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Abstract. Essential dimension is a numerical invariant of an algebraic
group G which reflects the complexity of G-torsors over a field K. In
the past 10 years it has been studied by many authors in a variety
of contexts. In this paper we extend this notion to algebraic stacks.
As an application of the resulting theory we obtain new results about
the essential dimension of certain algebraic (and, in particular, finite)
groups which occur as central extensions. In particular, we show that the
essential dimension of the spinor group Spinn grows exponentially with
n, improving previous lower bounds of Chernousov-Serre and Reichstein-
Youssin. In the last section we apply the result on spinor groups to show
that quadratic forms with trivial discriminant and Hasse-Witt invariant
are more complex, in high dimensions, than previously expected.
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1. Introduction


Let k be a field. We will write Fieldsk for the category of field extensions
K/k. Let F : Fieldsk → Sets be a covariant functor.
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Definition 1.1. Let a ∈ F (L), where L is an object of Fieldsk. We say
that a descends to an intermediate field k ⊆ K ⊆ L if a is in the image of
the induced map F (K) → F (L).


The essential dimension ed(a) of a ∈ F (L) is the minimum of the tran-
scendence degrees tr degk K taken over all fields k ⊆ K ⊆ L such that a
descends to K.


The essential dimension ed(a; p) of a at a prime integer p is the minimum
of ed(aL′), taken over all finite field extensions L′/L such that the degree
[L′ : L] is prime to p.


The essential dimension ed F of the functor F (respectively, the essential
dimension ed(F ; p) of F at a prime p) is the supremum of ed(a) (respectively,
of ed(a; p)) taken over all a ∈ F (L) with L in Fieldsk.


These notions are relative to the base field k. To emphasize this, we
will sometimes write edk(a), edk(a; p), edk F or edk(F ; p) instead of ed(a),
ed(a; p), ed F or ed(F ; p), respectively.


If the functor F is limit-preserving, a condition that is satisfied in all cases
that interest us, every element a ∈ F (L) has a field of definition K that is
finitely generated over k, so ed(a) is finite; cf. Remark 2.5. On the other
hand, ed F may be infinite even in cases of interest.


The following example describes a class of functors which will play a key
role in the sequel.


Example 1.2. Let G be an algebraic group. Consider the Galois cohomol-
ogy functor F = H1(∗, G) sending K to the set H1(K,G) of isomorphism
classes of G-torsors over Spec(K), in the fppf topology. The essential dimen-
sion of this functor is a numerical invariant of G, which, roughly speaking,
measures the complexity of G-torsors over fields. This number is usually
denoted by edk G or (if k is fixed throughout) simply by edG. Essential di-
mension was originally introduced and has since been extensively studied in
this context; see [BR97, Rei00, RY00, Kor00, Led02, JLY02, BF03, Lem04,
CS06, Gar]. The more general Definition 1.1 is due to A. Merkurjev; see
[BF03, Proposition 1.17].


In this paper we define the notion of essential dimension for algebraic
stacks and apply it in the “classical” setting of Example 1.2. The stacks
that play a special role in these applications are gerbes banded by the mul-
tiplicative group µn; see §§3-4. Before proceeding to state out main results,
we remark that the notion of essential dimension introduced in this paper
also leads to interesting results for other types of stacks. In particular, in
the forthcoming paper [BRV07] we will compute the essential dimension of
the moduli stack Mg,n of smooth curves of genus g for every g ≥ 0. We also
note that a related (but not equivalent) notion of arithmetic dimension has
been studied by C. O’Neil [O’N05, O’N].


We will now describe the main results of this paper. Let


(1.3) 1 −→ Z −→ G −→ Q −→ 1
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denote an exact sequence of algebraic groups over a field k with Z central
and isomorphic to µn for some integer n > 1. For every field extension K/k
the sequence (1.3) induces a connecting map ∂K : H1(K,Q) → H2(K,Z).
We define ind(G,Z) as the maximal value of ind


(
∂K(t)


)
, as K ranges over


all field extensions of k and t ranges over all torsors in H1(K,Q). (Note that
ind(G,Z) does not depend on the choice of the isomorphism Z ≃ µn.) In §5
we will prove the following inequality.


Theorem 1.4. Let G be an extension as in (1.3). Assume that n a power
of a prime integer p. Then ed(G; p) ≥ ind(G,Z) − dim G.


In §6 we will use Theorem 1.4 to give an alternative proof of a recent
theorem of Florence about the essential dimension of a cyclic group (in a
slightly strengthened form). We will then use Florence’s theorem to settle
a particular case of a conjecture of Ledet [Led02, Section 3], relating the
essential dimensions of the cyclic group Cn and the dihedral group Dn (n
odd); see Corollary 6.2.


In §§7–9 we continue to study essential dimensions of finite p-groups. Let
G be a finite abstract group. We write edk G (respectively, edk(G; p)) for
the essential dimension (respectively, for the essential dimension at p) of the
constant group Gk over the field k. Let exp(G) denote the exponent of G
and let C(G) denote the center of G.


Theorem 1.5. Let G be a p-group whose commutator [G,G] is central and
cyclic. Then


edk(G; p) = edk G =
√


|G/C(G)| + rank C(G) − 1 .


for any base field k of characteristic 6= p which contains a primitive root of
unity of degree exp(G).


Note that with the above hypotheses, |G/C(G)| is a complete square.
In the case where G is abelian we recover the identity ed G = rank(G);
see [BR97, Theorem6.1]. For most finite groups G the best previously known
lower bounds on ed G were of the form


(1.6) ed G ≥ rank(A) ,


where A was taken to be an abelian subgroup A of G of maximal rank.
Theorem 1.5 represents a substantial improvement over these bounds. For
example, if G is a non-abelian group of order p3 and k contains a primitive
root of unity of degree p2 then Theorem 1.5 tells us that ed G = p, while (1.6)
yields only ed G ≥ 2.


In §9 we record several interesting corollaries of Theorem 1.5. In partic-
ular, we show that ed(G; p) ≥ p for any non-abelian p-group G; see Corol-
lary 9.3. We also answer a question of Jensen, Ledet and Yui [JLY02, p.204]
by giving an example of a finite group G with a normal subgroup N such
that ed(G/N) > ed G; see Corollary 9.6.
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Another consequence of Theorem 1.5 is the following new bound on
ed Spinn. Here by Spinn we will mean the totally split form of the spin
group in dimension n over a field k.


Theorem 1.7. Suppose k is a field of characteristic 6= 2, and that
√
−1 ∈ k.


If n is not divisible by 4 then


2⌊(n−1)/2⌋ − n(n − 1)


2
≤ ed(Spinn; 2) ≤ ed(Spinn) ≤ 2⌊(n−1)/2⌋ .


If n is divisible by 4 then


2⌊(n−1)/2⌋ − n(n − 1)


2
+ 1 ≤ ed(Spinn; 2) ≤ ed Spinn ≤ 2⌊(n−1)/2⌋ + 1.


Theorem 1.7 is proved in §10, where we also prove similar estimates for
the essential dimensions of pin and half-spin groups.


The lower bound of Theorem 1.7 was surprising to us because previously
the best known lower bound, due of V. Chernousov and J.–P. Serre [CS06],
was


(1.8) ed Spinn ≥
{
⌊n/2⌋ + 1 if n ≥ 7 and n ≡ 1, 0 or −1 (mod 8)


⌊n/2⌋ for all other n ≥ 11.


(The first line is due to B. Youssin and the second author in the case that
char k = 0 [RY00].) Moreover, in low dimensions, M. Rost [Ros99] (cf.
also [Gar]) computed the following table of exact values:


ed Spin3 = 0 ed Spin4 = 0 ed Spin5 = 0 ed Spin6 = 0


ed Spin7 = 4 ed Spin8 = 5 ed Spin9 = 5 ed Spin10 = 4


ed Spin11 = 5 ed Spin12 = 6 ed Spin13 = 6 ed Spin14 = 7.


Taken together these results seemed to suggest that ed Spinn should be a
slowly increasing function of n and gave no hint of its exponential growth.


The computation of ed Spinn gives an example of a split, semisimple,
connected linear algebraic group whose essential dimension exceeds its di-
mension. (Note that for a semisimple adjoint group G, ed G ≤ dimG; cf.
Example 10.10.) Since ed SOn = n − 1 for every n ≥ 3 (cf. [Rei00, Theo-
rem 10.4]), it also gives an example of a split, semisimple, connected linear
algebraic group G with a central subgroup Z such that ed G > ed G/Z.


In the last section we follow a suggestion of A. Merkurjev and B. Totaro
to apply our results on ed Spinn to a problem in the theory of quadratic
forms. Let K be a field of characteristic different from 2 containing a square
root of −1, W(K) be the Witt ring of K and I(K) be the ideal of classes
of even-dimensional forms in W(K). It is well known that if q is a non-
degenerate n-dimensional quadratic form whose class [q] in W(K) lies in
Ia(K), then [q] can be expressed as the class a sum of a-fold Pfister forms.
It is natural to ask how many Pfister form are needed. When a = 1 or 2 it
is easy to see that n Pfister forms always suffice; see Proposition 11.1. We
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prove the following result, which shows that the situation is quite different
when a = 3.


Theorem 1.9. Let k be a field of characteristic different from 2 and n
an even positive integer. Then there is a field extension K/k and a class
[q] ∈ I3(K) represented by an n-dimensional quadratic form q/K such that
[q] cannot be written as the sum of fewer than


2(n+4)/4 − n − 2


7
3-fold Pfister forms over K.


Finally we remark that the stack-theoretic approach to computing ed G
developed in this paper has been recently extended and refined by Karpenko
and Merkurjev [KM07]. Their main result is a general formula for the essen-
tial dimension of any finite p-group over any field k containing a primitive
pth root of unity. This formula may be viewed as a common generalization
of our Theorems 1.5 and 6.1.


Notation. Throughout this paper, a variety over a field k will be a geomet-
rically integral separated scheme of finite type over k. Cohomology groups
Hi(X,G), where X is a scheme and G is an abelian group scheme over X,
will be taken with respect to the fppf topology unless otherwise specified.
We will write µn for the group scheme of n-th roots of unity. If k is a field
whose characteristic is prime to n, ζn will denote a primitive n-th root of
unity in the algebraic closure of k. (Using the axiom of choice, we choose
the ζn once and for all.) For typographical reasons, we sometimes write Cn


for the cyclic group Z/n.


Acknowledgments. We would like to thank the Banff International Re-
search Station in Banff, Alberta (BIRS) for providing the inspiring meeting
place where this work was started. We are grateful to K. Behrend, C.-
L. Chai, D. Edidin, N. Fakhruddin, M. Florence, A. Merkurjev, B. Noohi,
G. Pappas, D. Saltman and B. Totaro for helpful conversations.


2. The essential dimension of a stack: definition and first


properties


We now return to the general setting of Definition 1.1. As we mentioned in
Example 1.2 most of the existing theory is specific to the Galois cohomology
functors F = H1(∗, G) for various algebraic k-groups G. On the other hand,
many naturally arising functors where the essential dimension is of interest
are not of the form F (K) = H1(K,G) for any algebraic group G. Two such
examples are given below. In this section we identify a class of functors which
is sufficiently broad to include most such examples, yet “geometric” enough
to allow one to get a handle on their essential dimension. These functors
are isomorphism classes of objects of an algebraic stack; see Definition 2.3
below. As we shall see in the sequel, these “new” functors turns out to
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be very useful even if one is only interested in the “classical” setting of
Example 1.2.


