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Abstract


In [O’S], the level and sublevel of composition algebras are studied, wherein these
quantities are determined for those algebras defined over local fields. In this paper,
the level and sublevel of composition algebras, of dimension 4 and 8 over rational
function fields over local non-dyadic fields, are determined completely in terms of the
local ramification data of the algebras. The proofs are based on the “classification”
of quadratic forms over such fields, as is given in [PS1].


1 Introduction


The level and sublevel of composition algebras over local and global fields can be deter-
mined, cf. [Le, Proposition 3] and [O’S, Proposition 3.15]. Since the level of a non-dyadic
local field is equal to the level of its residue field, cf. [L, Chap. 6, Corollary 2.6], the level
of a composition algebra over an extension of such a field is less than or equal to 2. In
particular, the level of octonion algebras over K(t), where K is a local field of residue char-
acteristic not 2, is either 1 or 2. In [PS1], Parimala and Suresh gave a full classification of
the octonion algebras over K(t), and indeed more generally over K(C), where K is a local
field of residue characteristic not 2 and C is a smooth projective curve over K. Using this
classification, together with some results in [O’S], we will describe exactly the classes of
octonion algebras over K(t) of level 1 and 2. For the sake of completeness, we also consider
the level of quaternion algebras.


Let F be a field of characteristic different from 2. A unital, not necessarily associative, F -
algebra C is a composition algebra if it carries a non-degenerate quadratic form q : C → F
which allows composition, i.e. q(x)q(y) = q(xy), cf. [J]. An important theorem of Hurwitz,
cf. [J, p. 425], shows that the dimension of a composition algebra is necessarily equal
to 1, 2, 4 or 8. The composition algebras of dimension 2 are exactly the quadratic étale
F -algebras, while those of dimension 4 are precisely the quaternion algebras, and those of
dimension 8 the octonion algebras.
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Let C be a composition algebra over F with quadratic form q, and associated bilinear form
bq(x, y) := q(x + y) − q(x) − q(y). The map


: C → C; x 7→ x := bq(x, 1) · 1 − x


defines an involution on C. It follows that


q(x) · 1 = xx = xx.


The quadratic form NC(x) := xx is called the the norm form of C.


A composition algebra that is not division is said to be split. A composition algebra is
division if and only if its norm form is hyperbolic. Two composition algebras are isomorphic
if and only if their norm forms are isometric, cf. [J, 7.6, Exercises 2,3]. We call the quadratic
form TC(x) := 1


2
bq(x


2, 1) · 1 the trace form of C.


With respect to the standard basis of C, the norm and trace forms have the following
diagonalisations


NC ∼= 〈1〉 ⊥ −TP and TC ∼= 〈1〉 ⊥ TP .


The above form TP is called the pure trace form of C. If C is the quaternion algebra
(


a,b
F


)


(with F -basis {1, i, j, ij}, where i2 = a and j2 = b), we have that


NC ∼= 〈1,−a,−b, ab〉 and TC ∼= 〈1, a, b,−ab〉.


Alternatively, if C is the octonion algebra
(


a,b,c
F


)


(with F -basis {1, i, j, ij, e, ie, je, (ij)e},
where i2 = a, j2 = b and e2 = c), we have that


NC ∼= 〈1,−a,−b, ab,−c, ac, bc,−abc〉 and TC ∼= 〈1, a, b,−ab, c,−ac,−bc, abc〉.


Definition 1.1. Let A be any F -algebra. The level of A, denoted s(A), is the least integer
n such that −1 is a sum of n squares in A. If no such integer exists, we say that s(A) = ∞.


The sublevel of A, denoted s(A), is the least positive integer n such that 0 is a sum of n+1
squares in A. If no such integer exists, we say that s(A) = ∞.


It readily follows from these definitions that s(A) ≤ s(A). In [O’S], the first author studied
the level and sublevel of composition algebras. We recall the following:


Proposition 1.2. Let C be a composition algebra over F .


(a) If −1 ∈ F ∗2, then s(C) = s(C) = 1.


(b) If −1 6∈ F ∗2, then s(C) = 1 if and only if TC is isotropic.


(c) If −1 6∈ F ∗2, then s(C) = 1 if and only if TC or 2 × TP is isotropic.


Proof. (a) is trivial; (b) and (c) follow from [O’S, Proposition 3.12] and [O’S, Theorem
3.5].
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2 Exact sequences from Galois cohomology.


We recall some of the basic facts from the theory of quadratic forms. We refer to the
standard books, [L] and [S], for further details and proofs.


