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1 Introduction

Let k be a field and let G be a semisimple simply connected absolutely almost simple
k–group. For G split, Soulé [14] has given a presentation of the group G(k[t]), thus
extending a theorem of Nagao [8] for SL2 (see also [11, II.1.6]). The goal of this note
is to provide a presentation of G(k[t]) in the general case.

We will follow Soulé’s original ideas and study the action of G(k[t]) on the Bruhat-
Tits building [4] of G corresponding to the field K = k((1

t
)), where K is viewed as

the completion of k(t) with respect to the valuation at ∞. As an application, we
show that the Whitehead group of G coincides with the näıve group of connected
components of G.

2 Structure of the group G(k[t])

Throughout k and G will be as above. For convenience the group G(k[t]) will be
denoted by Γ.
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2.1 Notation and statement of the main Theorem

Let S be a maximal k–split torus of G, and T be a maximal torus of G containing S.
Recall that SK is a maximal K-split torus of GK . Let k̃/k a finite Galois extension

which splits T (hence also G). Set G = Gal(k̃/k) and T̃ = T×
k

k̃.

Let G̃ = G×
k

k̃ and S̃ = S×
k

k̃. We choose compatible orderings on the root

systems Φ = Φ(G,S) and Φ̃ = Φ(G̃, T̃) (see [1]). We then have a set ∆ of relative

simple roots and a set ∆̃ of absolute simple roots.

It will be convenient to essentially maintain the same notation than in Soulé’s
paper, namely:

• A = k[t], K = k((1
t
)), G = G(K);

• ω the valuation defined on K the valuation on K at ∞, that is, the valuation
on K having O = k[[1

t
]] as its ring of integers.

We also have the analogous to the above objects for k̃, namely

• Ã = k̃[t], K̃ = k̃((1
t
)), Γ̃ = G(Ã), and Õ = k̃[[1

t
]].

At the level of buildings we set.

• T the (affine) Bruhat-Tits building of the K–group GK := G×k K and T̃ the

Bruhat-Tits building of the K̃–group GK̃ := G×k K̃ [4, §4.2].1 We recall that both

T and T̃ have a natural simplicial complex structure [4, §4.2.23].

Recall that T is equipped with an action of G(K) and that T̃ is equipped with

an action of G(K̃) ⋊ G. We have an isometric embedding j : T → T̃ which identifies

T with T̃ G. The hyperspecial group G(Õ) of G(K̃) fixes a unique point φ̃ of T̃ [3,
§9.1.9.c]. This point descends to a point φ of T .

We denote by A the standard apartment of T associated to S (this is a real

affine space) and similarly by Ã the standard apartment associated to T̃. The point

φ̃ belongs to Ã (ibid.). Since Homk−gr(Gm,S) ⊗Z R ∼= Homk−gr(Gm,T) ⊗Z R ∼=(
Homek−gr

(G
m,ek

, T̃)⊗Z R

)G

[4, §4.2], we have j(A) = ÃG so φ belongs to A and

A = φ + Homk−gr(Gm,S)⊗Z R.

By means of the canonical pairing 〈 , 〉 : Homk−gr(S,Gm)×Homk−gr(S,Gm)→ Z we
can then define the sector (quartier)

Q := φ + D where D :=
{
v ∈ Homk−gr(S,Gm)⊗Z R | 〈b, λ〉 ≥ 0 ∀ b ∈ ∆

}
.

1Since G×K K̃ is split, the assumptions of [4, §5.1.1.1] are satisfied. This allows us to do away
with the “standard” assumption that the base field k be perfect.
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The following result generalizes Soulé’s theorem [14].

Theorem 2.1. The set Q is a simplicial fundamental domain for the action of G(k[t])
on T . In other words, any simplex of T is equivalent under the action of G(k[t]) to
a unique simplex of Q.

2.2 Buildings and valuations

Let P be the minimal parabolic k–subgroup of G defined by S and ∆. We denote by
U = Ru(P) the unipotent radical of P.

We denote by Ũea the split unipotent subgroup associated to a root ã ∈ Φ̃, and by
ã∨ : SL2 → G the corresponding standard homomorphism (see [12, §2.2]).