Example 2.1. Let X/k be a scheme of finite type over a field k, and let
FX : Fieldsk → Sets denote the functor given by K 7→ X(K). Then an
easy argument due to Merkurjev shows that ed FX = dim X; see [BF03,
Proposition 1.17].


In fact, this equality remains true for any algebraic space X. Indeed,
an algebraic space X has a stratification by schemes Xi. Any K-point
η : SpecK → X must land in one of the Xi. Thus ed X = max ed Xi =
dimX. ♠


Example 2.2. Let Curvesg be the functor that associates to a field K/k
the set of isomorphism classes of smooth algebraic curves of genus g over K.
The essential dimension of this functor is computed in [BRV07].


We are now ready to give the main definition of this section.


Definition 2.3. Suppose X is an algebraic stack over k. The essential
dimension edX of X (respectively, the essential dimension ed(X ; p) of X
at a prime integer p) is the essential dimension (respectively, the essential
dimension at p) of the functor FX : Fieldsk → Sets which sends a field L/k
to the set of isomorphism classes of objects in X (L).1


As in Definition 1.1, we will write ed(X/k), or edk X when we need to be
specific about the dependence on the base field k. Similarly for ed(ξ/k) or
edk ξ, where ξ is an object of FX , and for ed(X/k; p), edk(X ; p), ed(ξ/k; p),
edk(ξ; p).


All of the examples we have considered so far may be viewed as special
cases of Definition 2.3. If X is a scheme of finite type (or an algebraic space),
we recover Example 2.1. At the other extreme, if X = BG is the classifying
stack of an agebraic group G defined over k (so that BG(T ) is the category
of G-torsors on T ), we recover Example 1.2. If X = Mg is the stack of
smooth algebraic curves of genus g, we recover Example 2.2.


Remark 2.4. If G is an algebraic group, we will often write ed G for edBG.
That is, we will write ed G for the essential dimension of the stack BG
and not the essential dimension of the scheme underlying G. We do this
to conform to the, now standard, notation introduced at the beginning of
this paper (and in Example 1.2). Of course, by Example 2.1, the essential
dimension of the underlying scheme is dimG.


In fact, the reader may notice that we prefer to write edBG earlier in
the paper, where we are working in a general stack-theoretic setting and
ed G later on, where we are primarily concerned with essential dimensions
of algebraic groups.


1In the literature the functor FX is sometimes denoted by bX or X .
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Remark 2.5. edX takes values in the range {±∞}∪Z≥0 (with −∞ occur-
ring if and only if X is empty). On the other hand, ed ξ is finite for every
object ξ ∈ X (K) and every field extension K/k.


Indeed, any field K/k can be written as a filtered direct limit K =
colimI Ki of its subfields Ki of finite transcendence degree. Since X is limit
preserving (cf. [LMB00, Proposition 4.18]), ξ lies in the essential image of
X (Ki) → X (K) for some i ∈ I and thus ed ξ ≤ tr degk(Ki) < ∞.


We now recall Definitions (3.9) and (3.10) from [LMB00]. A morphism
f : X → Y of algebraic stacks (over k) is said to be representable if, for every
k-morphism T → Y, where T is an affine k-scheme, the fiber product X×Y T
is representable by a scheme over T . A representable morphism f : X → Y
is said to be locally of finite type and of fiber dimension ≤ d if the projection
X ×Y T → T is locally of finite type over T and every fiber has dimension
≤ d.


Proposition 2.6. Let d be an integer X → Y be a representable k-morphism
of algebraic stacks which is locally of finite type and of fiber dimension at
most d. Let L/k be a field, ξ ∈ X(L) and p be a prime integer. Then


(a) edk ξ ≤ edk(f(ξ)) + d,


(b) edk(ξ; p) ≤ edk(f(ξ); p) + d,


(c) edk X ≤ edk Y + d,


(d) edk(X ; p) ≤ edk(Y; p) + d.


Proof. (a) By the definition of edk(f(ξ)) we can find an intermediate field
k ⊂ K ⊂ L and a morphism η : SpecK → Y such that tr degk L ≤ ed f(ξ)
and the following diagram commutes.


SpecL
ξ


//


²²


X
f


²²


SpecK
η


// Y


Let XK
def
= X ×Y SpecK. By the hypothesis, XK is an algebraic space,


locally of finite type over K and of relative dimension at most d. By the
commutativity of the above diagram, the morphism ξ : SpecL → X factors
through XL:


SpecL
ξ


&&


ξ0


%%KKKKKKKKKK


!!


XK
//


²²


X
f


²²


SpecK
η


// Y
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Let p denote the image of ξ0 in XK . Since XK has dimension at most d, we
have tr degk k(p) ≤ d. Therefore tr degk k(p) ≤ ed(f(ξ)) + d. Since ξ factors
through Spec k(p), part (a) follows.


(b) Let L′/L be a field extension. By part (a), edk(ξL′) ≤ edk(f(ξL′))+d.
Taking the minimum over all prime-to p extensions L′/L, we obtain the
desired inequality, edk(ξ; p) ≤ edk(f(ξ); p) + d.


(c) follow from (a) and (d) follows from (b) by taking the maximum on
both sides over all L/k and all ξ ∈ X (L). ♠
Corollary 2.7. Let G be an algebraic group defined over k and H be a
closed subgroup of G. Then


(a) ed H ≤ ed G + dim G − dimH and


(b) ed(H; p) ≤ ed(G; p) + dim G − dim H.


More generally, suppose G is acting on an algebraic space X (over k).
Then


(c) ed [X/H] ≤ ed [X/G] + dim G − dimH and


(d) ed([X/H]; p) ≤ ed([X/G]; p) + dimG − dimH.


Here [X/G] and [X/H] denote the quotient stacks for the actions of G
and H on X.


Recall that the objects in [X/G](K) are, by definition, diagrams of the
form


T
f


//


π
²²


X


Spec(K),


where π is a G-torsor and f is a G-equivariant morphism.


Proof. The natural morphism [X/H] → [X/G] of quotient stacks is easily
seen to be representable, of finite type and with fibers of dimension d =
dimG − dim H. Applying Proposition 2.6(c) and (d) to this morphism, we
obtain the inequalities (c) and (d) respectively. Specializing X to a point
(i.e., to Spec(k)) with trivial G-action, we obtain (a) and (b). ♠


In general, the inequality of Proposition 2.6 only goes in one direction.
However, equality holds in the following important special case. We will say
that a morphism f : X → Y of stacks is isotropic if for every field extension
K of k and every object η of Y(K) there exists an object ξ of X (K) such
that f(ξ) is isomorphic to η.


Proposition 2.8. Let f : X → Y be an isotropic morphism of stacks fibered
over Pointsk. Then edX ≥ edY and ed(X ; p) ≥ ed(Y; p) for every prime p.


Proof. Both inequalities are immediate consequences of the following obser-
vation.
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Let K be an extension of k and η an object of Y(K). If ξ is an object of
X (K) such that f(ξ) is isomorphic to η, then clearly a field of definition for
ξ is also a field of definition for η. Thus ed ξ ≥ ed η. ♠


Proposition 2.8 can be used to deduce the following well-known inequality.
See [BF03] for another proof.


Theorem 2.9. Let G be a linear algebraic group over a field k admitting a
generically free representation on a vector space V . Then


edBG ≤ dim V − dim G.


Proof. Let U denote a dense G-stable Zariski open subscheme of V on which
G acts freely. Then [U/G] is an algebraic space of dimension dimV −dimG
and the map [U/G] → BG is representable and isotropic. ♠


3. Preliminaries on gerbes and canonical dimension


Let X be a gerbe defined over a field K banded by an abelian K-group
scheme G. For background material on gerbes we refer the reader to [Mil80,
p. 144] and [Gir71, IV.3.1.1].


There is a natural notion of equivalence of gerbes banded by G; the set of
equivalence classes is in a natural bijective correspondence with the group
H2(K,G). Given a gerbe X banded by G, we write [X ] for its class in
H2(K,G). The identity is the class [BKG] of the neutral gerbe BKG.


We remark that it makes sense to talk about a gerbe banded by G, where
G is not necessarily abelian, but we will not need to work in this more
general setting, which makes the definition considerably more involved.


Let K be a field and let Gm denote the multiplicative group scheme over
K. Recall that the group H2(K, Gm) is canonically isomorphic to the Brauer
group Br(K) of Brauer equivalence classes of central simple algebras (CSAs)
over K. By Wedderburn’s structure theorem, any CSA over K isomorphic
to the matrix algebra Mn(D) for D a division algebra over K which is unique
up to isomorphism. Moreover, if A and B are two Brauer equivalent CSAs,
the division algebras D and E corresponding to A and B respectively are
isomorphic. For a class [A] ∈ Br(K), the index of A is


√
dimK D.


Let α ∈ H2(K,µn), where n is a positive integer prime to char K. We
define the index ind α to be the index of the image on α under the compo-
sition


H2(K,µn) →֒ H2(K, Gm)
∼=−→ Br(K).


Note that the index of α is the smallest integer d such that α is in the image
of the (injective) connecting homomorphism


(3.1) ∂ : H1(K,PGLd) −→ Br(K).


arising from the short exact sequence


(3.2) 1 −→ Gm −→ GLd −→ PGLd −→ 1.
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The exponent ord([A]) of a class [A] ∈ Br K is defined to be its or-
der in the Brauer group. The exponent ord([A]) always divides the index
ind([A]) [Her68, Theorem 4.4.5].


In the next section, we address the problem of computing the essential
dimension of a µd-gerbe over a field K. Our computation will rely, in a key
way, on the notion of canonical dimension introduced in [BR05] and [KM06],
which we shall now recall.


Let X be a smooth projective variety defined over a field K. We say that
L/K is a splitting field for X if X(K) 6= ∅. A splitting field L/K is called
generic if for every splitting field L0/K there exists a K-place L → L0.
The canonical dimension of X is defined as the minimal value of tr degK(L),
where L/K ranges over all generic splitting fields. Note that the function
field L = K(X) is a generic splitting field of X; see [KM06, Lemma 4.1]. In
particular, generic splitting fields exist and cdim(X) is finite.


If X is a K-scheme and p is a prime integer, we also recall the relative
variant of this notion from [KM06]. We say that L/K is a p-generic splitting
field for X if for every splitting field L0/K there is a prime-to-p extension
L1/L and a K-place L → L1. The minimal value of tr degK(L′), as L′ ranges
over all p-generic splitting fields, is called the p-canonical dimension of X
and is denoted by cdimp(X). (Here, as usual, by a prime-to-p extension we
mean a finite field extension whose degree is prime to p.)


Lemma 3.3. If L/K is a p-generic extension for X then


(a) any intermediate extension M/K, where K ⊂ M ⊂ L is also p-
generic, and


(b) any finite prime-to-p extension L′/K is also p-generic.


Proof. (a) Let L0/K be a splitting field for X. Since L is generic, there is a
prime-to-p extension L1/L0 and a K-place L → L1. Restricting this place
to M , we obtain a desired place M → L1.


Part (b) is an immediate consequence of [KM06, Lemma 3.2]. ♠
The determination functor DX : FieldsK → Sets is defined as follows: D


associates to a field L/K the empty set, if X(L) = ∅, and a set consisting
of one point, which we will denote by a(L), if X(L) 6= ∅. The natural map
D(L1) → D(L2) is then uniquely determined for any K ⊂ L1 ⊂ L2.


Lemma 3.4. Let X be a complete regular K-variety then


(a) cdim(X) = ed(DX).


(b) cdimp(X) = ed(DX ; p).