As above, F is a field of characteristic not equal to 2. A (regular) quadratic form ϕ over
F is said to be isotropic if there exists a non-zero vector x such that ϕ(x) = 0. Otherwise,
we say that ϕ is anisotropic over F . A 2-dimensional isotropic form is isometric to the
quadratic form 〈1,−1〉, which is called the hyperbolic plane. A quadratic form is hyperbolic
if it is isometric to an orthogonal sum of hyperbolic planes. Since the characteristic of F
is not 2, all quadratic forms can be represented by diagonal matrices. The value set of a
quadratic form ϕ, denoted DF (ϕ), is the set of elements of F ∗ which are “represented by
ϕ”, i.e. DF (ϕ) = {α ∈ F ∗ | there exists x ∈ V with ϕ(x) = α}.
Two quadratic forms that become isometric after the addition of a number of hyperbolic
planes are Witt equivalent. The Witt equivalence classes of quadratic forms form a ring,
called the Witt ring of F and denoted W (F ). The addition is given by the orthogonal sum
and the multiplication by the Kronecker product of the matrices representing the forms.
The classes of forms of even dimension constitute the fundamental ideal I(F ) in W (F ).
The ideal I(F ) is generated by the forms 〈1, α〉, α ∈ F ∗. These forms 〈1, α〉 are called
1-fold Pfister forms. The higher powers of the fundamental ideal, In(F ), are additively
generated by the n-fold Pfister forms,


〈〈α1, . . . , αn〉〉 := 〈1, α1〉 ⊗ · · · ⊗ 〈1, αn〉.


Pfister forms have very special properties. They are isotropic if and only if they are
hyperbolic. Moreover, a Pfister form π is a multiplicative form, i.e. DF (π) is a multiplicative
subgroup of F ∗.


Every Pfister form π is of type 〈1〉 ⊥ π′, where (the isometry class of) the quadratic form π′


is known as the pure subform of π. We will invoke the following well-known fact concerning
Pfister forms (cf. [S, Chap. 4, Theorem 1.4]):


Lemma 2.1. Let π be an anisotropic n-fold Pfister for m over F , and let π′ be its pure
subform. Then β ∈ DF (π′) i f and only if π ∼= 〈〈β, β2, . . . , βn〉〉 for suitable βi ∈ F ∗.


Corollary 2.2. Let F be a field, −1 6∈ F ∗2. Let C be a quaternion algebra, respectively an
octonion algebra, over F . Then s(C) = 1 if and only if C ∼=


(−1,b
F


)


, respectively C ∼=
(−1,b,c


F


)


.


Proof. Since i2 = −1 for C ∼=
(−1,b


F


)


or
(−1,b,c


F


)


, we only have to prove the converse.


Since −1 /∈ F ∗2, Proposition 1.2 implies that −1 ∈ DF (TP ), whereby 1 ∈ DF (−TP ). If
C is a quaternion algebra, respectively an octonion algebra, the above lemma yields that
the norm form is 〈1, 1,−b,−b〉, respectively 〈1, 1,−b,−b,−c,−c, bc, bc〉, for some b, c ∈ F ∗.
Since composition algebras are, up to isometry, determined by their norm forms, it follows
that C is isomorphic to


(−1,b
F


)


, respectively
(−1,b,c


F


)


.
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Let K denote a non-dyadic local field. We will invoke the following exact sequences, which
essentially yield a classification of the 2- and 3-fold Pfister forms over the rational function
field K(t).


0 → I2(K) → I2(K(t))/I3(K(t))
Q


∂2,x→
∏


x∈P1
K


κ(x)∗/κ(x)∗2
Q


Nκ(x)/κ→ K∗/K∗2 → 1 (ES1)


and


0 → I3(K(t))
⊕∂2,x→ ⊕x∈P1


K
I2(κ(x))


P


→ I2(K) → 0 (ES2)


where x runs over the closed points of P1
K , and κ(x) is the residue field of the discrete


valuation vx associated to x. The map ∂2,x sends a quadratic form over K(t) to its second
residue form over κ(x).


Both exact sequences are obtained from Galois cohomology. They are special cases of the
sequence


0 → H i(K, Z/2Z) → H i(K(t), Z/2Z) →
⊕


x∈P1
K


H i−1(κ(x), Z/2Z) → H i−1(K, Z/2Z) → 0,


cf. [Se, page 122].