The set of positive (resp. negative) roots with respect to the basis ∆ of Φ will be
denoted by Φ+ (resp. Φ−). Given b ∈ Φ, the subset of absolute roots

Φ̃b :=
{
ã ∈ Φ̃ | ã|S×k

ek
= b or 2b

}

is positively closed in Φ̃. It defines then a split k̃-unipotent subgroup Ũb of G̃ which
descends to a split k–unipotent subgroup Ub of G. As is [3], we make the convention
that U2b = 1 if 2b 6∈ Φ.

For I ⊂ ∆, we define along standard lines

SI =
(⋂

b∈I

ker(b)
)0

⊂ S, LI = ZG(SI) and PI = UI ⋊ LI .

Thus PI is the standard parabolic subgroup of G of type I and LI its standard Levi
subgroup (see [1, §21.11]). Recall that the root system Φ(LI ,S) = [I] is the subroot
system of Φ consisting of roots which are linear combinations of I; the split unipotent
k-group UI is the subgroup of U generated by the Ub with b running over Φ+ \ [I].

Given ã ∈ Φ̃, the group Ũea := Ũea(K̃) = K̃ is equipped with the valuation ω,

which we denote by ϕ̃a : Ũa → R ∪ {∞}. This defines the Chevalley-Steinberg

“donnée radicielle valuée”
(
T (K̃), (Ũea, Mea)ea∈eΦ

)
where

Mea = T (K̃) ã∨
([

0 −1
1 0

])

[3, example 6.2.3.b], and also a filtration (Ũea,m)m∈Z of Ũea where

Ũea,m := ϕ̃−1([m, +∞[).
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Note that Ũea,0 = Ũea(Õ).
A crucial point of Bruhat-Tits theory is the descent of this data to G = G(K)

[4, §5.1]. Given b ∈ Φ, the commutative group Ub := Ub(K) is equipped with the
descended valuation ϕb : Ub → R∪{∞}. The definition of ϕb is delicate, and is given
as follows [4, §5.1.16]. Define

Ũb,m :=
∏

ea∈eΦb, ea
|S×k

ek
=b

Ũea,m .
∏

ea∈eΦb, ea
|S×k

ek
=2b

Ũea,2m (m ∈ R).

Then Ub is a subgroup of Ub(K̃) = Ũb =
⋃

m∈R

Ũb,m and the descended valuation is

defined by

ϕb(u) := Sup
{
m ∈ R | u ∈ Ũb,m

}
.

Note that2 Θb := ϕb

(
Ub \{e}

)
is either Z or 1

2
Z. As above, it gives rises to a filtration

(Ub,m)m∈Θb
of Ub such that Ub,0 = Ub(O).

Again me make the convention that U2b = 1 if 2b 6∈ Φ.

2.3 Description of the isotropy group of a vertex

Given Ω ⊂ Q, we denote by ΓΩ the corresponding isotropy subgroup, namely the
elements of Γ that fix all elements of Ω. We introduce an analogous definition and
notation for j(Ω) ∈ Ã. By Galois descent we have

ΓΩ =
(
Γ̃j(Ω)

)G
.(2.1)

In particular, since Γ̃eφ
= G(Õ)∩Γ̃ = G(k̃) [13, §1.1], we have Γφ =

(
Γ̃eφ

)G
= G(k̃)G =

G(k).

If x ∈ Q\{φ} and if [x[ is the half-line of origin x and direction
−→

φx, we claim that

Γx = Γ[x[.

If G is split, this is proven in Soulé’s paper by reduction to the case of SLn. By
applying the identity (2.1) to x and [x[, our claim now readily follows from the
absolute case.

The isotropy of [x[ in G = G(K) is the Bruhat-Tits abstract parahoric group P[x[

[3, § 7.1]. We have
P[x[ = U[x[.H

2We use the notation Θb, rather than the more standard Γb found in [3], to avoid any possible
confusion with the notation used in Soulé’s paper.
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where H = FixG(A). By [4, §5.2.2], we have

H = ZG(S)(O).

The group U[x[ is defined by means of the function [3, §6.4.2]

f[x[ : Φ→ R ∪ {∞}, b 7→ inf
{
s ∈ R | b(y) + s ≥ 0 for all y ∈ [x[

}
.