Proof. (a) Let L be a generic splitting field for X. By [KM06, Lemma 2.1],
any subfield of L containing F is also a generic splitting field. Therefore
ed DX ≥ ed a(L) ≥ cdim(X).


To prove the opposite inequality, it suffices to show that ed a(F ) ≤
tr degK L for any splitting field F/K and any generic splitting field L/K
of X. In other words, given F and L as above, we want to construct an
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intermediate splitting field K ⊂ F0 ⊂ F with tr degK(F0) ≤ tr degK(L). By
the definition of a generic splitting field, there is a place L → F . That is,
there is a valuation ring R with quotient field L and a local homomorphism
f : R → F . We claim that the residue field F0 = R/m, where m is the
maximal ideal of R, has the desired properties. Clearly K ⊂ F0 ⊂ F , and
tr degK(F0) ≤ tr degK(R) = tr degK(L), so we only need to check that F0


is a splitting field for X.
Since L is itself a splitting field, we have a diagram


SpecL //


²²


X


²²


SpecR // SpecK.


By the valuative crition, we obtain a map SpecR → X and hence, a map
SpecF0 = SpecR/m → X. Thus F0 is splitting field for X, as claimed.


(b) Let L be a p-generic splitting field for X. Lemma 3.3 tells us that
if L′/L is a prime-to-p extension and K ⊂ M ⊂ L′ is an intermediate
splitting field then M is again p-generic. Thus ed(a(L); p) = minimal value
of tr degK(M) ≥ cdimp(X).


To prove the opposite inequality, we need to show that ed(a(F ); p) ≤
tr degK(L) for any splitting field F/K and any p-generic splitting field L/K.
Indeed, after replacing F by a prime-to-p-extension F ′, we obtain a K-
place L → F ′. Now the same argument as in part (a) shows that there is
an intermediate splitting subfield K ⊂ F0 ⊂ F ′ such that tr degK(F0) ≤
tr degK(L). Thus


ed(a(F ); p) ≤ ed(a(F ′)) ≤ tr degK(F0) ≤ tr degK(L) ,


as claimed. ♠


Of particular interest to us will be the case where X is a Brauer-Severi
variety over K. Let m be the index of X. If m = pa is a prime power then


(3.5) cdim(X) = cdimp(X) = pa − 1 ;


see [KM06, Example 3.10] or [BR05, Theorem 11.4]. If the highest power of
p dividing m is pa then


(3.6) cdimp(X) = pa − 1 ;


see [KM06, Example 5.10]. On the other hand, if m is divisible by more
than one prime, cdim(X) is not known in general. Suppose m = pa1


1 . . . par
r .


Then the class of P in Br L is the sum of classes α1, . . . , αr whose indices
are pa1


1 , . . . , par
r . Denote by X1, . . . , Xr the Brauer–Severi varieties with


classes α1, . . . , αr. It is easy to see that K(X1 × · · · × Xr) is a generic
splitting field for X. Hence,


cdim(X) ≤ dim(X1 × · · · × Xr) = pa1


1 + · · · + par
r − r .
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In [CTKM06], Colliot-Thélène, Karpenko and Merkurjev conjectured that
equality holds, i.e.,


(3.7) cdim(X) = pa1


1 + · · · + par
r − r


for all m ≥ 2. As we mentioned above, this in known to be true of m is a
prime power (i.e., r = 1). Colliot-Thélène, Karpenko and Merkurjev also
proved (3.7) for m = 6; see [CTKM06, Theorem 1.3].


4. The essential dimension of a µd-gerbe


We are now ready to proceed with our main theorem on gerbes.


Theorem 4.1. Let d be an integer with d > 1. Let K be a field and
x ∈ H2(K,µd), where char K does not divide d. Denote the image of x in
H2(K, Gm) by y, the µd-gerbe associated to x by X , the Gm-gerbe associated
to y by Y, and the Brauer–Severi variety associated to y by P . Then


(a) ed(Y) = cdim P and (b) edX = cdim P + 1.


Moreover, if the index of x is a prime power pr then


(c) ed(Y; p) = ed(Y) = pr − 1 and (d) ed(X ; p) = edX = pr.


Proof. The functor FY : FieldsK → Sets sends a field L/K to the empty
set, if P (L) = ∅, and to a set consisting of one point, if P (L) 6= ∅. In
other words, FY is the determination functor DP introduced in the previous
section. Thus ed(Y) = ed(DP ) and ed(Y; p) = ed(DP ; p). On the other
hand, by Lemma 3.4, ed(DP ) = cdim(P ) and ed(DP ; p) = cdimp(P ). This,
in combination with (3.5), proves parts (a) and (c).


(b) First note that the natural map X → Y is finite type and representable
of relative dimension 1. By Proposition 2.6 this implies that edX ≤ ed(Y)+
1. By part (a) it remains to prove the opposite inequality, edX ≥ ed(Y)+1.
We will do this by constructing an object α of X whose essential dimension
is ≥ ed(Y) + 1.


We will view X as a torsor for Bµd in the following sense: One has maps


X × Bµd → X
X ×X → Bµd


satisfying various compatibilities, where the first map is the action of Bµd


on X and the second map is the “difference” of two objects of X . For the
definition and a discussion of the properties of these maps, see [Gir71, Chap-
ter IV, Sections 2.3, 2.4 and 3.3]. (Note that, in the notation of Giraud’s
book, X ∧ Bµd


∼= X and the action operation above arises from the map
X × Bµd → X ∧ Bµd given in Chapter IV, Proposition 2.4.1. The “differ-
ence” operation — which we will not use here — arises similarly from the
fact that, in Giraud’s notation, HOM(X ,X ) ∼= Bµd.)


Let L = K(P ) be the function field of P . Since L splits P , we have a
natural map a : SpecL → Y. Moreover since L is a generic splitting field
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for P ,


ed(a) = cdim(P ) = ed(Y),(4.2)


ed(a; p) = cdimp(P ) = ed(Y; p).(4.3)


where we view a as an object in Y . Non-canonically lift a : SpecL → Y to
a map SpecL → X using the fact that X → Y is isotropic. Let SpecL(t) →
Bµd denote the map classified by (t) ∈ H1(L(t), µd) = L(t)×/L(t)×d. Com-
posing these two maps, we obtain an object


α : SpecL(t) → X × Bµd → X .


in X (L(t)). Our goal is to prove that ed(α) ≥ ed(Y) + 1. In other words,
given a diagram of the form


(4.4) SpecL(t)
α


//


²²


X


SpecM


β
::vvvvvvvvvv


where K ⊂ M ⊂ L is an intermediate field, we want to show that tr degK(M) ≥
ed(Y)+1. Assume the contrary: there is a diagram as above with tr degK(M) ≤
ed(Y). Let ν : L(t)∗ → Z be the usual discrete valuation corresponding to t
and consider two cases.


Case 1. Suppose the restriction ν|M of ν to M is non-trivial. Let M0


denote the residue field of ν and M≥0 denote the valuation ring. Since
SpecM → X → Y, there exists an M -point of P . Then by the valuative
criterion of properness for P , there exists an M≥0-point and thus an M0-
point of P . Passing to residue fields, we obtain the diagram


SpecL
a


//


²²


Y


SpecM0


;;wwwwwwwwww


.


which shows that ed(a) ≤ tr degK M0 = tr degK M − 1 ≤ ed(Y)− 1, contra-
dicting (4.2).


Case 2. Now suppose the restriction of ν to M is trivial. The map
SpecL → X sets up an isomorphism XL


∼= BLµd. The map SpecL(t) → X
factors through XL and thus induces a class in Bµd(L(t)) = H1(L(t), µd).
This class is (t). Tensoring the diagram (4.4) with L over K, we obtain


SpecL(t) ⊗ L
α


//


²²


XL
∼= BLµd


SpecM ⊗ L


β
66nnnnnnnnnnnn


Recall that L = K(P ) is the function field of P . Since P is absolutely
irreducible, the tensor products L(t) ⊗ L and M ⊗ L are fields. The map
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SpecM ⊗ L → BLµd is classified by some m ∈ (M ⊗ L)×/(M ⊗ L)×d =
H1(M ⊗ L,µd). The image of m in L(t) ⊗ L would have to be equal to t
modulo d-th powers. We will now derive a contradiction by comparing the
valuations of m and t.


To apply the valuation to m, we lift ν from L(t) to L(t) ⊗ L. That is,
we define νL as the valuation on L(t) ⊗ L = (L ⊗ L)(t) corresponding to t.
Since νL(t) = ν(t) = 1, we conclude that νL(m) ≡ 1 (mod d). This shows
that νL is not trivial on M ⊗L and thus ν is not trivial on M , contradicting
our assumption. This contradiction completes the proof of part (b).


The proof of part (d) proceeds along similar lines, except for a small
complication in prime characteristic, which is resolved by Lemma 4.7 below.
For the sake of completeness we outline the argument.


Once again, applying Proposition 2.6 to the representable projection map
X → Y of relative dimension 1, we obtain the inequality ed(X ; p) ≤ ed(Y; p)+
1. By part (c) it remains to show that ed(X ; p) ≥ ed(Y; p) + 1. We will do
this by showing that


(4.5) ed(α; p) ≥ ed(Y; p) + 1 ,


where α : SpecL(t) → X is the same object in X (L(t)) we constructed in
the proof of part (b). Here we continue to denote the function field of P
by L = K(P ). Once again, assume the contrary: there exists a finite field
extension L′/L(t) of degree prime to p, such that ed(αL′) ≤ ed(Y; p). Let
L′


s be the separable closure of L(t) in L′. By Lemma 4.7 ed(αL′
s
) = ed(αL′).


Hence, after replacing L′ by L′
s, we may assume that L′ is a finite separable


extension of L(t) of degree prime to p. The assumption that ed(αL′) ≤
ed(Y; p) means, by definition, that there exists a commutative diagram


(4.6) Spec(L′)


&&LLLLLLLLLL


prime-to-p


²²


SpecM
β


##F
FFFFFFFF


SpecL(t)
α


// X
where K ⊂ M ⊂ L′ is an intermediate field and tr degK(M) ≤ ed(Y; p).


Let ν : L(t)∗ → Z be the discrete valuation corresponding to t and ν ′
1, . . . , ν


′
r


be the liftings of ν to L′. Since L′/L is separable, [Lan65, Proposition XII.18]
tells us that


e1f1 + · · · + erfr = [L′ : L] ,


where ei and fi are, respectively, the ramification index and the residue
class degree of ν ′


i. Since [L′ : L] is prime to p, at least one of the valuations
ν ′
1, . . . , ν


′
r, say ν ′ : (L′)∗ → 1


eZ, has the property that its ramification index
e and residue class degree f are both prime to p.
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Once again we consider two cases. If the restriction of ν ′ to M is non-
trivial then after passing to residue fields and arguing as in Case 1 of the
proof of part (b), we arrive at the diagram


Spec(L′
0)


&&MMMMMMMMMM


degree f


²²


SpecM0


##GG
GG


GG
GG


GG


SpecL // Y
which shows that ed(a; p) ≤ tr degK M0 = tr degK M − 1 ≤ ed(Y; p) − 1,
contradicting (4.3).


If the restriction of ν ′ to M is trivial then the induced valuation on M⊗K


L′ is trivial, and we argue as in Case 2 in the proof of part (b). Tensoring
the diagram 4.6 with L over K and identifying XL with BLµd via our chosen
map φ : Spec(L) → X , we obtain the diagram


Spec(L′ ⊗K L)


((RRRRRRRRRRRRR


prime-to-p


²²


SpecM ⊗K L
β⊗Kφ


''NNNNNNNNNNN


SpecL(t) ⊗K L
α⊗Kφ


// BLµd.