In formulating the exact sequences (ES1) and (ES2), we made use of the isomorphism
I i(K(t))/I i+1(K(t)) ∼= H i(K(t), Z/2Z). For i = 1, this identification follows from Kummer
theory. A well-known theorem of Merkurjev gives the isomorphism in the case where i = 2,
with Rost establishing the cases where i = 3 and 4. (For all i, the isomorphism corresponds
to the Milnor conjecture, as established by Voevodsky.) These important results also yield,
in light of the Arason-Pfister main theorem, that I3(K) = 0 and I4(K(t)) = 0. In (ES1),
we additionally identified I(K(t))/I2(K(t)) with κ(x)∗/κ(x)∗2. In (ES2), identifying the
group of order 2, I2(κ(x)), with Z/2Z, allows one to define the map


∑


as addition in
Z/2Z.


The exact sequence (ES1) also describes the 2-torsion part of the Brauer group of K(t)
since H2(F, Z/2Z) ∼= 2Br(F ), with the isomorphism given by the map (a, b) 7→


(


a,b
F


)


,
between the generators of both groups. (This fact is a reformulation of the aforementioned
theorem of Merkurjev.) After this identification, the sequence becomes


0 → 2Br(K) → 2Br(K(t))
Q


∂x→
∏


x∈P1
K


κ(x)∗/κ(x)∗2
Q


Nκ(x)/κ→ K∗/K∗2 → 1. (ES3)


The morphisms ∂x now correspond to the ramification maps in the points x, which are
defined on the generators by


∂x


(


f, g


K(t)


)


= (−1)v(f)v(g)


(


f v(g)


gv(f)


)


mod κ(x)∗2,


with v the normalized discrete valuation on K(t) corresponding to the point x ∈ P1
K .


It follows from a theorem of Saltman, cf. [PS1, Corollary 2.2], that all the elements of


2Br(K(t)) are of index ≤ 4, so the division algebras of exponent 2 over K(t) are quaternion
or biquaternion algebras.
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3 The level of composition algebras over K(t), where


K is a local non-dyadic field.


Throughout this section, we let K denote a non-dyadic local field, i.e. a finite extension
of a p-adic field, with residue field Fq, or a Laurent series field over Fq, where q = ps and
p 6= 2. The uniformizing element, for the non-dyadic valuation on K, is denoted by π.
We recall that if ε is a non-square unit in the valuation ring, then {1, π, ε, επ} represent


all square classes in K. As a consequence, the quaternion division algebra
(


π,ε
K(t)


)


is the


unique non-trivial element in 2Br(K).


We will proceed to give explicit results on the level and sublevel of composition algebras C
over K(t). As was mentioned previously, both the level and sublevel of these algebras are ≤
2. Also, in the case of commutative composition algebras, i.e. the one and two dimensional
algebras, the level and sublevel are equal. If C = K(t), then s(C) = s(K) = s(Fq), so the
level is equal to 1 if and only q ≡ 1 mod 4. For C a quadratic extension of K(t), the same
holds true excepting the case where C = K(


√
−1)(t), which is clearly always of level 1.


So we only have to consider the cases of quaternion and octonion algebras over K(t). We
start with the latter.


Theorem 3.1. Let K be a local non-dyadic field such that −1 6∈ K∗2.


(a) The sublevel of an octonion algebra O over K(t) is equal to 1.


(b) The level of an octonion algebra O over K(t) is equal to 2 if and only if there is an
x ∈ P1


K such that K(
√
−1) ⊂ κ(x) and ∂2,x(NO) 6= 0.


Proof. (a) The quadratic form 2×NO is a 4-fold Pfister form over K(t). Since I4(K(t)) = 0,
2×NO is hyperbolic. The 14-dimensional subform −2×TP is therefore isotropic, whereby
s(O) = 1 by proposition 1.2 (c).


(b) Assume firstly that for some x ∈ P1
K , K(


√
−1) ⊂ κ(x) and ∂2,x(NO) 6= 0 ∈ Z/2Z. This


means that ∂2,x(〈1〉 ⊥ −TP ) is a non-trivial element in I2(κ(x)). Thus, we have that


∂2,x(〈1〉 ⊥ −TP ) ∼=κ(x) 〈1,−εx,−πx, εxπx〉,


where εx is a non-square unit and πx is a uniformizing element in κ(x).


We consider the form


NO ⊗K(t) K(
√
−1)(t) ∼= (〈1〉 ⊥ −TP ) ⊗K(t) K(


√
−1)(t).