Hence

f[x[(b) =






0 if b(x) = 0,
−b(x) if b(x) > 0,
∞ if b(x) < 0.

The group U[x[ ⊂ G is then the subgroup of G generated by the Ub,m for b ∈ Φ+ and
m ≥ −b(x) (m ∈ Θb), together with the Ub(O) for b ∈ Φ− such that b(x) = 0. In
other words, by distinguishing positive roots which vanish at x, we see that U[x[ is
the subgroup of G generated by subgroups of the following three “shapes”:

(I) Ub,m for b ∈ Φ+ such that b(x) > 0 and m ∈ Θb such that m ≥ −b(x);

(II) Ub(O) for b ∈ Φ+ such that b(x) = 0;

(III) Ub(O) for b ∈ Φ− such that b(x) = 0.

Define U±
[x[ := U[x[ ∩ U±(K) as in [3, §6.4.2]. By definition U+

[x[ and U−
[x[ generate

U[x[. On the other hand, U+
[x[ (resp. U−

[x[) is the subgroup of U[x[ generated by the

subgroups of type (I) and (II) (resp.(III)) [3, prop. 6.4.9]. Define the subset of roots

Ix =
{

b ∈ ∆ | b(x) = 0
}
.

This definition makes sense if x is an element of A, and we then have Iφ = ∆.

Lemma 2.2. We have

[Ix] ∩ Φ+ =
{

b ∈ Φ+ | b(x) = 0
}
,(2.2)

Φ+ \ [Ix] =
{

b ∈ Φ+ | b(x) > 0
}

and(2.3)

[Ix] ∩ Φ− =
{

b ∈ Φ− | b(x) = 0
}
.(2.4)

Proof. Observe that if b ∈ [Ix], b is a linear combination of elements of Ix, hence
b(x) = 0. This implies that [Ix] ∩ Φ+ ⊂

{
b ∈ Φ+ | b(x) = 0

}
. Conversely, let

b be a positive root such that b(x) = 0. Then b =
∑

c∈∆ nc c where the nc’s are
non-negative integers. Hence

∑
c∈∆ nc c(x) = 0. Since x ∈ Q, we have c(x) ≥ 0.

Therefore nc c(x) = 0 and b is a linear combination of elements of Ix. This shows
(2.2). Since {

b ∈ Φ+ | b(x) 6= 0
}

=
{

b ∈ Φ+ | b(x) > 0
}
,

we get also (2.3). Similar considerations apply to (2.4).
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It follows from (2.2) and (2.4) respectively that the subgroups of shape (II) and
(III) are subgroups of LIx

(O). Furthermore, (2.3) shows that the subgroups of shape
(I) are subgroups of UIx

(K). Hence we get the following inclusion

U[x[ ⊂ (U[x[ ∩UIx
(K)) ⋊ LIx

(O) ⊂ PIx
(K).(2.5)

Lemma 2.3. 1. LIx
(O) ⊂ P[x[ ⊂ UIx

(K) ⋊ LIx
(O) ⊂ PIx

(K);

2. UIx
(K) ∩ P[x[ ⊂ U+

[x[;

3.
⋃
z≥1

(
U+

[zx[ ∩UIx
(K)

)
= UIx

(K).

Proof. Let I = Ix.

(1) Since U[x[ ⊂ UI(K) ⋊ LI(O) and ZG(S) ⊂ LI it follows that P[x[ = U[x[.H =
U[x[.ZG(S)(O) is a subgroup of UI(K) ⋊ LI(O).

Let us show that LI(O) ⊂ P[x[. Let VI be the unipotent radical of the minimal
standard parabolic subgroup of LI , namely the k–subgroup of U generated by the
Ub such that b ∈ Φ+ and b(x) = 0. We have [10, th. XXVI.5.1]

⋃

g∈VI(k)

gΩ = LI

where Ω stands for the big cell V−
I ×k ZG(S)×k VI of LI . Since O is local, it follows

that
LI(O) = VI(k).Ω(O) = VI(k).V−

I (O) . H .VI(O).

We conclude that LI(O) ⊂ P[x[.