Since L is absolutely irreducible, L′⊗K L, M ⊗K L and L(t)⊗K L are fields.
The map SpecM⊗K L → BLµd gives rise to an m ∈ (M⊗L)×/(M⊗L)×d =
H1(M ⊗ L,µd) whose image in L′ ⊗K L is equal to t, modulo d-th powers.


Lifting µ from L′ to L′⊗K L (so that ν ′
L is trivial on 1⊗K L), we see that


ν ′
L(m) − ν ′


L(t) = ν ′
L(m) − 1 ∈ d


1


e
Z .


Since d and e are relatively prime, this shows that ν ′
L(m) 6= 0. We conclude


that ν ′
L is non-trivial on M ⊗K L. Consequently, ν ′ is non-trivial on M ,


contradicting our assumption. This contradiction completes the proof of
part (d) (modulo Lemma 4.7 below). ♠
Lemma 4.7. Let F be a functor from the category of field extensions of K
to the category of sets.


(a) Suppose that the natural map F (A) → F (B) is bijective for every
algebraic inseparable field extension B/A. Then ed(a) = ed(aB) for every
algebraic inseparable field extension B/A and every a ∈ F (A).


(b) Let X be a gerbe over a field K banded by µd, A a field over K, and
B/A an algebraic inseparable field extension. Suppose d is not divisible by
char K. Then ed(a) = ed(aB) for every a ∈ X (A).
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Proof. (a) The inequality ed(a) ≥ ed(aB) follows immediately from Defini-
tion 1.1. To prove the opposite inequality it suffices to show that if aB de-
scends to an intermediate field M , where K ⊂ M ⊂ B, then a descends to an
intermediate field M0, where K ⊂ M0 ⊂ A and tr degK(M0) ≤ tr degK(M).
To prove this assertion, set M0 = M ∩ A and p = char K. Then for every
m ∈ M there is a power of p, say e = pr such that me lies in both A and
M (and hence, in M0). This shows that M is algebraic and inseparable
over M0; cf. [Lan65, VII.7]. Since M0 is a subfield of M , the inequality
tr degK(M0) ≤ tr degK(M) is obvious. (In fact, equality holds, since M is
algebraic over M0.) The commutative diagram


F (M) // F (B) ∋ aB


F (M0)


≃


OO


// F (A) ∈ a


≃


OO


shows that a descends to M0.


(b) By part (a) it suffices to show that the natural map X (A) → X (B) is
an isomorphism for every algebraic inseparable extension B/A. If A doesn’t
split the class [X ] ∈ H1(K,µd) then neither does B, so, X (A) = X (B) = ∅,
and there is nothing to prove. If A splits [X ], i.e., there is a map Spec(A) →
X then we can use this map to trivialize X . The map X (A) → X (B) can
then be identified with the natural map H1(A,µd) → H1(B,µd) or equiva-
lently,


A∗/(A∗)d → B∗/(B∗)d .


We want to show that this map is an isomorphism. To do this, we recall
that for every y ∈ B∗ there exists an r ≥ 0 such that ypr


lies in A. Since
p and d are relatively prime, both injectivity and surjectivity of the above
map follow. ♠


In view of Theorem 4.1(a), Conjecture (3.7) of Colliot-Thélène, Karpenko
and Merkurjev be restated in the language of essential dimension of gerbes
as follows.


Conjecture 4.8. If X is a gerbe banded by µn over a field K, let pa1


1 . . . par
r


be the decomposition into prime factors of the index of the class of X in the
Brauer group of K. Then


edX = pa1


1 + · · · + par
r − r + 1.


When the index is 6 this follows from [CTKM06, Theorem 1.3].
In view of the fact that the conjecture holds for r = 1, it can also be


rephrased as follows: if m and n are relatively prime positive integers, X
and Y are gerbes banded by µm and µn, then


ed(X × Y) = edX + edY − 1.


Back to the language of canonical dimension, one could ask the following
more general question. Let X and Y be smooth projective varieties over a
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field K. Assume that there are no rational functions X 99K Y or Y 99K X.
Then is it true that cdim(X ×Y ) = cdim(X)+ cdim(Y )? A positive answer
to this question would imply Conjecture 4.8.


5. Proof of Theorem 1.4


In this section k is a field and p is a prime number not equal to char k.
We begin with some preliminary facts.


Proposition 5.1. Let U be an integral algebraic space locally of finite type


over k with function field K
def
= k(U), and let f : X → U be a stack over U .


Let XK denote the pullback of X to SpecK. Then,


edX ≥ ed(XK/K) + dim U ;


ed(X ; p) ≥ ed(XK/K; p) + dim U.


Proof. Let j : XK → X denote the inclusion. If ξ : SpecL → XK be a
morphism, then it is easy to see that ed(ξ/K) = ed(j ◦ ξ/k) + dim U . This
implies the first inequality of the proposition directly. The second inequality
then follows by taking the infinum of ed(ξM/K) for all prime-to-p extensions
M/L. ♠


Let X be a locally noetherian stack over a field k with presentation
P : X → X . Recall that the dimension of X at a point ξ : SpecK → X
is given by dimx(X)− dimx P where x is an arbitrary point of X lying over
ξ [LMB00, (11.14)]. Let Y be stack-theoretic closure of the image of ξ; that
is, the intersection of all the closed substacks Yi such that ξ−1(Yi) = SpecK.
The morphism ξ factors uniquely through Y ⊆ X . We defined the dimension
of the point ξ to be the dimension of the stack Y at the point SpecK → Y.


Proposition 5.2. Let X → Y be a morphism of algebraic stacks over a
field k. Let K/k be a field extension and let y : SpecK → Y be a point of


dimension d ∈ Z. Let XK
def
= X ×Y SpecK. Then


ed(XK/K) ≤ ed(X/k) − d;


ed(XK/K; p) ≤ ed(X/k; p) − d.


Proof. By [LMB00, Theorem 11.5], Y is the disjoint union of a finite family
of locally closed, reduced substacks Yi such that each Yi is an fppf gerbe
over an algebraic space Yi with structural morphism Ai : Yi → Yi. We can
therefore replace Y by one of the Yi and assume that Y is an fppf gerbe over
an algebraic space Y . Without loss of generality, we can assume that Y is
an integral affine scheme of finite type over k.


Let p be the image of y in Y . Since Y is limit-preserving, we can find
an integral affine scheme U equipped with a morphism i : U → Y and a
dominant morphism j : SpecK → U such that y is equivalent to i ◦ j. We
can also assume that the composition U → Y → Y is dominant.
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Since Y is a gerbe over Y , it follows that U → Y is representable of
fiber dimension at most dim U − d. Now, form the following diagram with
Cartesian squares.


XK
//


²²


SpecK


²²


XU
//


²²


U


²²


X // Y
Since the vertical maps in the lower square are finite type and representable
of fiber dimension at most dimU−d, it follows from Propositions 2.6 and 5.1
that


ed(XK/K) ≤ ed(Xk(U)/k(U))


≤ edXU − dimU


≤ edX + dim U − d + dim U


≤ edX − d. ♠
Similarly, ed(XK/K; p) ≤ ed(X ; p) − d,


We now proceed with the proof of Theorem 1.4, which we restate for the
convenience of the reader. Let


(5.3) 1 −→ Z −→ G −→ Q −→ 1


denote an extension of groups over a field k, with Z central and isomorphic
to µn for some integer n > 1. Recall from the introduction, that we defined
ind(G,Z) as the maximal value of the index ind


(
∂K(t)


)
, as K ranges over


all field extensions of k and t ranges over all torsors in H1(K,Q).


Theorem 5.4. Let G be an extension as in (5.3). Assume that n = pr for
some non-negative integer r. Then edk(G; p) ≥ ind(G,Z) − dimG.


Proof. Let K/k be a field extension and let t : SpecK → BQ be a Q-torsor
over SpecK. The dimension of BQ at the point t is − dimQ = − dim G.
Let X denote the pull-back in the following diagram.


X //


²²


SpecK


t
²²


BG // BQ


By Proposition 5.2, ed(X/K; p) ≤ ed(BG/k; p)+dim G. On the other hand,
since BG is a gerbe banded by Z over BQ, X is a gerbe banded by Z
over SpecK. Therefore, by Theorem 4.1(d), ed(X/K; p) = ind∂K(t). By
substitution, ind∂K(t)−dimG ≤ edk(BG; p). Since this inequality holds for
all field extensions K/k and all Q-torsors t over K, the theorem follows. ♠
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Remark 5.5. Suppose G is a simple algebraic group whose center Z is
cyclic. It is tempting to apply Theorem 1.4 to the natural sequence


1 −→ Z −→ G −→ Gad −→ 1


where the adjoint group Gad is G/Z. Given a torsor t ∈ H1(K,Gad), the
central simple algebra representing ∂K(t) ∈ H2(K,Z) is called the Tits alge-
bra of t. The values of the index of the Tits algebra were studied in [Tit92],
where this index is denoted by b(X) (for a group of type X) and its pos-
sible values are listed on p. 1133. A quick look at this table reveals that
for most types these indices are smaller than dim G, so that the bound of
Theorem 1.4 becomes vacuous. The only exception are groups of types B
and D, in which case Theorem 1.4 does indeed, give interesting bounds; cf.
Remark 10.7.


Remark 5.6. If n ≥ 2 is not necessarily a prime power, then the above
argument shows that


edk G ≥ cdim(∂K(t)) − dim G .


Here by cdim(∂K(t)) we mean the canonical dimension of the Brauer-Severi
variety representing the class of ∂K(t) in H2(K,µn). Assuming that Conjec-
ture 4.8 holds, we obtain the following (conjectural) inequality: if ind(G,Z) =
pa1


1 . . . par
r is the prime factorization of ind(G,Z) then


edk G ≥ pai
1 + · · · + par


r − r + 1 − dimG .


As we remarked at the end of §4, Conjecture 4.8 (and thus the above in-
equality) is known to be true if ind(G,Z) is a prime power (i.e., r = 1) or
ind(G,Z) = 6.


6. Florence’s theorem


In this section we give an alternative proof of a recent theorem of Flo-
rence (in a slightly strengthened form) by combining the lower bound of
Theorem 1.4 with the Brauer–Rowen Theorem. The idea to use the Brauer–
Rowen theorem in this context is due to Florence. Thus while our proof is
different from the one in [Flo], it is not entirely independent.


Theorem 6.1 (M. Florence [Flo]). Let p be a prime, k a field of character-
istic 6= p. Suppose ζpn ∈ k but ζpn+1 /∈ k for some integer n ≥ 1. Moreover,
if p = 2 and n = 1, assume also that k(ζ4) 6= k(ζ8). Then


edk(Cpm ; p) = edk Cpm =


{
pm−n if n < m,


1 if n ≥ m.


Before proceeding with the proof, we remark that, in general, the value of
edk Cpm is not known if ζp 6∈ k. On the other hand, for the sake of computing
edk(Cpm ; p), we may replace k by k(ζp) and then apply Theorem 6.1. Indeed,
since [k(ζp) : k] is prime to p, edk(Cpm; p) = edk(ζp)(Cpm; p).
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Proof. If m ≤ n, then Cpm = µpm. Therefore ed Cpm = 1 (see [BF03,
Example 2.3]) and hence, ed(Cpm; p) = 1 as well. We can therefore restrict
our attention to the case where n < m.