Since K(
√
−1) ⊂ κ(x), x is not equal to the point at infinity in P1


K , so it corresponds
to an irreducible polynomial p(t) ∈ K[t]. This irreducible polynomial p(t) factorises over
K(


√
−1) into two polynomials, p1(t) and p2(t), each of degree [κ(x) : K(


√
−1)]. So there


are two closed points y1, y2 ∈ P1
K(


√
−1)


above x. For both points, we have that


∂2,yi
((〈1〉 ⊥ −TP ) ⊗K(t) K(


√
−1)(t)) = 〈1,−εx,−π, εxπ〉 ⊗κ(x) κ(yi)
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is anisotropic over κ(yi), since κ(yi) = κ(x) for i = 1, 2. It follows from the injectivity
of ⊕∂2,x in the exact sequence (ES2) (over the field K(


√
−1)(t)) that (〈1〉 ⊥ −TP ) ⊗


K(
√
−1)(t) ∼= (〈1〉 ⊥ TP )⊗K(


√
−1)(t) is anisotropic. Hence TO


∼= 〈1〉 ⊥ TP is anisotropic
over K(t), implying that s(O) 6= 1 by Proposition 1.2 (b), whereby s(O) = 2.


Assume now that for all closed points x ∈ P1
K such that ∂2,x(NO) 6= 0, one has that


K(
√
−1) 6⊂ κ(x). We have to show that s(O) = 1.


Let S = {x ∈ P1
K | ∂2,x(NO) 6= 0}. Then, since −1 is not a square in κ(x), for all x ∈ S,


∂2,x(〈1〉 ⊥ −TP ) ∼=κ(x) 〈1, 1,−πx,−πx〉,


where πx is a uniformizing element in κ(x). Again, we consider the form


(〈1〉 ⊥ −TP ) ⊗K(t) K(
√
−1)(t).


We have the following exact diagram


0 → I3(K(t)) → ⊕x∈P1
K
I2(κ(x))


P


→ I2(K) → 0


↓ ↓ ↓
0 → I3(K(


√
−1)(t)) → ⊕y∈P1


K(
√


−1)(t)
I2(κ(y))


P


→ I2(K(
√
−1)) → 0,


where the second vertical arrow is defined by ϕ 7→ ⊕y lying over xϕ ⊗κ(x) κ(y). For all y ∈
P1


K(
√
−1)


lying over a point x 6∈ S, ∂2,y(〈1〉 ⊥ −TP ⊗K(t) K(
√
−1)(t)) = 0, since ∂2,x(〈1〉 ⊥


−TP ) = 0. For all y ∈ P1
K(


√
−1)


lying over a point x ∈ S, we have that


∂2,y(〈1〉 ⊥ −TP ⊗K(t) K(
√
−1)(t)) = 〈1, 1,−πx,−πx〉 ⊗κ(x) κ(y) = 0,


since
√
−1 ∈ κ(y). So ∂2,y(〈1〉 ⊥ −TP ⊗K(t) K(


√
−1)(t)) is trivial for all y ∈ P1


K(
√
−1)


. The


injectivity of ⊕∂2,y in the second line of the exact diagram implies that (〈1〉 ⊥ −TP )⊗K(t)


K(
√
−1)(t) is hyperbolic over K(


√
−1)(t). Hence, we obtain that 1 ∈ DK(t)(−TP ) (cf. [S,


Chap. 2, Theorem 5.2]). Lemma 2.1 thus implies that O ∼=
(−1,b,c


F


)


, and consequently that
s(O) = 1.


Given an octonion algebra over K(t), Theorem 3.1 shows how to determine its level; namely
by calculating the “ramification” of the norm form of the algebra. For non-dyadic local
fields K, the octonion algebras over K(t) are completely classified. One can use that
classification, together with Theorem 3.1, to construct examples of octonion algebras with
prescribed level. We recall the following result from [PS1]:


Theorem 3.2. [PS1, Theorem 3.9] Let K be a non-dyadic local field. Then the elements
of I3(K(t)) are i n one to one correspondence with the 3-fold Pfister forms.


Proof. Theorem 3.9 in [PS1] states that the elements of H3(K(t), Z/2Z) are in one to one
correspondence with the symbols (f) · (g) · (h). As was previously mentioned, the group
I3(K(t)) can be identified with H3(K(t), Z/2Z), and the 3-fold Pfister forms correspond
with the symbols under this identification.
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It follows that the elements of I3(K(t)) are in one to one correspondence with the isomor-
phism classes of octonion algebras over K(t). Moreover, the exact sequence (ES2) tells us
that the elements in I3(K(t)) can be described as the set of functions


C(P1
K) := {f : P1


K → Z/2Z | f(x) = 0 for almost all x,
∑


x


f(x) = 0}.


So there is a bijection between C(P1
K) and the isomorphisms classes of octonions over K(t).