(2) We claim that U(K) ∩ P[x[ = U+
[x[. Note that this establishes (2) since UI(K) ⊂

U(K). To prove the claim it we need to show that U(K) ∩ P[x[ ⊂ U+
[x[ (the reversed

inclusion is obvious). With the notations of [3, §7], we have U(K) = U+
D where D is

the direction of the sector Q. By loc. cit. 7.1.4, we have

P[x[ ∩U(K) = U[x[+D

where U[x[+D is the subgroup of G(K) attached to the subset [x[+D = x + D of A.
This group is defined by means of the function [3, §6.4.2]

fx+D : Φ→ R ∪ {∞}, b 7→ inf
{
s ∈ R | b(y) + s ≥ 0 for all y ∈ x + D

}
.

Hence

fx+D(b) =

{
−b(x) if b > 0,
∞ if b < 0,
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so Ux+D = U+
[x[ as desired.

(3) If b ∈ Φ+ satisfies b(x) > 0, then the number

Inf
{
m ∈ Θb | m + b(zx) ≥ 0

}

tends to −∞ as z tends to ∞. This readily yields that
⋃
z≥1

(
U+

[zx[ ∩UI(K)
)

= UI(K).

Remark 2.4. Geometrically speaking, the K–parabolic PIx
×k K is attached to the

extremity of the half line [x[ in the spherical building at infinity [6, § 16.9]. Since P[x[

is the isotropy group of the half line [x[, it fixes its extremity. This point of view yields
another way to prove the inclusion P[x[ ⊂ PIx

(K) which is part of Lemma 2.3(1).

Given b ∈ Φ we set

mx(b) := Inf
{
m ∈ Θb | m + b(x) ≥ 0

}
.

Since Γx = P[x[ ∩ Γ, we have the inclusion

〈
(Ub,mx(b).U2b,mx(2b)) ∩ Γ, b ∈ Φ, b(x) ≥ 0

〉
⊂ Γx.(2.6)

Proposition 2.5. 1. Γx =
(
Γx ∩UIx

(K)
)

⋊ LIx
(k);

2. Γx =
〈
(Ub,mx(b).U2b,mx(2b)) ∩ Γ, b(x) > 0

〉
⋊ LIx

(k);

3.
⋃
z≥1

Γzx = UIx
(k[t]) ⋊ LIx

(k).

Proof. To cut down on the notation we set I = Ix.

(1) According to Lemma 2.3.(1) LI(k) = Γ ∩ LI(O) fixes the point x. Hence the
inclusion (

Γx ∩UI(K)
)

⋊ LI(k) ⊂ Γx.

To prove the reverse inclusion we make use of the projection PI(K) → LI(K). The
image of Γx inside LI(K) is a subgroup of LI(A). On the other hand, by Lemma
2.3.(1), the image of Px inside LI(K) is the subgroup LI(O) . Hence the image of
Γx inside LI(K) is a subgroup of LI(A) ∩ LI(O) = LI(k). We thus have an exact
sequence

1→
(
Γx ∩UI(K)

)
→ Γx → LI(k)
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which is a split surjection.

(2) Put V :=
〈
(Ub,mx(b).U2b,mx(2b)) ∩ Γ, b ∈ Φ, b(x) > 0

〉
. This is a subgroup of Γx

(2.6) and of UI(K) (2.5). So V ⊂ Γx ∩ UI(K). For showing the reverse inclusion, it
suffices to show that

Γx ∩UI(K) ⊂
〈
(Ub,mx(b).U2b,mx(2b)) ∩ Γ, b(x) ≥ 0

〉
.(2.7)

From Lemma 2.3.(3) we have

Γx ∩UI(K) ⊂ Γ ∩ U+
[x[.

Accordingly, it will suffice to show that Γx ∩ U+
[x[ is a subgroup of the right handside

of (2.7). Let Φ+
red = {b1, ...., bN} be the subset of reduced positive roots (with an

arbitrary order). The product induces a isomorphism of k–varieties
N∏

j=1

Ubj

∼
−→ U [1,

prop. 21.9]. In particular, we have compatible bijections

N∏

j=1

Ubj
(K)

∼
−→ U(K)

∪ ∪(2.8)
N∏

j=1

Ubj
(A)

∼
−→ U(A).

