form qL (cf. [7], 2.2.3). Let x ∈ H1(G,Z/2Z), and let χ : G → Z/2Z the corresponding
homomorphism. Let H be the kernel of χ, and let Eχ = LH be the invariant subalgebra;
it is a quadratic subalgebra of L. The discriminant of the quadratic algebra Eχ is equal
to xL.

The following is a generalization of [7], 2.2.3 :

Proposition 1.4.3 Let L and L′ be two G–Galois algebras. Let φ ∈ Id−1. Suppose that
φ ⊗ qL ≃G φ ⊗ qL′ . Then ed−1(φ) ∪ xL = ed−1(φ) ∪ xL′ for all x ∈ H1(G,Z/2Z).

Proof. Let x ∈ H1(G,Z/2Z), and let χ : G → Z/2Z the corresponding homomorphism.
Let H be the kernel of χ, and set Eχ = LH , E′

χ = L′H . By prop. 1.4.2, the quadratic
forms φ ⊗ qE and φ ⊗ qE′ are isomorphic. Using 1.2.4, we have ed−1(φ) ∪ disc(qE) =
ed−1(φ)∪disc(qE′). As the discriminant of a quadratic algebra is equal to the discriminant
of its trace form, we obtain ed−1(φ) ∪ xL = ed−1(φ) ∪ xL′ , so the proposition is proved.

1.5. Hermitian forms over division algebras with involution

Let D be a division algebra over k. An involution of D is a k–linear anti–automorphism
σ : D → D of order 2. Let K be the center of D. We say that (D, σ) is a division algebra
with involution over k if the fixed field of σ in K is equal to k. If K = k, then σ is said to
be of the first kind. After extension to ks, the involution σ is determined by a symmetric
or a skew–symmetric form. In the first case, σ is said to be of the orthogonal type, in the
second one, of the symplectic type. If K 6= k, then K is a quadratic extension of k and
the restriction of σ to K is the non–trivial automorphism of K over k. In that case, the
involution is said to be of the second kind, or a unitary involution, or a K/k–involution.
See for instance [11] or [15], chap 7, for more details on algebras with involution.

Let (D, σ) be a division algebra with involution over k. A hermitian form over (D, σ)
is by definition a pair (V, h), where V is a finite dimensional D–vector space, and h :
V × V → D is hermitian with respect to σ. We say that (V, h) is hyperbolic if there exists
a sub D–vector space W of V with dim(V ) = 2dim(W ) and such that h(x, y) = 0 for all
x, y ∈ W . This leads to a notion of Witt group W (D, σ) (cf. for instance [15], Chap 7.
§2). Note that the tensor product of a quadratic form over k with a hermitian form over
(D, σ) is a hermitian form over (D, σ), hence W (D, σ) is a W (k)–module.
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Let (V, h) be a hermitian form over (D, σ), as above. Let n = dimD(V ), and let H be
the matrix of h with respect to some D–basis of V . Let us denote by Nrd : Mn(D) → k

the reduced norm. The discriminant of h is by definition disc(h) = (−1)
n(n−1)

2 Nrd(H) ∈
k∗/k∗2.

§2. Multiples of hermitian forms

Let (D, σ) a division algebra with involution over k. Let us denote by J the sub
W (k)–module of W (D, σ) consisting of the hermitian forms (V, h) with dimD(V ) even.
Suppose that cd2(Γk) ≤ d.

Theorem 2.1.1. (a) We have IdJ = 0.
(b) If σ is of the second kind, then Id−1J = 0.
(c) If σ is of the first kind and of the symplectic type, then Id−2J = 0.

Part (a) was proved by Chabloz in [9]. We need the following lemma :

Lemma 2.1.2. Let a ∈ D∗ such that σ(a) = a. We have :
(a) If φ ∈ Id, then φ⊗ < 1, a > is hyperbolic.
(b) If φ ∈ Id−1 and σ is of the second kind, then φ⊗ < 1, a > is hyperbolic.
(c) If φ ∈ Id−2 and σ is of the first kind and of the symplectic type, then φ⊗ < 1, a > is
hyperbolic.