We first show that ed Cpm ≤ pm−n. To do this, pick a faithful character


χ : Cpn → Gm defined over K and set V
def
= ind


Cpm


Cpn
χ. A simple calculation


shows that V is faithful, thus, V is generically free since Cpm is finite. By
Theorem 2.9, it follows that ed Cpm ≤ dim V = pm−n.


It remains to show that ed(Cpm ; p) ≥ pm−n. By Theorem 1.4 it suffices to
show that ind(Cpm, Cpn) ≥ pm−n. To establish this inequality, we will view
the representation V as a homomorphism ρ : Cpm → GL(V ) of algebraic
groups. Let π : GL(V ) → PGL(V ) denote the obvious projection and note
that the kernel of π◦ρ is exactly Cpn . It follows that we have a commutative
diagram


0 // Cpn //


²²


Cpm
ρ


//


²²


Cpm−n //


ι


²²


1


1 // Gm
// GL(V )


π
// PGL(V ) // 1


where the rows are exact and the columns are injective.
Let K/k be a field extension and let t ∈ H1(K,Cpm) be a torsor. Let


ι∗ : H1(K,Cpm−n) → H1
(
K,PGL(V )


)
denote the map induced by ι. Then,


from the commutativity of the above diagram (and the injectivity of the
columns), it follows that indK(t) is the index of the CSA ι∗(t).


We claim that there is a field extension K/k and a t ∈ H1(K,Cpm) such
that ι∗(t) is a division algebra. From this it will easily follow that indK(t) =
dimV = pm−n. In fact, we will take t ∈ H1(K,Cpm) to be a versal element,
constructed as follows. Let L = K(x1, . . . , xpm−n) denote the field obtained


by adjoining pm−n independent variables to K, and let Cpm−n act on L by


cyclically permuting the variables, i.e., a · xi = xi+a (mod pm−n) for any


a ∈ Cpm−n . Let K = LCpm−n . Then L/K defines a Cpm−n-torsor t over K.


The CSA corresponding to ι∗(t) ∈ H1(K,PGLn) is the Brauer-Rowen
algebra Rpn,pm,pm; cf. [Row88, §7.3]. The fact that this algebra has index n
is a variant of a theorem of Brauer; for a proof see [Flo, Theorem 2.17] or
(for k = Q(ζp) only) [Row88, Theorem 7.3.8]. ♠


Let Dn be the dihedral group of order 2n. Ledet [Led02, Section 3] conjec-
tured that if n is odd then edk Cn = edk Dn over any field k of characteristic
zero. As an application of Theorem 6.1 we will now prove Ledet’s conjecture
in the case where n = pr is a prime power and k contains a primitive pth
root of unity.


Corollary 6.2. Let p be an odd prime, m ≥ 1 be an integer, and k be a
field containing a primitive pth root of unity. Then edk Dpm = edk Cpm.
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Proof. If ζpm ∈ k then we know that


edk Cpm = edk Dpm = 1 ;


see the proof of [BR97, Theorem 6.2]. Thus we may assume ζpm 6∈ k. Let n
be the largest integer such that ζpn ∈ k. By our assumption 1 ≤ n ≤ m− 1.
Since Cpm ⊂ Dpm , we have edk Dpm ≥ edk Cpm .


To prove the opposite inequality, note that Dpm ≃ Cpm ⋊ C2 has a sub-
group isomorphic to Dpn = Cpn ⋊ C2 of index pm−n. As we pointed out
above, ζpn ∈ k implies edk Dpn = 1. Thus


edk Dpm ≤ (edk Dpn) · [Dpm : Dpn ] = 1 · pm−n = ed Cpm .


where the inequality is given by [Led02, Section 3] and the last equality by
Theorem 6.1. ♠


7. A theorem about the essential dimension of a finite group


The following proposition, extending [BR97, Theorem 5.3] and [Kan06,
Theorem 4.5], will be used in the proof of Theorem 1.5 in the next section.


Theorem 7.1. Let G be a finite group, H be a central cyclic subgroup of
G, and χ : G → k∗ be a character of G whose restriction to H is faithful.
Assume char k does not divide |G|. If H is maximal among central cyclic
subgroups of G then


(a) edk G = edk(G/H) + 1.


(b) Moreover, if G is a p-group then edk(G; p) = edk(G/H; p) + 1.


Proof. Let φ : G → G/H →֒ GL(V ) be a faithful representation of G/H.
Then φ ⊕ χ : G → GL(V × A1) is a faithful representation of G.


(a) To prove the inequality ed G ≤ ed(G/H) + 1, recall that ed(G/H) is
the minimal dimension of a faithful G/H-variety X which admits a dominant
G/H-equivariant rational map f : V 99K X; see [BR97]. Then


f × id : V × A1
99K X × A1


is a dominant rational map of G-varieties. Thus


ed G ≤ dim(X × A1) = ed(G/H) + 1 .


We will now prove the opposite inequality, ed G ≥ ed(G/H) + 1. Choose
a dominant rational map


V × A1
99K Y


of faithful G-varieties such that dim Y = ed G. Equivalently, if K = k(V ),
we choose G-invariant subfield F ⊂ K(t) such that the G-action on F is
faithful and tr degk(F ) = ed G. (Here, of course, F = k(Y ).)


Let ν : K(t) → Z be the natural valuation associated to t (and trivial on
K). Restricting ν to F we obtain a discrete valuation ν |F of F . Denote the
residue field for this valuation by F0.


Claim: (i) ν |F is non-trivial, and (ii) the inertia group of ν |F (i.e., the
subgroup of G that acts trivially on F0) is precisely H.
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To prove (i), assume the contrary. Then there is a natural G-equivariant
embedding of F in the residue field K(t)0 = K. Since H acts faithfully on
F and trivially on K, this is impossible.


To prove (ii), let HF ⊂ G be the inertia group for ν |F . By our construction
H is the inertia group for the valuation ν on K(t). Hence, H ⊂ HF . On the
other hand, since char k is prime to |G|, HF is cyclic (see [Ser79, Corollaries
2 and 3 to Proposition IV.7]) and central (see [Ser79, Propositioni IV.10]).
By our assumption H is maximal among central cyclic subgroups of G; thus
H = HF , proving (ii).


We are now ready to complete the proof of the inequality ed G ≥ ed(G/H)+
1 (and thus of part (a)). By (i) the G-equivariant inclusion F →֒ K(t) in-
duces a G/H-equivariant inclusion F0 →֒ K(t)0 = K of residue fields. In
other words, we have a rational dominant G/H-equivariant map V 99K Y0


where k(Y0) = F0. Moreover, by (ii) G/H acts faithfully on F0 (or equiva-
lently, on Y0). Since V is a faithful linear representation of G/H, we have
ed(G/H) ≤ dim Y0. On the other hand,


dim Y0 = tr degk(F0) = tr degk(F ) − 1 = dim Y − 1 ≤ ed G − 1 .


and the desired inequality ed(G/H) ≤ ed G − 1 follows.


(b) To prove the inequality ed(G; p) ≤ ed(G/H; p)+1, recall that ed(G/H)
is the minimal dimension of a faithful G/H-variety X which admits a dia-
gram


V ′


prime-to-p


²²
Â


Â


Â


!!
B


B
B


B


V X ,


of dominant rational G/H-equivariant maps, where X is a generically free
G-variety, dimV ′ = dimV and [k(V ′) : k(V )] is prime to p. (Note that, in
the definition of ed(G; p) we require that G should transitively permute the
connected components of V ′ (and of X). However, if G is a p-group and the
degree of the cover V ′ → V is prime to p, a simple counting argument shows
that G has to fix an irreducible component of V ′. Consequently, in this
situation V ′ and X are necessarily irreducible.) Multiplying every variety in
the above diagram by A1 (on which G acts via the character χ), we obtain
the diagram


V ′ × A1


prime-to-p


²²
Â


Â


Â


&&L
L


L
L


L


V × A1 X × A1 ,


of dominant rational map of faithful G-varieties, which shows that


ed(G; p) ≤ dim(X × A1) = ed(G/H; p) + 1 .
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To prove the opposite inequality, ed(G; p) ≤ ed(G/H; p) + 1, choose a
diagram


W


prime-to-p
²²
Â


Â


Â


$$H
H


H
H


H


V × A1 Y ,


of rational maps of faithful G-varieties, where [k(W ) : k(V × A1)] is finite
and prime to p and dimY = edk(G; p). Equivalently, we have a diagram of
field extensions


L


prime-to-p
EE


EE
EE


EE
E


K(t) F ,


where K, K(t), L and F are the function fields of V , V × A1, W and Y ,
respectively.


First observe that after replacing L by the separable closure Ls of K(t)
in L and F by F ∩ Ls, we may assume without loss of generality that L
is separable over K(t). Indeed, the G-action on L and F descends to (and
remains faithful on) Ls and F ∩ Ls. Moreover, some power of every x ∈ F
lies in F ∩Ls; hence, F is algebraic over F ∩Ls, i.e., the two have the same
transcendence degree over k.


From now on we will assume that L is separable over K(t) (or equivalently,
W is separable over V × A1). Let ν be the natural discrete valuation on
K(t), by the degree in t (the same valuation we considered in part (a)).
We claim that there exists a G-invariant lifting η of ν to L whose residue
degree (i.e., the degree of the induced extension L0/K of the residue fields)
in prime to p.


Clearly the inertia group HL ⊂ G of L (with respect to η) is contained
in the inertia group of K(t), which is equal to H by our construction. On
the other hand, the cyclic p-group H/HL faithfully acts on the extension
L0/K whose degree is prime to p. This is only possible if H/HL = {1},
i.e., H = HL. Thus if the above claim is established, we can use the same
argument as in part (a) (with K(t), ν replaced by L, η) to complete the
proof of the inequality ed(G; p) ≤ ed(G/H; p) + 1.


To prove the claim, denote the liftings of ν on K(t) to L by η1, . . . , ηr.
As usual, we will denote the ramification index of ηi by ei and the residue
degree by fi. By [Lan65, Proposition XII.18]


e1f1 + · · · + erfr = [L : K(t)]


or, equivalently, ∑


e,f≥1


|Ve,f |ef = [L : K(t)]


where Ve,f be the subset of {η1, . . . , ηn} consisting of those valuations ηi with
ei = e and fi = f . (Note that Ve,f = ∅ for all but finitely many pairs (e, f).)
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Thus there exist integers e, f ≥ 1 such that e, f , and |Ve,f | are all prime to
p. The p-group G permutes the elements of Ve,f ; since |Ve,f | is prime to p,
G must fixed a valuation η ∈ Ve,f . This is the valuation we were looking
for. (Note that the residue degree f of η is prime to p by our construction.)
This completes the proof of the claim and thus of part (b). ♠


Corollary 7.2. Let G be a finite p-group and S be a direct summand of
C(G) such that [G,G] ∩ S = {1}. If ζe ∈ k, where e is the exponent of S
then edk G = edk(G/S) + rank(S).


Remark 7.3. The following elementary observation will be useful in the
sequel.


Let G be a finite group and S be a normal subgroup such that [G,G]∩S =
{1}. Then C(G/S) = C(G)/S.