By comparing these with the bijection [3, §6.4.9]

N∏

j=1

Ubj ,mx(bj).U2bj ,mx(2bj)
∼
−→ U+

[x[,

we see that Γx ∩ UI(K) ⊂ U+
[x[ ∩ U(A) consists of products of elements

(Ubj ,mx(bj).U2bj ,mx(2bj)) ∩ Γ with bj(x) ≥ 0.

(3) This follows from (1) and Lemma 2.3.(3).

2.4 Action on the star of certain points

We will now make use of the spherical building B(G) of G [16, §5]. Recall that B(G) is
a simplicial complex whose simplex are the k-parabolic subgroups of G. If Q is such a

8



parabolic subgroup, the faces of its associated simplex are the simplexes associated to
the maximal proper k-parabolic subgroups of Q. The standard apartment A of B(G)
is the subcomplex of k-parabolic subgroups containing S and the standard chamber
C is the simplex associated to the minimal k-parabolic subgroup P. We denote by
W = NG(S)/ZG(S) the relative Weyl group of G.

If x ∈ T , we denote by Lx the star of x (étoile in french) of x,3 i.e. the subspace
of T consisting of facets F such that x ∈ F [4, §4.6.33].

We denote by S∗ = Homk−gr(Gm,S) the group of cocharacters of S. Inside the
apartment A = φ + S∗ ⊗Z R, this corresponds to the lattice of points having type 0,
i.e. the type of φ. The action of S(K) on T preserves A. More precisely, the element
s ∈ S(K) acts on A as the translation by the vector vs defined by the property [4,
§5.1.22]

〈vs, b〉 = −ω(b(s)) ∀b ∈ Φ.(2.9)

We denote by C ⊂ S∗⊗ZR the vector chamber such that φ+C is the unique chamber
of the sector Q which contains the special point φ in its adherence [3, §1.3.11].

Lemma 2.6. Let x be a point of S∗∩Q. Then the chambers of Lx∩Q are the x+wC
for w ∈W(k) satisfying Ix ⊂ w.Φ+.

Proof. Set I = Ix. The chambers of Lx are the x + wC with w ∈W(k). Let y ∈ C.
If x + wC ⊂ Q, then

b(x + w.y) = b(x) + (w−1.b)(y) ≥ 0 ∀b ∈ ∆.

It follows that if b ∈ I, i.e. b(x) = 0, then (w−1.b)(y) ≥ 0, and therefore b ∈ w(Φ+).
Conversely, if w ∈W(k) satisfies I ⊂ w(Φ+), then the above inequality holds for ǫy
for all b ∈ ∆ for ǫ > 0 small enough. Thus x + w . (ǫy) ∈ Q and x + wC ⊂ Q.

Lemma 2.7. Let I be a subset of ∆, and set WI := NLI
(S)/ZG(S). Let AI be the

union of the wC for w running over the elements of W(k) satisfying I ⊂ w.Φ+.

1. WI(k) . AI = A.

2. PI(k) . AI = B(G).

Proof. (1) We reason by induction on the cardinality of I. If I = ∅, then AI = A

and there is nothing to prove. Assume that I = I ′ ∪ {b}. We are given a chamber
wC of A with w ∈W(k). We want to show that wC is equivalent under WI(k) to a

3The terminology link is also used in the literature.
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chamber of AI . Since WI′(k) ⊂WI(k), we can assume by the induction hypothesis
that I ′ ⊂ w.Φ+. If b ∈ w.Φ+, we have I ⊂ w.Φ+. The other case is when −b ∈ w.Φ+.
Let sb ∈ WI(k) the reflexion associated to b. Then sb(b) = −b, hence b ⊂ sbw.Φ+.
For b′ ∈ I ′, we have sb(b

′) = b′ + mb where m is non-negative. Therefore

b′ = s2
b(b

′) = sb(b
′ + mb) = sb(b

′)−mb ∈ sbw.Φ+.

We conclude that I ⊂ sbw.Φ+ and sb.(wC) ⊂ AI .