Proof.

(a) Let F = k(a), and let f : W (F ) → W (D, σ) be the base change homomorphism.
We have f(φ⊗ < 1, a >) = φ⊗ < 1, a >, hence it suffices to check that φ⊗ < 1, a >= 0 in
W (F ). Note that φ⊗ < 1, a >∈ Id+1(F ). As cd2(k) ≤ d, we have cd2(F ) ≤ d, therefore by
Theorem 1.2.1, we have Id+1(F ) = 0. Hence φ⊗ < 1, a > is hyperbolic, and this concludes
the proof of (a).

(b) Suppose that σ is a K/k–involution, and set E = K(a), F = k(a). Let us denote by
τ : E → E the restriction of σ : D → D to E. Then τ is an E/F–involution, an involution
of the second kind. Let f : W (E, τ) → W (D, σ) be the base change homomorphism. We
have f(φ⊗ < 1, a >) = φ⊗ < 1, a >, hence it suffices to check that φ⊗ < 1, a >= 0 in
W (E). Let E = F (

√
δ), for some δ ∈ F . Let trE/F : W (E, τ) → W (F ) be the W (F )–

homomorphism given by the trace of hermitian forms. It is well–known that trE/F is
injective, and its image is equal to < 1,−δ > W (F ) (cf. for instance [15], Chap 10, §1).
We have

trE/F (< 1, a >)) =< 1,−δ > ⊗ < 1, a >,

hence trE/F (φ⊗ < 1, a >) = φ⊗ < 1,−δ > ⊗ < 1, a >. This implies that

trE/F (φ⊗ < 1, a >) ∈ Id+1(F ).
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As in (a), we see that Id+1(F ) = 0. Therefore φ⊗ < 1, a >= 0 in W (E, τ), and (b) is
proved.

(c) Suppose that σ is symplectic. Then the degree of D is even. Set deg(D) = 2m, and
let us prove the statement by induction on m. If m = 1, then D is a quaternion algebra and
σ is the canonical involution of D. As σ(a) = a, we have a ∈ k∗. Let trd : W (D, σ) → W (k)
be the W (k)–homomorphism given by the reduced trace of hermitian forms. It is well–
known that this homomorphism is injective, and its image is equal to nDW (k), where
nD is the norm form of the quaternion algebra D (cf. [15], chap. 10, §1). We have
trd(< 1, a >) = nD⊗ < 1, a >∈ I3. Let φ ∈ Id−2. Then

trd(φ⊗ < 1, a >) = φ ⊗ nD⊗ < 1, a >∈ Id+1 = 0.

This implies that trd(φ⊗ < 1, a >) = 0 in W (k), hence φ⊗ < 1, a >= 0 in W (D, σ).

Suppose that m > 1. If a 6∈ k, set F = k(a). If a ∈ k, take any b ∈ D∗ such that
σ(b) = b and that b 6∈ k (this is possible as m > 1) and set F = k(b). Let D′ = ZD(F )
be the centralizer of F in D. Note that F is invariant by σ. By [11], 2.9. we know that
[F : k] ≤ m. The F–algebra D′ is also invariant by σ. We have [F : k] > 1, hence
degD′ < deg(D). Let deg(D′) = 2m′. As m′ < m, we can apply the induction hypothesis,
hence φ⊗ < 1, a >= 0 in W (D′, σ). Let f : W (D′, σ) → W (D, σ) be the base change
homomorphism. We have f(φ⊗ < 1, a >) = φ⊗ < 1, a >. Hence φ⊗ < 1, a >= 0 in
W (D, σ), as claimed.