To prove this assertion, suppose g ∈ G projects to a central element of
G/S. Then for every x ∈ G the commutator c = gxg−1x−1 lies in both
[G,G] and S. Hence, c = 1, and thus g ∈ C(G), as desired. ♠


Proof of Corollary 7.2. Suppose C(G) as S⊕T . Write S = H1⊕· · ·⊕Hr as
a direct sum of cyclic groups, where r = rank(S). We argue by induction on
r. When r = 0, i.e., S = {1}, there is nothing to prove. For the induction
step, note that by Remark 7.3,


S/Hr ≃ H1 ⊕ · · · ⊕ Hr−1


is a direct summand of C(G/Hr) = S/Hr ⊕ T . Thus by the induction
assumption ed(G/Hr) = ed(G/S)+r−1. On the other hand, by Theorem 7.1
ed G = ed(G/Hr) + 1, and the corollary follows. ♠


8. Proof of Theorem 1.5


Let Z be a maximal cyclic subgroup of C(G) containing [G,G]. Then
C(G) = Z ⊕ S for some central subgroup W of G. By Corollary 7.2,


ed G = ed(G/S) + rank(S) = ed(G/S) + rank C(G) − 1 .


By Remark 7.3, |C(G/S)| = |C(G)|/|S|. Thus the quantity |G/C(G)| does
not change when we replace G by G/S. We conclude that it suffices to
prove Theorem 1.5 for G/S. In other words, we may assume without loss of
generality that the center Z = C(G) of G is cyclic. In this case the theorem
reduces to the identity


ed(G; p) = ed G =
√


|G/Z| .
To prove this identity it suffices to establish Lemma 8.1 below. Indeed,
part (a) of this lemma tells us that ed(G; p) ≥


√
|G/Z| (see Theorem 1.4),


and part (b) implies the inequality, edG ≤
√


|G/Z| (see Theorem 2.9), and
Theorem 1.5 follows.







ESSENTIAL DIMENSION AND ALGEBRAIC STACKS I 25


Lemma 8.1. Let G be a p-group such that the center Z = C(G) is cyclic


and the quotient group A
def
= G/Z is abelian. (or equivalently, [G,G] ⊂ Z).


Then


(a) ind(G,Z) ≥
√


|A|, and


(b) G has a faithful linear representation of dimension
√


|A|.


Proof. We will use additive notation for the groups Z and A, multiplicative
for G. In this situation we can define a skew-symmetric bilinear form ω : A×
A → Z by


ω(a1, a2) = g1g2g
−1
1 g−1


2 ,


where ai = gi, modulo Z, for i = 1, 2. (Note that ω(a1, a2) is independent
of the choice of g1 and g2.) Clearly g lies in C(G) if and only if its image
a lies in the kernel of ω; i.e., ω(a, b) = 0 for every b ∈ A. Since we are
assuming that C(G) = Z, we conclude that the kernel of ω is trivial; i.e., ω
is a symplectic form on A. It is well known (see for example [TA86, §3.1])
that the order of A, which equals the order of G/C(G), is a complete square.


Fix a generator z of Z. We recall the basic result on the structure of
a symplectic form ω on a finite abelian group A (the proof is easy; it can
be found, e.g., in [Wal63, §3.1] or [TA86, §7.1]). There exist elements a1,
. . . , a2r in A and positive integers d1, . . . , dr with the following properties.


(a) di divides di−1 for each i = 2, . . . , r, and dr > 1.
(b) Let i be an integer between 1 and r. If Ai denotes the subgroup of


A generated by ai and ar+i, then there exists an isomorphism Ai ≃
(Z/diZ)2 such that ai corresponds to (1,0) and ar+i to (0, 1).


(c) The subgroups Ai are pairwise orthogonal with respect to ω.


(d) ω(ai, ar+i) = zn/di ∈ Z.
(e) A = A1 ⊕ · · · ⊕ Ar.


Then the order of A is d2
1 . . . d2


r, hence
√


|A| = d1 . . . dr.
Let Gi be the inverse image of Ai in G; note that Gi commutes with Gj


for any i 6= j.


Let u1, . . . , u2r be indeterminates, and set K
def
= k(u1, . . . , u2r). Identify


Z with µn by sending z into ζn. Consider the boundary map


∂i : H1(K,Ai) −→ H2(K,Z)


obtained from the exact sequence


1 −→ Z −→ Gi −→ Ai −→ 1.


Claim. There exists a class ξi ∈ H1(K,Ai) such that ∂iξi is the class of the
cyclic algebra (ui, ur+i)di


in Br K.
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To see that part (a) follows from the claim, consider the commutative
diagram


1 // Zr //


m


²²


∏
i Gi


//


²²


∏
i Ai


//


²²


1


1 // Z // G // A // 1


in which m is defined by the formula m(z1, . . . , zr) = z1 . . . zr, and the
homomorphism


∏
i Gi → G is induced by the inclusions Gi ⊆ G. This


yields a commutative diagram


∏
i H


1(K,Ai)


Q


i ∂i
//


²²


// H2(K,Z)r


m∗


²²


H1(K,A)
∂


// H2(K,Z)


in which the map m∗ is given by m∗(α1, . . . , αr) = α1 . . . αr. So, if ξ ∈
H1(K,A) is the image of (ξ1, . . . , ξr) then ∂ξ is the class of the product


(u1, ur+1)d1
⊗K (u2, ur+2)d2


⊗K · · · ⊗K (ur, u2r)dr ,


whose index is d1 . . . dr. Hence ind(G,Z) ≥ d1 . . . dr =
√


|A|, as needed.
We now proceed with the proof of the claim. Choose a power of p, call it


d, that is divisible by the order of Z and by the order of each ai. Consider
the group Λ(d) defined by the presentation


〈x1, x2, y | xd
1 = xd


2 = yd = 1, x1x2 = yx2x1, x1y = yx1, x2y = yx2〉.


Call ρi : Λ(d) → Gi the homomorphism obtained by sending x1 to ai, x2 to


ar+i, and y to zn/di = ω(ai, ar+i).


Let ζd be a primitive d-th root of 1 in k such that ζn = ζ
n/d
d . The subgroup


〈y〉 in Λ(d) is cyclic of order d; we fix the isomorphism 〈y〉 ≃ µd so that y
corresponds to ζd. The restriction of ρi to 〈y〉 → Z corresponds to the


homomorphism µd → µn defined by α 7→ αd/di . We have a commutative
diagram


1 // µd //


α
↓


αd/di
²²


Λ(d) //


ρi


²²


(Z/dZ)2


²²


// 1


1 // µn // Gi
// Ai


// 1.


We have H1
(
K, (Z/dZ)2


)
= (K∗/K∗d)2. According to [Vel00, Example 7.2],


the image of the element (ui, ur+i) ∈ H1
(
K, (Z/dZ)2


)
is the cyclic algebra


(ui, ur+i)d; hence, if ξi is the image in H1(K,Ai) of (ui, ur+i), the image of ξi


in H2(K,µd) is the algebra (ui, ur+i)
⊗d/di


d , which is equivalent to (ui, ur+i)di
.


This concludes the proof of Lemma 8.1(a).
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We now turn to the proof of Lemma 8.1(b). Suppose |C(G)| = ph and
|A| = p2m; we want to construct a faithful representation of G of dimen-
sion pm. By [TA86, §3.1] A contains a Lagrangian subgroup L of order pm.
Denote by H the inverse image of L in G; then H is an abelian subgroup of
G of order ph+m. Since ζpe ∈ k we can embed Z in k∗ and extend this em-
bedding to a homomorphism χ : H → k∗. We claim that the representation
ρ : G → GLpm induced by χ is faithful.


It is enough to show that ρ(g) 6= id for any g ∈ G of order p, or, equiva-
lently, that ρ |〈g〉 is non-trivial for any such g. If s ∈ G consider the subgroup


Hs
def
= s〈g〉s−1 ∩ H of H, which is embedded in 〈g〉 via the homomorphism


x 7→ s−1xs. By Mackey’s formula ([Ser77, §7.3]), ρ |〈g〉 contains all the
representations of 〈g〉 induced by the restrictions χ |Hs via the embedding
above.


If g /∈ H then H1 = 〈g〉 ∩ H = {1}: we take s = 1, and we see that
ρ |〈g〉 contains a copy of the regular representation of 〈g〉, which is obviously
non-trivial.


Assume g ∈ H. Then Hs = 〈sgs−1〉 for any s ∈ G; it is enough to
prove that χ(sgs−1) 6= 1 for some s ∈ G. If χ(g) 6= 1 then we take s = 1.
Otherwise χ(g) = 1; in this case g /∈ C(G), because χ |C(G) : C(G) → k∗ is
injective. Hence the image g of g in A is different from 0, and we can find
s ∈ G such that ω(s, g) 6= 1. Then


χ(sgs−1) = χ
(
ω(s, g)g


)
= χ


(
ω(s, g)


)
χ(g) = χ


(
ω(s, g)


)
6= 1.


This concludes the of Lemma 8.1 and thus of Theorem 1.5. ♠


9. More on p-groups


In this section we will discuss some consequences of Theorem 1.5.


Example 9.1. Recall that a p-group G is called extra-special if its center Z
is cyclic of order p, and the quotient G/Z is elementary abelian. The order
of an extra special p-group G is an odd power of p; the exponent of G is
either p or p2; cf. [Rob96, pp. 145–146]. Note that every non-abelian group
of order p3 is extra-special. For extra-special p-groups Theorem 1.5 reduces
to the following.


Let G be an extra-special p-group of order p2m+1. Assume that the char-
acteristic of k is different from p, that ζp ∈ k, and ζp2 ∈ k if the exponent


of G is p2. Then ed(G; p) = ed G = pm.


Example 9.2. Let p be an odd prime and G = Cpr ⋉ Cps be the natural
semidirect product of cyclic groups of order pr and ps (in other words, Cps


is identified with the unique subgroup of C∗
pr of order ps). If s ≤ r/2 then


edk(Cpr ⋉ Cps ; p) = edk(Cpr ⋉ Cps) = ps ,


for any field k containing a primitive pth root of unity ζp.
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Proof. The center C(G) of G is the (unique) subgroup of Cpr of order ps.
Since s ≤ r/2, this subgroup is central. Thus, if ζpr ∈ k, the equality
edk G = ps is an immediate consequence of Theorem 1.5. But we are only
assuming that ζp ∈ k, so Theorem 1.5 only tells us that edk G ≥ ps. To prove
the opposite inequality, we argue as follows. Let F be the prime subfield of
k. By [Led02, Corollary to Proposition 2], edF (ζp)(G) ≤ ps. Since we are
assuming that F (ζp) ⊂ k, we conclude that edk G ≤ ps as well. ♠
Corollary 9.3. Suppose k is a base field of characteristic 6= p. If G is a
non-abelian finite p-group then ed(G; p) ≥ p.


Proof. Assume the contrary: let G be a non-abelian p-group of smallest
possible order such that ed G < p. Since G has a non-trivial center, there
exists a cyclic central subgroup Z ⊂ G. The short exact sequence


(9.4) 1 −→ Z −→ G −→ G/Z −→ 1


gives rise to the exact sequence of pointed sets


H1(K,G) −→ H1(K,G/Z)
∂K−→ H2(K,Z)


for any field extension K of our base field k. We will now consider two cases.
Case 1. Suppose the map H1(K,G) → H1(K,G/Z) is not surjective for


some K/k. Then ∂K is non-trivial, and Theorem 1.4 tells us that ed(G; p) ≥
p, a contradiction.


Case 2. Suppose the map H1(K,G) → H1(K,G/Z) is surjective for every
K/k. Then the morphism BG → B(G/Z) is isotropic, and Proposition 2.8
implies that p > ed(G; p) ≥ ed(G/Z; p). By the minimality of G, the group
G/Z has to be abelian. Consequently, [G,G] ⊂ Z is cyclic and central in G.
Since G is non-abelian, |G/C(G)| ≥ p2. Theorem 1.5 now tells us that


ed(G; p) =
√
|G|/|C(G)| + rank C(G) − 1 ≥ p ,


a contradiction. ♠


We will conclude this section by answering the following question of
Jensen, Ledet and Yui [JLY02, p. 204].