(2) Again it suffices to prove that any chamber of B(G) is equivalent under PI(k) to
a chamber of AI . Let C′ be a chamber of B(G). Let P′ be the underlying minimal
k–parabolic subgroup. By [2, prop. 4.4.b] PI ∩P′ contains a maximal k-split torus of
PI . Since maximal k–split tori of PI are conjugate under UI(k), it follows that there
exists u ∈ UI(k) such that uSu−1 ⊂ PI ∩ P′, hence S ⊂ u−1P′u. So we can assume
that S ⊂ P′, i.e. that C′ ⊂ A. Then C′ = wC for some w ∈W(k). By 1), C′ is then
equivalent under WI(k) to a chamber of AI . Since NLI

(S)(k) maps onto WI(k), we
conclude that C′ is then equivalent under PI(k) to a chamber of AI .

We come now to the following important step in Soulé’s proof.

Lemma 2.8. Let x ∈ S∗ ∩ Q. Then Γx.(Lx ∩Q) = Lx.

Proof. We will make use of the canonical smooth model Px/O of the parahoric sub-
group associated to x [4, §5.2]. As an O–group scheme Px is isomorphic to G×k O,
and we have an identification Px(O) = Px. The star Lx is the spherical building of
Px ×O k ∼= G [4, §5.1.32]. Set for convenience I = Ix. By Lemma 2.6, Lx ∩ Q is
identified with AI in the spherical building B(G). Furthermore, the chamber x + C
identifies with C.

The inclusion Γx.(Lx ∩ Q) ⊂ Lx is clear. Let us prove the reverse inclusion. By
definition, there exists λ ∈ S∗∩Q such that x = λ. Define gλ = λ(1

t
)−1 = λ(t) ∈ S(K).

Since x = gλ.φ by (2.9) above, we have

Px = gλ Pφ g−1
λ .(2.10)

Thus
Px(O) ∼= Px = gλ G(O) g−1

λ ⊂ G(K).

In view of Lemma 2.7.2, it will suffice to establish the following.

Claim 2.9. The image of the composite map

Γx ⊂ Px −−−→
(
Px ×O k

)
(k) ∼= G(k)

contains PI(k).
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The group LI(k) commutes with gλ inside G(k(t)), and it is therefore included in
the image in question (as we have already observed in Proposition 2.5). So it is
enough to check that gλU(k)g−1

λ ⊂ Γx, or equivalently that gλU(k)g−1
λ ⊂ Γ. This can

be verified by working over the field k̃ and checking the inclusion for the subgroups
Ub(k̃) of U(k̃) for b ∈ Φ+. To verify this we use that the product map induces a
decomposition (with the notation of §2.2)

∏

ea∈eΦb, ea
|S×k

ek
=b

Ũea(k̃) .
∏

ea∈eΦb, ea
|S×k

ek
=2b

Ũea(k̃)
∼
−→ Ub(k̃).

For ã ∈ Φ̃b and s ∈ k̃, we have

gλ Uea(s) g−1
λ =

{
Ũea(t

〈b,λ〉 s) if ã|S×k
ek

= b,

Ũea(t
2 〈b,λ〉 s) if ã|S×k

ek
= 2b.

Hence gλ Uea(s) g−1
λ ⊂ Γ̃. This establishes Claim 2.9. The proof of Lemma 2.8 is now

complete

2.5 End of the proof of Theorem 2.1

We now finish the proof of the main Theorem.

Two distinct points of Q are not equivalent under Γ. Since two different points of Q̃
are not equivalent under Γ̃ [14, 1.3], it follows that two distinct points in Q are not
equivalent under Γ.

A point of T of type 0 is equivalent to a point of Q. We denote by M ⊂ S(K) =
S∗ ⊗ K× the subgroup generated by the λ(t) for λ running over S∗. We denote by
M+ ⊂M the semigroup generated by the λ(t) for λ satisfying 〈b, λ〉 ≥ 0 for all b ∈ ∆.
By a result of Raghunathan [9, th. 3.4],4 we have the decomposition

G(K) = Γ . M .G(O).

Again, since NG(S)(k) maps onto W(k) and W(k).M+ = M , we have actually a
decomposition

G(K) = Γ . M+ .G(O).