This bijection is given by
f 7→ Of ,


with Of the octonion algebra such that ∂2,x(NOf
) = f(x) ∈ Z/2Z. Theorem 3.1 can now


be restated as follows:


Theorem 3.3. Let K be a non-dyadic local field. The level of an octonion algebra Of over
K(t), f ∈ C(P1


K), is equal to 1 if and only if
√
−1 /∈ κ(x) for all x such that f(x) 6= 0.


Proof. This follows immediately from Theorem 3.1 (b).


Examples 3.4. Theorems 3.1 and 3.3 imply the existence of octonion algebras over K(t)
of level 1, and of level 2. We will use them to obtain families of examples for both cases.


Let S be a set containing an even number of closed points, xi ∈ P1
K , i = 1, . . . 2n, such


that κ(xi) is an unramified extension of odd degree over K (for example, we can take S to
be any set of an even number of K-rational points in P1


K). The following algebras O are
octonion division algebras of level 1:


O =











(


−1,
Q2n


i=1 pi,π


K(t)


)


if ∞ 6∈ S,
(


−1,
Q2n


i=2 pi,π


K(t)


)


if x1 = ∞ ∈ S,


where pi is the irreducible polynomial corresponding the point xi, if xi 6= ∞. For both
definitions of O , ∂2,xi


(NO) = 〈1, 1, π, π〉 ⊗K κ(xi) is an anisotropic form over κ(xi) for all
i, since the hypotheses on the xi yield that −1 is not a square in κ(xi) and that π is a
uniformizing element in κ(xi). For all the other points, x ∈ P1


K , ∂2,x(NO) = 0.


To obtain examples of octonion division algebras of level 2, let x be a closed point in P1
K


such that κ(x) is an unramified extension of K containing K(
√
−1). Let px(t) be the


irreducible polynomial associated to x. Choose x so that a root γx of px(t) is a non-square
unit in the discrete valuation ring of κ(x). Then theorem 3.1 implies that the algebra


O =


(


π, px, t


K(t)


)


is an octonion division algebra of level 2, since the hypotheses on x imply that ∂2,x(NO) =
〈1,−π,−γx, πγx〉 is an anisotropic quadratic form over κ(x). We note that there are in-
finitely many x ∈ P1


K satisfying the above hypotheses, since there are infinitely many
unramified extensions of K containing K(


√
−1).
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For example, px = (t2 − 2t + 2) ∈ Q3(t) corresponds to a point of degree 2 in P1
Q3


with
residue field Q3(i + 1) = Q3(i), where i2 = −1. The root i + 1 of px is a unit for the 3-adic
valuation on Q3(i), but it is non-square, since i + 1 is not a square in F9 = F3(i). By the
above observations, the algebra


(


3, t2 − 2t + 2, t


Q3(t)


)


is an octonion division algebra of level 2.


We now consider the case of quaternion algebras. If we identify I2(F )/I3(F ) as the two
component of the Brauer group, via Merkurjev’s theorem, then (ES3) shows that every
quaternion division algebra H over K(t) is “almost” defined by local data, namely by its
ramification data, i.e. the non-trivial residues ∂x(H). Theorem 3.6 shows how the level
and the sublevel of a quaternion algebra H depend on this local data.


Definition 3.5. Let H be a quaternion algebra over K(t). The ramification data of H is
the set RH = {αx ∈ κ(x)∗/κ(x)∗2 | αx = ∂x(H) 6≡ 1 mod κ(x)∗2}. The ramification locus
of H is the set SH = {x ∈ P1


K | αx ∈ RH}. The exact sequence (ES3) tells us that SH is a
finite set. (We will also use the term “ramification data” to refer to the couple (SH , RH).)


In addition, we will employ the following subset of the ramification locus, S−1
H = {x ∈ SH |


−1 6∈ κ(x)∗2}.


Theorem 3.6. Let K be a non-dyadic local field such t hat −1 6∈ K∗2.


(a) The level of a quaternion algebra H over K(t), with ramification data RH , is equal to
2 if and only if there is an x ∈ SH such that αx 6≡ −1 mod κ(x)∗2.


(b) The sublevel of a quaternion algebra H over K(t) is equal to 2 if and only if there is
an x ∈ S−1


H such that αx 6≡ −1 mod κ(x)∗2.


Proof. (a) In light of Corollary 2.2, we have to show that K(t)(
√
−1) is not a splitting


field for H if and only if there is a point x ∈ SH with αx 6≡ −1 mod κ(x)∗2.


Let x ∈ SH with αx 6≡ −1 mod κ(x)∗2. Consider the exact sequence (ES3) after extending
from K to K(


√
−1). We claim that for every point y in P1


K(
√
−1)


lying over x, we have


∂y(H ⊗K(t) K(t)(
√
−1)) = αx 6≡ 1 ∈ κ(y)∗/κ(y)∗2.