Question 9.5. Let G be a finite group and N be a normal subgroup. Is it
true that ed G ≥ ed(G/N)?


The inequality ed G ≥ ed(G/N) is known to hold in many cases; cf., e.g.,
Theorem 7.1. We will now show that it does not hold in general, even if H
is assumed to be central.


Corollary 9.6. For every real number λ > 0 there exists a finite p-group
G, with a central subgroup H ⊂ G such that ed(G/H) > λ ed G.


Proof. Let Γ be a non-abelian group of order p3. The center of Γ has order
p; denote it by C. The center of Γn = Γ × · · · × Γ (n times) is then Cn.
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Let Hn be the subgroup of Cn consisting of n-tuples (c1, . . . , cn) such that
c1 . . . cn = 1. Clearly


ed Γn ≤ n · ed Γ = np ;


see Example 9.1.
On the other hand, Γn/Hn, is easily seen to be extra-special of order


p2n+1, so ed(Γn/Hn) = pn, again by Example 9.1. Setting G = Γn and
H = Hn, we see that the desired inequality ed(G/H) > λ ed G, holds for
suitably large n. ♠


10. Spinor groups


In this section we will prove Theorem 1.7 stated in the introduction.
As usual, we will write 〈a1, . . . , an〉 for the rank n-quadratic form q given


by q(x1, . . . , xn) =
∑n


i=1 aix
2
i . Set h to be the standard hyperbolic quadratic


form given by h(x, y) = xy. (Thus h ∼= 〈1,−1〉). For each n ≥ 0 define


(10.1) hn =


{
h
⊕n/2
n , if n is even,


h
⊕(n−1/2)
n ⊕ 〈1〉, if n is odd.


Set Spinn = Spin(hn); this is the totally split spin group which appears in
the statement of Theorem 1.7. We also denote the totally split orthogonal


and special orthogonal groups by On
def
= O(hn) and SOn


def
= SO(hn).


Now, one of the hypotheses of Theorem 1.7 is that ζ4 ∈ k. Therefore we
can write Spinn as Spin(q), where


q(x1, . . . , xn) = −(x2
1 + · · · + x2


n).


Consider the subgroup Γn ⊆ SOn consisting of diagonal matrices, which
is isomorphic to µn−1


2 . Call Gn the inverse image of Γn in Spinn. It is a con-
stant group scheme over k. Denote by µ2 the kernel of the homomorphism
Spinn → SOn.


Lemma 10.2. Every Spinn-torsor over an extension K of k admits reduc-
tion of structure to Gn; i.e., the natural map H1(K,Gn) → H1(K,Spinn) is
surjective for any field extension K/k.


Proof. Let P → SpecK be a Spinn-torsor: we are claiming that the K-
scheme P/Gn has a rational point. We have P/Gn = (P/µ2)/Γn. However
P/µ2 → SpecK is the SOn torsor associated with P → SpecK, and every
SOn-torsor admits reduction of structure group to Γn. ♠


This means that the natural morphism BGn → BSpinn is isotropic; so
from Corollary 2.7 and Proposition 2.8 we get the bounds


(10.3) ed Gn − dimSpinn ≤ ed Spinn ≤ ed Gn;


cf. also [BF03, Lemma 1.9]. Of course dim Spinn = n(n − 1)/2; we need to
compute ed Gn. The structure of Gn is well understood; in particular, it is
very clearly described in [Woo89]. Recall that Spinn is a subgroup of the
group of units in the Clifford algebra An of the quadratic form −(x2


1 + · · ·+
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x2
n). The algebra An is generated by elements e1, . . . , en, with relations


e2
i = −1 and eiej + ejei = 0 for all i 6= j. The element ei is in Pinn, and


image of ei in On is the diagonal matrix with −1 as the i-th diagonal entry,
and 1 as all the other diagonal entries. The kernel of the homomorphism
Pinn → On is {±1}. (For background material on the theory of Clifford
algebras and spin modules, we refer the reader to [Che54], [FH91, §20.2]
or [Ada96]).


For any I ⊆ {1, . . . , n} write I = {i1, . . . , ir} with i1 < i2 < · · · < ir and


set eI
def
= ei1 . . . eir . The group Gn consists of the elements of An of the form


±eI , where I ⊆ {1, . . . , n} has an even number of elements. The element
−1 is central, and the commutator [eI , eJ ] is given by


[eI , eJ ] = (−1)|I∩J |.


It is clear from this description that Gn is a 2-group of order 2n, the com-
mutator [Gn, Gn] = {±1} is cyclic, and the center C(G) is given by


C(Gn) =







{±1} ≃ Z/2Z, if n is odd,


{±1,±e{1,...,n}} ≃ Z/4Z, if n ≡ 2 (mod 4),


{±1,±e{1,...,n}} ≃ Z/2Z × Z/2Z, if n is divisible by 4.


Theorem 1.5 now tells us that


ed(Gn) =







2(n−1)/2, if n is odd,


2(n−2)/2, if n ≡ 2 (mod 4),


2(n−2)/2 + 1, if n is divisible by 4.


Substituting this into (10.3), we obtain the bounds of Theorem 1.7. ♠
Remark 10.4. The same argument can be applied to Pin groups. (For the
definition of Pin groups, see, e.g., [Ada96].) Here we replace Gn the inverse
image G′


n of the diagonal subgroup of On in Pinn. One easily checks that


C(G′
n) ≃







Z/2Z, if n is even,


Z/4Z, if n ≡ 1 (mod 4),


Z/2Z × Z/2Z, if n ≡ 3 (mod 4).


This yields the following bounds on the essential dimensions of Pinn:


2⌊n/2⌋ − n(n − 1)


2
≤ edk Pinn ≤ 2⌊n/2⌋, if n 6≡ 1 (mod 4),


2⌊n/2⌋ − n(n − 1)


2
+ 1 ≤ edk Pinn ≤ 2⌊n/2⌋ + 1, if n ≡ 1 (mod 4).


for any field k of characteristic 6= 2 containing ζ4.


Remark 10.5. When n ≤ 14 the lower bound of Theorem 1.7 is negative
and the upper bound is much larger than the true value of ed Spinn. For
n = 15 and 16 our inequalities yield


23 ≤ ed Spin15 ≤ 128
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and


9 ≤ ed Spin16 ≤ 129.


When n = 16 our lower bound coincides with the lower bound (1.8) of
Reichstein–Youssin and Chernousov–Serre, while for n = 15 it is substan-
tially larger. When n ≥ 17 the exponential part of the lower bound takes
over, the growth becomes fast and the gap between the lower bound and the
upper bound proportionally small. For values of n close to 15 our estimates
are quite imprecise; it would be interesting to improve them.


Remark 10.6. The lower bounds in Theorem 1.7 hold over any field of
characteristic different from 2 (and for any form of the Spin group).


On the other hand, if we do not assume that ζ4 ∈ k, we have the following
slightly weaker upper bound


ed Spinn ≤ 2⌊(n−1)/2⌋ + n − 1


for the totally split form of the spin group in dimension n, over k. To
prove this inequality, we observe that a generically free representation of
Spinn can be constructed by taking a spin, or half-spin, representation V of
Spinn of dimension 2⌊(n−1)/2⌋, and adding a generically free representation
W of SOn. Since the essential dimension of SOn−1 is n− 1 over any field of
characteristic different from 2, there is an SOn-equivariant dominant rational
map f : W 99K X, where dim X = dim SOn +n−1. Now id×f : V ×W 99K


V ×X is a Spinn-equivariant dominant rational map V ×W . Consequently,


ed Spinn ≥ dim(V × X) − dim Spinn


= 2⌊(n−1)/2⌋ + dim SOn + n − 1 − dim Spinn


= 2⌊(n−1)/2⌋ + n − 1 ,


as claimed.


Remark 10.7. It is natural to ask whether the inequality


ed Spinn ≥ 2⌊(n−1)/2⌋ − n(n − 1)


2


can be proved by a direct application of Theorem 1.7 to the exact sequence


(10.8) 1 −→ µ2 −→ Spinn −→ SOn −→ 1


without considering the finite subgroup Gn of Spinn. The answer is “yes.”
Indeed, consider the associated coboundary map


H1(K,SOm)
∂K


// H2(K,µ2).


A class in H1(K,SOm) is represented by a m-dimensional quadratic form q
of discriminant 1 defined over K. The class of ∂K(q) ∈ H2(K,µ2) is then
the Hasse-Witt invariant of q; following Lam [Lam73], we will denote it by
c(q). (Note that since we are assuming that −1 is a square in k, the Hasse
invariant and the Witt invariant coincide; see [Lam73, Proposition V.3.20].)
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Our goal is thus to show that for every n ≥ 1 there exists a quadratic form
qn of dimension n and discriminant 1 such that c(qn) has index 2⌊(n−1)/2⌋.


If n is even this is proved in [Mer91, Lemma 5]. (Note that in this case
c(q) ∈ H2(K,µ2) is the class of the Clifford algebra of q.) If n = 2r + 1
is odd, set K = k(a1, b1, a2, b2, . . . ), where a1, b1, a2, b2, . . . are independent
variables, and define q2r+1 recursively by


q1 = 〈1〉 and q2r+1 = 〈ar, br〉 ⊕ arbr〉 ⊗ q2r−1〉.
One easily sees by induction on r that every q2r+1 has discriminant 1. More-
over, a direct computation using basic properties of the Hasse-Witt invariant
(see, e.g., [Lam73, V.3.15 and 3.16]) shows that c(q2r+1) is the class of the
tensor product (a1, b1)2⊗K · · ·⊗K (ar, br)2 of quaternion algebras. This class
has index 2r, as claimed. ♠


In summary, this approach recovers the lower bound of Theorem 1.7 in
the case where n is not divisible by 4. In the case where n is divisible by 4
Theorem 1.7 gives a slightly stronger lower bound.


To conclude this section, we will now prove similar bounds on the essential
dimensions on half-spin groups. We begin with the following simple corollary
of [CGR06, Theorem 1.1], which appears to have been previously overlooked.


Lemma 10.9. Let G be a closed (but not necessarily connected) subgroup
of GLn defined over a field k. Assume that char k = 0 and either k is
algebraically closed or G is connected. Then ed G ≤ n.


Proof. By [CGR06, Theorem 1.1], there exists a finite k-subgroup S ⊆ G
such that every G-torsor over SpecK, admits reduction of structure to S,
for any field extension K/k. This means that the morphism BS → BG is
isotropic and thus


ed G ≤ ed S ;


cf. also [BF03, Lemma 1.9]. The restriction of the representation G ⊆ GLn


to S is faithful; since S is a finite group over a field of characteristic zero, any
faithful representation of S is necessarily generically free. By Theorem 2.9,
ed S ≤ n, and hence, ed G ≤ n, as claimed. ♠
Example 10.10. Suppose G/k satisfies one of the conditions of Lemma 10.9
and the centralizer CG(G0) of the connected component of G is trivial. Then
the adjoint representation of G is faithful and Lemma 10.9 tells us that
ed G ≤ dim G. In particular, this inequality is valid for every connected
semisimple adjoint group G. (In the case of simple adjoint groups, a stronger
bound is given by [Lem04, Theorem 1.3].)