Since G(K)/G(O) is the set of points of type 0 of T , this shows that every such point
of T is Γ–conjugated to a point of M.φ. But M+.φ ⊂ Q, so we conclude that every
such point of T is Γ–conjugated to a point of Q.

4This reference presupposes that the base field k is infinite, but this assumption is not necessary
(see [7, III.3.4.2] for details).
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Every point of T is equivalent to a point of Q. Let y be a point of T . Let F be a
chamber of T containing y. Then F contains a (unique) point x whose type is that
of φ. By the preceding step, we can assume that x ∈ Q. Then y belongs to Lx and
Lemma 2.8 shows that y is equivalent under Γ to a point of Q.

¿From the above it follows that T = Γ.Q, as it is stated in the Theorem.

3 Applications

We give two applications of the main Theorem. The notation and assumptions are
as in the previous section. We begin by recalling some basic facts about direct limits
of groups.

3.1 Direct limits of groups

Direct limits of groups occur in geometric group theory [11]. In what follows we will
repeatedly encounter the following situation: We are given a family of subgroups
(Hλ)λ∈Λ of a group H (indexed by some set Λ) and we wish to consider the group
which is the direct limit of the groups (Hλ, Hλ ∩Hµ)λ,µ∈Λ where the only transition
maps are the inclusions Hλ ∩ Hµ ⊂ Hλ and Hλ ∩ Hµ ⊂ Hµ. We call the resulting
group the direct limit of the family (Hλ)λ∈Λ with respect to their intersections.5

Let T be an abstract simplicial complex, E the set of its vertices, and Φ the set of
its simplexes. Denote by X the geometric realization of T . Let H be a group which
acts in a simplicial way on T, and for which there exists a simplicial fundamental
domain T ′. Recall that T ′ is a subcomplex of T such that if E ′ (resp. Φ′) denotes
the set of vertices (resp. simplexes) of T ′, then for every s ∈ Φ, there exists a unique
s′ ∈ Φ′ such that s ∈ H.s′.

The isotropy subgroup of H corresponding to an element z (respectively a subset
M) of either T or X will be denoted by Hz (respectively HM).

Theorem 3.1. (Soulé, [13]) Let T , X, H, T ′ be as above. Assume that X is connected
and simply connected and that the geometric realization X ′ of T ′ is connected. Then
the group H is the direct limit of the family of isotropy subgroups (HM)M∈E′ with
respect to their intersections.

Higher dimensional generalizations of this result have been established by Cheb-
otarev [5]. As pointed out by one of the referees, when X has additional structures
there are other presentations which are useful in practice.

5Another terminology, which is a slight abuse of language, is that H is the sum of the HM

amalgamated over their intersections [11, II.1.7].
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Proposition 3.2. Under the hypothesis of Theorem 3.1, assume that X is equipped
with a distance d such that

i) for any two points x, y, there is a unique geodesic linking x and y;

ii) for any x ∈ X, there exists an open neighbourhood Dx of x such that for any
simplex F of X, Dx ∩ F 6= ∅ =⇒ x ∈ F ;

iii) H acts isometrically on X.

Furthermore, we assume that

iv) for each simplex F of X the stabilizer of F (as a set) coincides with the isotropy
group (pointwise stabilizer) of F .

Then

1. The group H is the direct limit of the family (HM ∩HN)M,N∈E′ with transition
maps HM ∩HN → HM and HM ∩HN → HN for M, N belonging to an edge of
X ′.6

2. The group H is the direct limit of the family of isotropy subgroups (Hx)x∈X′ with
respect to their intersections.

Note that when X is a tree the first statement of the Proposition allows us to
recover a classical result [11, §4.5, th. 10].

Remark 3.3. Note that the first statement of the Proposition is different than that
of Theorem 3.1. The point is that two vertices of X ′ do not necessarily belong to a
common edge. In other words, the presentation of H given by Proposition 3.2.(1) has
less relations than the one given by Theorem 3.1.