If this is true, H is not split over K(t)(
√
−1), proving the “if” part of the statement.


Proof of the claim. If
√
−1 ∈ κ(x), the claim holds since there are two points y1, y2 over


x with residue fields κ(y1), κ(y2) equal to κ(x). If
√
−1 6∈ κ(x), then, by assumption, the


square class of αx, being non-trivial and not equal to that of −1, is not a unit in κ(x), and
hence must be the class of a uniformising element πx ∈ κ(x). For y ∈ P1


K(
√
−1)


lying over x


we have κ(y) = κ(x)(
√
−1). Since κ(x)(


√
−1) is an unramified quadratic extension of κ(x)
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(the residue fields being non-dyadic fields), it follows that πx is not a square in κ(x)(
√
−1)


either.


We now assume that for all x ∈ SH , αx ≡ −1 mod κ(x)∗2. The element ∂y(H ⊗K(t)


K(t)(
√
−1)) can only be non-trivial for points y ∈ P1


K(
√
−1)


lying above a point x ∈ SH .


Since −1 6∈ κ(x)∗2 by assumption, it follows that for all points x ∈ SH , there is one
point y lying over x, with residue field κ(y) = κ(x)(


√
−1). But for such y, ∂y(H) ≡


αx ≡ −1 mod κ∗2
y ≡ 1 mod κ∗2


y , implying that ∂y(H ⊗K(t) K(t)(
√
−1)) is trivial for all


y ∈ P1
K(


√
−1)


. The exact sequence (ES2) (viewed over K(
√
−1)) implies that


(1) H ⊗K(t) K(t)(
√
−1) ∼= M2(K(t)(


√
−1))


or (2) H ⊗K(t) K(t)(
√
−1) ∼=


(


π,α
K(


√
−1)


)


⊗K(
√
−1) K(


√
−1)(t),


where
(


π,α
K(


√
−1)


)


is the unique quaternion division algebra over K(
√
−1). If (1) holds, it


follows that K(t)(
√
−1) is a splitting field of H , whereby s(H) = 1, proving part (a). We


will show that the other alternative, (2), leads to a contradiction.


By local class field theory (cf. [N, Chap. 5, Corollary 1.2]), we may choose α such
that NK(


√
−1)/K(α) = −1. It follows, by a well-known formula (cf. [T, (3.2)]), that the


corestriction of H ⊗K(t) K(t)(
√
−1) is equal to


(


π,−1
K(t)


)


. However,
(


π,−1
K(t)


)


is non-trivial in


the Brauer group of K(t), whereas the corestriction of H ⊗K(t) K(t)(
√
−1) is trivial, since


the composition, cor ◦ res, is the zero map. This completes the proof of (a).


(b) While the following argument is similar in nature to that employed in (a), it is more
efficient to invoke the exact sequence (ES1) in this case.


Firstly, assume that for all x ∈ S−1
H , αx ≡ −1 mod κ(x)∗2. For all x ∈ SH , consider


the second residue form ∂2,x(2 × NH) = 2 × ∂2,x(NH) ∈ I(κ(x)). If x ∈ S−1
H , then, by


hypothesis, we have that 2 × ∂2,x(NH) ∼ 2 × 〈1, 1〉 ∼ 0 in W (κ(x)). If x ∈ SH \ S−1
H , then


2 × ∂2,x(NH) ∼ 0, since it contains the subform 〈1, 1〉. As all the second residue forms of
2 × NH are trivial, the exact sequence (ES1) implies that the 3-fold Pfister form 2 × NH


is hyperbolic. Thus 2 × TP is isotropic, since 2 × (−TP ) is a subform of 2 × NH , with
dim 2 × (−TP ) > 1


2
dim 2 × NH . Hence, s(H) = 1 by Proposition 1.2 (c).


To prove the converse, we assume that there is an x ∈ S−1
H such that αx 6≡ −1 mod κ(x)∗2.


We have to show that s(H) must be 2. The existence of x ∈ S−1
H implies that the second


residue form ∂2,x(2 × NH) is Witt equivalent to the 2-fold Pfister form 〈1, 1, uπx, uπx〉, for
some unit u ∈ κ(x). Since


√
−1 6∈ κ(x)∗, it follows that this form is the unique anisotropic


2-fold Pfister form over κ(x). So 2×NH has a non-trivial second residue form, and therefore
cannot be hyperbolic. Arguing as above, we see that 2×TP is anisotropic. Moreover, part
(a) of the theorem implies that TH is also anisotropic. Invoking Proposition 1.2, we obtain
that s(H) = 2. This proves part (b) of the theorem.