We are now ready to proceed with our bounds on the essential dimension
of half-spin groups. Recall that the half-spin group HSpinn is defined, for
every n divisible by 4, as Spinn/〈η〉, where η is an element of the center of
Spinn different from −1. (There are two such elements, but the resulting
quotients are isomorphic.)
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Theorem 10.11. (a) Suppose k is a field of characteristic 0 and ζ4 ∈ k.
Then


2(n−2)/2 − n(n − 1)


2
≤ ed HSpinn ≤ 2(n−2)/2


for any positive integer n divisible by 4.


The conditions that char k = 0 and ζ4 ∈ k are used only in the proof of
the upper bound. The lower bound of Theorem 10.11 remains valid for any
base field k of characteristic 6= 2.


Proof. The group HSpinn contains Gn/〈η〉 ≃ Gn−1, which is an extra-special


group of order 2n−1. By Example 9.1 ed(Gn/〈η〉) = 2(n−2)/2 and thus


ed HSpinn ≥ ed(Gn/〈η〉) − dimHSpinn = 2(n−2)/2 − n(n − 1)


2
,


as in the proof of Theorem 1.7.
For the upper bound notice that one of the two half-spin representations


of Spinn descends to HSpinn, and is a faithful representation of HSpinn of
dimension 2(n−2)/2. The upper bound now follows from Lemma 10.9 ♠


11. Pfister numbers


Let k be a field of characteristic not equal to 2 and write W(k) for the
Witt ring of k; see [Lam73, Chapter 2]. Let I = I(k) denote the ideal of
all even dimensional forms in the Witt ring. Then, for any integer a > 0,
Ia is generated as an abelian group by the a-fold Pfister forms [Lam73,
Proposition 1.2].


Let q be a quadratic form of rank n > 0 whose class [q] in W(k) lies in
Ia for a > 0. Define the a-Pfister number of q to be the minimum number
r appearing in a representation


q =


r∑


i=1


±pi


with the pi being a-fold Pfister forms. The (a, n)-Pfister number Pfk(a, n)
is the supremum of the a-Pfister number of q taken over all field extensions
K/k and all n-dimensional forms q such that [q] ∈ Ia(K).


We have the following easy (and probably well-known) result.


Proposition 11.1. Let k be a field of characteristic not equal to 2 and let
n be a positive even integer.


(a) Pfk(1, n) ≤ n.
(b) Pfk(2, n) ≤ n − 2.


Proof. (a) Immediate from the identity


〈a1, a2〉 = 〈1, a1〉 − 〈1,−a2〉 = ≪−a1≫−≪a2≫
in the Witt ring.
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(b) Let q = 〈a1, . . . , an〉 be an n-dimensional quadratic form over K. Re-
call that q ∈ I2(K) iff n is even and d±(q) = 1, modulo (K∗)2 [Lam73, Corol-


lary II.2.2]. Here d±(q) is the signed determinant given by (−1)n(n−1)/2d(q)
where d(q) =


∏n
i=1 an is the determinant [Lam73, p. 38].


To explain how to write q as a sum of n − 2 Pfister forms, we will tem-
porarily assume that ζ4 ∈ K. In this case we may assume that a1 . . . an = 1.
Since 〈a, a〉 is hyperbolic for every a ∈ K∗, we see that q = 〈a1, . . . , an〉 is
Witt equivalent to


≪ a2, a1 ≫ ⊕ ≪ a3, a1a2 ≫ ⊕· · · ⊕ ≪ an−1, a1 . . . an−2 ≫ .


By inserting appropriate powers of −1, we can modify this formula so that
it remains valid even if we do not assume that ζ4 ∈ K, as follows:


q = 〈a1, . . . , an〉 ≃
n∑


i=2


(−1)i≪(−1)i+1ai, (−1)i(i−1)/2+1a1 . . . ai−1≫ ♠


We do not have an explicit upper bound on Pfk(3, n); however, we do
know that Pfk(3, n) is finite for any k and any n. To explain this, let
us recall that I3(K) is the set of all classes [q] ∈ W(K) such that q has
even dimension, trivial signed determinant and trivial Hasse-Witt invari-
ant [KMRT98].


Let n be a positive integer. Let q be a non-degenerate n-dimensional
quadratic form over K whose whose signed determinant is 1. The class of
q in H1(K,On) lies in H1(K,SOn). We say that q admits a spin structure
if its class is in the image of H1(K,Spinn) into H1(K,SOn). As pointed out
in Remark 10.7, the obstruction to admitting a spin structure is the Hasse-
Witt invariant c(q). Thus, the forms in I3 are exactly the even dimensional
forms admitting a spin structure. The following result was suggested to us
by Merkurjev and Totaro.


Proposition 11.2. Let k be a field of characteristic different from 2. Then
Pfk(3, n) is finite.


Sketch of proof. Let E be a versal torsor for Spinn over a field extension L/k;
cf. [GMS03, Section I.V]. Let qL be the quadratic form over L corresponding
to E under the map H1(L,Spinn) → H1(L,On). The 3-Pfister number of qL


is then an upper bound for the 3-Pfister number of any n-dimensional form
in I3 over any field extension K/k. ♠
Remark 11.3. For a > 3 the finiteness of Pfk(a, n) is an open problem.


The goal of this section is to prove Theorem 1.9 stated in the introduction,
which says that


Pfk(3, n) ≥ 2(n+4)/4 − n − 2


7
for any field k be a field of characteristic different from 2 and any positive
even integer n. Since this is a lower bound on Pfk(3, n), we may assume,
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without loss of generality that k contains ζ4 in the proof. To simplify mat-
ters, this assumption will be in force for the remainder of this section.


For each extension K of k, denote by Tn(K) the image of H1(K,Spinn)
in H1(K,SOn). We will view Tn as a functor Fieldsk → Sets. The essential
dimension of this functor is closely related to the essential dimension of
Spinn.


Lemma 11.4. ed Spinn − 1 ≤ ed Tn ≤ ed Spinn.


Proof. In the language of [BF03, Definition 1.12], we have a fibration of
functors


H1( , µ2) Ã H1( ,Spinn) −→ Tn( ).


The first inequality then follows from [BF03, Proposition 1.13] and the sec-
ond follows from Proposition 2.8 (or [BF03, Lemma 1.9]). ♠
Lemma 11.5. Let q and q′ be non-degenerate even-dimensional quadratic
forms over K. Suppose that q admits a spin structure. Then q ⊕ q′ admits
a spin structure if and only if q′ admits a spin structure.


Proof. Immediate from the fact that I3(K) is an ideal of W (K). ♠
Let hK be the standard 2-dimensional hyperbolic form hK(x, y) = xy over


an extension K of k. For each n-dimensional quadratic form q ∈ I3(K), let
edn(q) denote the essential dimension of the class of q in Tn(K).


Lemma 11.6. Let q be an n-dimensional quadratic form over K whose class
in W (K) lies in I3(K). Then for any positive integer s


edn+2s(h
⊕s
K ⊕ q) ≥ edn(q) − s(s + 2n − 1)


2
.


Proof. Set m
def
= edn+2s(h


⊕s
K ⊕ q). Let F be a field of definition of h⊕s


K ⊕ q of
transcendence degree m, and let q̃ be an (n+2s)-dimensional quadratic form
with a spin structure over F such that q̃K is K-isomorphic to h⊕s


K ⊕q. Let X
be the Grassmannian of s-dimensional subspaces of Fn+2s which are totally
isotropic with respect to q̃; the dimension of X is precisely s(s + 2n− 1)/2.


The variety X has a rational point over K; hence there exists an inter-
mediate extension F ⊆ E ⊆ K such that tr degF E ≤ s(s + 2n − 1)/2, with
the property that q̃E has a totally isotropic subspace of dimension s. Then
q̃E splits as hs


E ⊕ q′. By Witt’s Cancellation Theorem, q′K is K-isomorphic
to q; hence edn(q) ≤ m + s(s + 2n − 1)/2, as claimed. ♠
Proof of Theorem 1.9. If n ≤ 10 then the statement is vacuous, because
then 2(n+4)/4 − n − 2 ≤ 0, so we assume that n ≥ 12. We may also assume
without loss of generality that ζ4 ∈ k. In this case W(K) is a Z/2-vector
space; it follows that the 3-Pfister number of a form q is the smallest r
appearing in an expression


q =


r∑


i=1


≪ai, bi, ci≫.
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in W(K). Choose an n-dimensional form q such that [q] ∈ I3(K) and
edn(q) = ed Tn. (Here we view q as an object in Tn(K).) Suppose that q is
equivalent in the Witt ring to


∑r
1=1 ≪ai, bi, ci≫.


Let us write a Pfister form ≪a, b, c≫ as


≪a, b, c≫ = 〈1〉 ⊕≪a, b, c≫0,


where


≪a, b, c≫0
def
= 〈ai, bi, ci, aibi, aici, bici, aibici〉.


Set


φ
def
=


r∑


1=1


≪ai, bi, ci≫0


if r is even, and


φ
def
= 〈1〉 ⊕


r∑


1=1


≪ai, bi, ci≫0


if r is odd. Then q is equivalent to φ in the Witt ring, and hence, φ ∈ I3(K).
The dimension of φ is 7r or 7r + 1, depending on the parity of r.


We claim that n < 7r. Indeed, assume the contrary. Then the dimension
of q is less than of equal to the dimension of φ, so q is isomorphic to a form
of type hs


K ⊕ φ. Thus


3n


7
≥ 3r ≥ edn(q) = ed Tn


by Lemma 11.4


≥ ed Spinn − 1 .


The resulting inequality fails for every even n ≥ 12 because, for such n,
ed Spinn ≥ n/2; see (1.8).


So we may assume that 7r ≥ n; then there is an isomorphism between the
quadratic forms φ and a form of the type h⊕s


K ⊕q. By comparing dimensions
we get the equality 7r = n + 2s when r is even, and 7r + 1 = n + 2s when
r is odd. The essential dimension of the form φ as an element of T7r(K)
or T7r+1(K) is at most 3r, while Lemma 11.6 tells us that this essential
dimension is at least ed(q) − s(s + 2n − 1)/2. From this, Lemma 11.4 and
Theorem 1.7 we obtain the chain of inequalities


3r ≥ edn(q) − s(s + 2n − 1)


2


= ed Tn − s(s + 2n − 1)


2
(11.7)


≥ ed Spinn − 1 − s(s + 2n − 1)


2


≥ 2(n−2)/2 − n(n − 1)


2
− 1 − s(s + 2n − 1)


2
.


Now suppose r is even. Substituting s = (7r − n)/2 into the inequal-
ity (11.7), we obtain


49r2 + (14n + 10)r − 2(n+4)/2 − n2 + 2n − 8


8
≥ 0.
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We interpret the left hand side as a quadratic polynomial in r. The constant
term of this polynomial is negative for all n ≥ 8; hence this polynomial has
one positive real root and one negative real root. Denote the positive root
by r+. The above inquality is then equivalent to r ≥ r+. By the quadratic
formula


r+ =


√
49 · 2(n+4)/2 + 168n − 367 − (7n + 5)


49
≥ 2(n+4)/4 − n − 2


7
.


This completes the proof of Theorem 1.9 when r is even. If r is odd then
substituting s = (7r+1−n)/2 into (11.7), we obtain an analogous quadratic
inequality, whose positive root is


r+ =


√
49 · 2(n+4)/2 + 168n − 199 − (7n + 12)


49
≥ 2(n+4)/4 − n − 2


7
,


and Theorem 1.9 follows. ♠
b
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