Proof of Theorem 2.1.1 Let q ∈ J . We have q =< a1, . . . , an >, with ai ∈ D∗,
σ(ai) = ai. Note that n is even, as q ∈ J . Set m = n

2
. Let H =< 1,−1 >, and let

us denote by [m]H the orthogonal sum of m copies of H. Then in W (D, σ), we have
q = q ⊕ [m]H =< 1, a1 > ⊕ < −1, a2 > ⊕ . . .⊕ < −1, an >. By the lemma, φ⊗ < 1, ai >
and φ⊗ < −1, ai > are hyperbolic for all i whenever φ ∈ Id, or φ ∈ Id−1 and σ is unitary,
or φ ∈ Id−2 and σ is symplectic. Hence φ ⊗ q is hyperbolic in these cases too, so the
theorem is proved.

The following is a consequence of results of Parimala, Sridharan and Suresh [14] and
of Berhuy [8].

Theorem 2.1.3 Suppose that D is a quaternion algebra, and that σ is of the first kind
and of the orthogonal type. Let h ∈ J , and let φ ∈ Id−1. Then φ ⊗ h is hyperbolic if and
only if ed−1(φ) ∪ (disc(h)) = 0.

Proof. By Berhuy [8], Theorem 13, it suffices to show that ed−1(φ) ∪ (disc(h)) = 0 if
and only if en,D(φ ⊗ h) = 0 for all n ≥ 0 (cf. [8], 2.2 for the definition of the invariant
en,D). As cd2(Γk) ≤ d, we have en,D(φ ⊗ h) = 0 for n > d, so it suffices to check that
ed−1(φ) ∪ (disc(h)) = 0 is equivalent with en,D(φ ⊗ h) = 0 for all n = 0, . . . , d. Let k(D)
be the function field of the quadric associated to D. Then D ⊗ k(D) ≃ M2(k(D)), and
hk(D) corresponds via Morita equivalence to a quadratic form qh over k(D). Note that
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disc(qh) = disc(h). Similarly, the hermitian form (φ ⊗ h)k(D) corresponds to a quadratic
form qφh over k(D), and we have qφh ≃ φ ⊗ qh.

For all n = 0, . . . , d, we have by construction that en,D(φ ⊗ h) = 0 if and only if
en(qφh) = 0 (cf. [8], 2.2). But qφh ≃ φ ⊗ qh, hence

en(qφh) = en(φ ⊗ qh) = en−1(φ) ∪ (disc(qh)) = en−1(φ) ∪ (disc(h)).

If n < d, then en(φ) = 0 as φ ∈ Id−1. We have ed(qφh) = ed−1(φ) ∪ (disc(h)). Hence
en(qφh) = 0 for all n ≥ 0 if and only if ed−1(φ) ∪ (disc(h)) = 0. This concludes the proof.

Corollary 2.1.4 Suppose that D is a quaternion algebra, and that σ is of the first kind and
of the orthogonal type. Let h and h′ be two hermitian forms over (D, σ), and let φ ∈ Id−1.
Then φ ⊗ h ≃ φ ⊗ h′ if and only if ed−1(φ) ∪ (disc(h)) = ed−1(φ) ∪ (disc(h′)).

Proof. The hermitian forms φ⊗h and φ⊗h′ are isomorphic if and only if φ⊗ (h⊕ (−h′))
is hyperbolic. By 2.1.3, this is equivalent with ed−1(φ) ∪ disc(h ⊕ (−h′)) = 0. Note that
as dimk(D) is even, disc(−h′) = disc(h′). Therefore

ed−1(φ) ∪ (disc(h ⊕ (−h′))) = ed−1(φ) ∪ (disc(h)) + ed−1(φ) ∪ (disc(h′)),

hence the corollary is proved.

Let us denote by J2 the sub W (k)–module of J consisting of the classes of the hermitian
forms h such that (disc(h)) = 0.

Corollary 2.1.5 Suppose that D is a quaternion algebra, and that σ is of the first kind
and of the orthogonal type. Then Id−1J2 = 0.

Proof. This is an immediate consequence of 2.1.4.