Corollary 3.7. Let K be a non-dyadic local field such that −1 6∈ K∗2.
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(a) There exist quaternion division algebras H over K(t) with s(H) = 1 (whereby s(H) =
1).


(b) There exist quaternion division algebras H over K(t) with s(H) = 2 and s(H) = 1.


(c) There exist quaternion division algebras H over K(t) with s(H) = 2 (whereby s(H) =
2).


Proof. (a) Any quaternion algebra of the form
(


−1,p(t)
K(t)


)


, where p(t) is an irreducible poly-


nomial such that −1 6≡ 1 mod (K[t]/(p(t)))∗2, is a quaternion division algebra of level 1,
and therefore also of sublevel 1.


(b) Let L/K be any finite unramified extension of K containing
√
−1. Then, for some


irreducible polynomial q(t), L ∼= K[t]/(q(t)), and −1 ≡ 1 mod (q(t)). Let x be the closed


point in P1
K associated to q(t). The quaternion algebra H =


(


π,q(t)
K(t)


)


is a quaternion


division algebra, since ∂x(H) = π 6≡ 1 mod κ(x)∗2. As q(t) is of even degree, it follows that
SH = {x}. Theorem 3.6 thus implies that s(H) = 2 and s(H) = 1.


(c) We first note that it is possible to construct finite sets S ⊂ P1
K and R = {αy ∈


κ(y)∗/κ(y)∗2 | y ∈ S, αy 6≡ 1 mod κ(y)∗2} such that for some x ∈ S, −1 6∈ κ(x)∗2 and
αx 6≡ −1 mod κ(x)∗2. In addition, we may assume that such S and R correspond to the
ramification data of some element in 2Br(K(t)), in accordance with the exact sequence
(ES3). If this element in the Brauer group is the class of a quaternion division algebra,
Theorem 3.6(b) implies that it must be a quaternion division algebra of sublevel 2, as
desired.


Now assume that the element in the Brauer group is not the class of a quaternion division
algebra over K(t). Hence, it is the class of a biquaternion division algebra over K(t),
say H1 ⊗K H2, where H1 and H2 are both quaternion division algebras. Let y ∈ S.
Since ∂y(H1) · ∂x(H2) = ∂x(H1 ⊗K H2) 6≡ 1 mod κ(x)∗2, it follows that either ∂x(H1) 6≡
−1 mod κ(x)∗2 or ∂x(H2) 6≡ −1 mod κ(x)∗2. Thus, Theorem 3.6(b) implies that s(H1) = 2
or s(H2) = 2.


Remark 3.8. Actually, it is possible to describe all quaternion division algebras over K(t)
of level 1 explicitly. From Theorem 3.6(a), it follows that there is a correspondence between
quaternion division algebras over K(t) of level 1 and ramification data (S, R) such that for
all x ∈ S, −1 /∈ κ(x)∗2 and for all αx ∈ R, αx ≡ −1 mod κ(x)∗2. The exact sequence (ES3)
implies that for such data (S, R),


∑


x∈S deg x ∈ 2Z holds, because 1 ≡
∏


x∈S Nκ(x)/K(−1) ≡
(−1)


P


x∈S deg x mod K∗2.


The exact sequence (ES3) also implies that for every couple (S, R) with these properties,
there are up to isomorphism two different division algebras of exponent 2 having (S, R) as
ramification data. This is the case since 2Br(K) is a group of order 2.


These division algebras can be explicitly described, and it turns out that they are both
quaternion algebras. Let S ⊂ P1


K be such that for all x ∈ S, −1 6∈ κ(x)∗2, and such that
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∑


x∈S deg x ∈ 2Z. Let Sf := S \ {∞} be the set of finite points in S. Let px(t) be the
monic irreducible polynomials corresponding to x ∈ Sf . Then, it is easy to check that the
quaternion division algebras


(


−1,
Q


x∈S p(x)


K(t)


)


and
(


−1,π
Q


x∈S p(x)


K(t)


)


in the case where ∞ 6∈ S,


and


(


−1,−
Q


x∈Sf
p(x)


K(t)


)


and


(


−1,−π
Q


x∈Sf
p(x))


K(t)


)


in the case where ∞ ∈ S,


have ramification locus S and, for all x ∈ S, the residue αx ≡ −1 mod κ(x)∗2. Hence these
algebras represent all quaternion division algebras of level 1.


It is not possible to similarly offer an exhaustive list of all the quaternion division algebras
over K(t) of level 2. This is the case since the ramification data, of the type given in
Theorem 3.6(a), define division algebras in 2Br(K), which need not to be quaternion
algebras, but can instead be biquaternion algebras. (In [KRTY], the relation between
the ramification data and the index of division algebras over rational function fields is
investigated. There are some partial results in that paper, but a criterion for the index to
be equal to 2, in terms of the ramification data, is not available, as is also the case when
K is a local field.)


Still, it is possible, using Theorem 3.6, to list some families of quaternion division algebras
over K(t) of level 2.


Let x ∈ P1
K be such that κ(x)/K is an extension with odd ramification index. If x is a


finite point and p(t) the corresponding monic irreducible polynomial in K[t], then for every
f(t) ∈ K[t], with gcd(p(t), f(t)) = 1,


(


π, p(t)f(t)


K(t)


)


is a quaternion division algebra of level 2.


If x = ∞, then for f(t) a polynomial of odd degree in K[t],
(


π, f(t)


K(t)


)


is also a quaternion division algebra of level 2. Both cases follow from Theorem 3.6, since
the residue map in x applied to such algebras equals π 6≡ −1 mod κ(x)∗2. Moreover, if we
take x such that −1 6∈ κ(x)∗2, then the sublevel of these algebras also equals 2. On the
other hand, it follows from the proof of Corollary 3.7(b) that Theorem 3.6 also implies that


the algebra
(


π,t2+1
K(t)


)


is a quaternion division algebra of level 2 and sublevel 1. The latter


can be seen directly by taking α = ti and β = i + k ∈
(


π,t2+1
K(t)


)


, whereby


α2 + β2 = πt2 + π − π(t2 + 1) = 0.
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Although our prime interest in this paper was the level and sublevel of composition algebras,
the results we obtained do raise the question as to what can be said about the level and
sublevel of biquaternion division algebras over K(t). For the sublevel, the fact that all
quadratic forms over K(t) of dimension > 8 are isotropic (cf. [PS2]) immediately yields


Proposition 3.9. The sublevel of a biquaternion algebra over K(t) is equal to 1.


Proof. Consider the biquaternion algebra D =
(


a1,b1
K(t)


)


⊗K(t)


(


a2,b2
K(t)


)


, with standard basis


{x ⊗ y | x ∈ {1, i1, j1, k1}, y ∈ {1, i2, j2, k2}}. Consider


P = {α1(i1⊗1)+α2(j1⊗1)+α3(k1⊗i2)+α4(k1⊗j2)+α5(k1⊗k2) ∈ D | α1, . . . , α5 ∈ K(t)}.


For p ∈ P ,


p2 = (a1α
2
1 + b1α


2
2 − a1b1a2α


2
3 − a1b1b2α


2
4 + a1b1a2b2α


2
5)(1 ⊗ 1).


Since 2× 〈a1, b1,−a1b1a2,−a1b1b2, a1b1a2b2〉 is of dimension > 8, the form is isotropic over
K(t), (cf. [PS2, Theorem 4.6]). Hence there exist p1 and p2 ∈ P such that p1


2+p2
2 = 0.


Examples 3.10. Let K be a local non-dyadic field such that −1 6∈ K∗2. Let a, b ∈ K such
that a + b


√
−1 is a non-square unit in K(


√
−1).


Proposition 3.5 in [KRTY] states that the biquaternion algebra


A =


(


π, t2 + 2


K(t)


)


⊗K(t)


(


a + bt, t2 + 1


K(t)


)


is of index 4 over the quadratic extension K(
√
−1). It follows that K(


√
−1) is not isomor-


phic to a subfield of A, and hence that s(A) 6= 1, whereby we may conclude that s(A) = 2.
Clearly, the level of both factors must also equal 2, as can be verified via Theorem 3.6.


In general it is not the case that a biquaternion division algebra H1 ⊗K(t) H2 over K(t),
with s(H1) = 2 and s(H2) = 2, has level 2. For example, consider


B =


(


t − π,−π


K(t)


)


⊗K(t)


(


(t + 1)(t − π), π


K(t)


)


.


Invoking Theorem 3.6, we see that both factors have level 2, since they have residue −π,
respectively π, in the point t = π. But B is a biquaternion division algebra over K(t) of
level 1, (cf. [KRTY, Lemma 3.10]), since considering classes in the Brauer group we have


[B] = [
(


t−π,−π
K(t)


)


⊗K(t)


(


π,(t−π)
K(t)


)


⊗K(t)


(


π,t−π
K(t)


)


⊗K(t)


(


(t+1)(t−π),π
K(t)


)


]


= [
(


t−π,−1
K(t)


)


⊗K(t)


(


π,t+1
K(t)


)


].
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