§3. Multiples of trace forms

Let L and L′ be two G–Galois algebras. The aim of this section is to prove a result
concerning multiples of trace forms (see 3.1.2) that was conjectured in [1], and to derive
some consequences for generalized self–dual normal bases. Suppose that cd2(Γk) ≤ d.

Theorem 3.1.1. Let φ ∈ Id−1. Then φ ⊗ qL ≃G φ ⊗ qL′ if and only if ed−1(φ) ∪ xL =
ed−1(φ) ∪ xL′ for all x ∈ H1(G,Z/2Z).

Special cases of this have been proved in [1], [4], [5], [6], [9] and [12].

Proof. The condition is necessary by 1.4.3. Let us prove that it is also sufficient. By [3],
4.1 and [7], 2.3.1 we can assume that k is perfect. Set A = k[G], and let us denote by
σA : A → A the canonical involution. Let RA be the radical of the algebra A, and set
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A = A/R. Then the projection A → A induces a bijection of pointed sets H1(k, UA) →
H1(k, UA). We have

A ≃ A1 × . . . × As × (As+1 × A′

s+1) × . . .× (Am × A′

m),

where Ai is a simple algebra for all i = 1, . . . , m, with σ(Ai) = Ai for i = 1, . . . , s and
σ(Ai) = A′

i for i = s + 1, . . . , m. Let σi : Ai → Ai be the restriction of σA to Ai for
i = 1, . . . , s, and let us denote by σi : Ai × A′

i → Ai → Ai × A′

i the restriction of σA to
Ai×A′

i if i = s+1, . . . , m. Let Fi be the maximal subfield of the center of Ai such that σi is
Fi–linear if i = 1, . . . , s, and let Ui be the norm–one–group of (Ai, σi). For i = s+1, . . . , m,
let Fi be the center of Ai, and let Ui be the norm–one–group of ((Ai ×Ai), σi). Then Ui is
a linear algebraic group defined over Fi for all i = 1, . . . , m. We have a bijection of pointed
sets

H1(k, UA) →
∏

i=1,...,m

H1(Fi, Ui).

If i = s+1, . . . , m, then Ui is a general linear group, hence H1(Fi, Ui) = 0. Hence we have
a bijection of pointed sets

H1(k, UA) →
∏

i=1,...,s

H1(Fi, Ui).

Let us denote by ui, u′

i ∈ H1(Fi, Ui), i = 1, . . . , s, the images of u(L), u(L′) ∈ H1(k, UA).

For all i = 1, . . . , s, the simple algebra Ai is a matrix algebra over a division algebra
with involution Di, and the classes ui, u′

i correspond to isomorphism classes of hermitian
forms hi, h′

i over Di.

Let r = dim(φ), and set B = Mr(A). Let us denote by σB : B → B the involution
induced by σA and the transposition, i.e. σB(ai,j) = (σA(aj,i)) for all ai,j ∈ A. Let RB be
the radical of B, and set B = B/RB.

We have
B ≃ Mr(A1) × . . . × Mr(Am).

As above, we get a bijection of pointed sets

H1(k, UB) →
∏

i=1,...,s

H1(Fi, UMr(Ai)).

Sending a G–quadratic form to its tensor product with the quadratic form φ gives us
a map f : H1(k, UA) → H1(k, UB). The map f induces f : H1(k, UA) → H1(k, UB), and

fi : H1(Fi, Ui) → H1(k, UMr(Ai))

for all i = 1, . . . , s. The image of the isomorphism class of the hermitian form hi is the
hermitian form φ ⊗ hi.
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Let us show that for all i = 1, . . . , s, we have φ⊗ hi ≃ φ⊗ h′

i. This is equivalent with
proving that φ⊗ (hi ⊕ (−h′

i)) is hyperbolic. If Ui is unitary or symplectic, then this follows
from Theorem 2.1.1. (b) and (c). Suppose that Ui is orthogonal. Then Ai = Mni

(Di),
where Di = Fi or Di is a quaternion field with center Fi (cf. [15], Chap. 8, 13.5. (ii) ).
We have (Ui/U0

i )(ks) ≃ Z/2Z. Let ι : ΓFi
→ Γk be the inclusion, and let us consider

δi : ΓFi

ι→Γk
φL−→G → UG(ks) → Ui(ks) ≃ Z/2Z

and

δ′i : Γi
ι→Γk

φ
L′−→G → UG(ks) → Ui(ks) ≃ Z/2Z.

Then δi, δ′i are 1–cocycles that define elements (δi), (δ′i) ∈ H1(Fi,Z/2Z) corresponding
to the relative discriminants disc(hi) and disc(h′

i) of the hermitian forms hi and h′

i with
respect to the unit hermitian form h0.

Note that δi = ιxL and δi = ιxL′ for all x ∈ H1(G,Z/2Z). By hypothesis, we have
ed−1(φ) ∪ xL = ed−1(φ) ∪ xL′ for all x ∈ H1(G,Z/2Z). This implies that

ed−1(φ) ∪ (disc(hi)) = ed−1(φ) ∪ (disc(h′

i))

for all i = 1, . . . , s. By cor. 2.1.4, we conclude that the hermitian forms φ⊗ hi and φ⊗ h′

i

are isomorphic, and hence the theorem is proved.

Recall that for any G–quadratic form q, we denote by [m]q the orthogonal sum of
m copies of q, in other words the quadratic form < 1, . . . , 1 > ⊗q. Let us denote by
ǫd−1 ∈ Hd−1(k) the cup product of d − 1 copies of (−1) ∈ H1(k). The following is an
immediate consequence of 3.1.1 :

Corollary 3.1.2 Let L and L′ be two G–Galois algebras. Then [2d−1]qL ≃G [2d−1]qL′ if
and only if ǫd−1 ∪ xL = ǫd−1 ∪ xL′ .

Let L0 be the split G–Galois algebra, and let q0 = qL0
be its trace form. Recall that

a G–Galois algebra is said to have a self–dual normal basis if qL ≃G q0.

For any positive integer m, we denote by [m]L the product of m copies of the G–Galois
algebra L. We say that [m]L has a self–dual normal basis if [m]qL ≃G [m]q0. A subalgebra
E of L is said to be a subalgebra of invariants if there exists a subgroup H of G such that
E = LH .

Corollary 3.1.3 Let L be a G–Galois algebra. Then the algebra [2d−1]L has a self–dual
normal basis if and only if the discriminant of every quadratic subalgebra of invariants is
a sum of 2d−1 squares.

Proof. Let us denote by q the 2d−1–dimensional unit form, and let D(q) be the set of
non–zero elements of k represented by q. Then a ∈ D(q) if and only if a is a sum of 2d−1
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squares in k. It is well–known that a ∈ D(q) if and only if the quadratic form q⊕ < −a > is
isotropic. This is equivalent with the 2d–fold Pfister form q⊗ < 1,−a > being hyperbolic,
hence by 1.2.1 with ǫd−1 ∪ (a) = 0.

Let x ∈ H1(G,Z/2Z). The argument above shows that xL is a sum of 2d−1 squares
if and only if ǫd−1 ∪ xL = 0. Let χ : G → Z/2Z the corresponding homomorphism. Let H
be the kernel of χ, and let Ex = LH be the invariant subalgebra. Then Ex is a quadratic
subalgebra of L, and its discriminant is equal to xL.

By 3.1.2, the algebra [2d−1]L has a self–dual normal basis if and only if ǫd−1 ∪ xL = 0
for all x ∈ H1(G,Z/2Z). We have just seen that this is equivalent with the discriminant of
the quadratic subalgebra Ex being a sum of 2d−1 squares for all x ∈ H1(G,Z/2Z), hence
the corollary is proved.
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