Proof. We prove both statements at the same time. We denote by H† the first limit
and by H♯ the second one. We have an obvious surjective map H† → H, while the
inclusion E ′ ⊂ X gives rise to a map H → H♯. We denote by ξ : H† → H → H♯ the
composition of these two maps. It is enough then to show that H → H♯ is surjective,
and to produce a section θ : H♯ → H† of ξ.

If x ∈ X, we denote by Fx ⊂ X the (open) simplex attached to x. Since every Fx

contains in its closure a vertex M , our hypothesis on stabilizers implies that Hx ⊂ HM .
It follows that H → H♯ is surjective.

To define the splitting θ : H♯ → H† we proceed as follows. We are given x ∈ X,
and M ∈ E ′ such that M ∈ F x. Since the action is simplicial, we have Hx = HFx

.
By our hypothesis on the stabilizers, we have then the inclusion Hx ⊂ HM ⊂ H .

6By taking M = N in E′ we see that the groups HM are part of our family. Observe that if
M, N are vertices of a common edge F , then HN ∩HM is nothing but the isotropy group of F .
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Step 1 : The composite map

θx,M : Hx → HM → H†

does not depend of the choice of M :
We note that two distinct choices M , N of vertices of F x define an edge of X ′,

so that the maps Hx → HM → H† and Hx → HM → H† agree since they agree on
HM ∩HN . This establishes Step 1, and defines a map θx : Hx → H♯.

Step 2: If y ∈ F x, then θx and θy agree on the subgroup Hx of Hy :
Since F y ⊂ F x, we can pick a vertice M ∈ F y. By definition θx,M and θy,M agree

on Hy. Hence θx and θy agree on Hy by the first step.

Step 3: Connexity argument. We are given x, y ∈ X and we want to show that
θx and θy agree on Hx ∩ Hy. Since Hx ∩ Hy acts trivially on the geodesic [x, y],
we have Hx ∩ Hy ⊂ Hz for all z ∈ [x, y]. We consider then the restrictions
Θz : Hx ∩Hy ⊂ Hz → H† of θz to Hx ∩Hy for z running over [x, y].

Recall that Dz stands for the open neighbourhood of z ∈ X given by the hypothesis
ii).
Step 4: If z ∈ [x, y], then Θz = Θz′ for all z′ ∈ Dz ∩ [x, y]. Since z′ ∈ Fz′ ∩ Dz,
assumption ii) implies that z ∈ F z′. Step 2 shows that θz and θz′ agree on Hz′ ⊂ Hz,
hence Θz = Θz′.

We now finish the proof of the Proposition. Since the Dz ∩ [x, y] define an open
covering of the connected space [x, y], Step 3 implies that Θz does not depend on z.
In particular θx and θy agree on Hx ∩Hy. By the universal property defining H♯, we
obtain a map θ : H♯ → H†. By construction θ ◦ ξ = idH† .

For future use we record the following.

Lemma 3.4. Let H be a group which is the direct limit of a family of subgroups
(Hα)α∈Λ of H with respect to their intersections.

1. Let Λ′ ⊂ Λ be a directed subset, i.e. for all α, β ∈ Λ′, there exists γ ∈ Λ′ such
that Hα ⊂ Hγ, Hβ ⊂ Hγ. Then the direct limit of the family (Hα)α∈Λ′ with
respect to their intersections is canonically isomorphic to the subgroup

⋃
α∈Λ′

Hα

of H.

2. Let Λ = ⊔j∈JΛj be a partition of Λ in directed subsets. For j ∈ J , denote by

Hj :=
⋃

α∈Λj

Hα

the subgroup of H associated to Λj. Then H is the direct limit of the family of
subgroups (Hj)j∈J of H with respect to their intersections.
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Proof. (1) Note that
⋃

α∈Λ′

Hα is a subgroup of H since Λ′ is directed. For any group

M we have
Homgr(H

′, M) = lim←−
α∈Λ′

Homgr(Hα, M),

whence the statement.

(2) Denote by H̃ the direct limit of the family of subgroups (Hj)j∈J of H with respect
to their intersections. The inclusion maps Hj ⊂ H agree over their intersections,

hence give rise to a natural map ξ : H̃ → H . For defining the reverse map, denote
by α 7→ j(α) the map Λ→ J which maps α to the unique index j such that α ∈ Λj.
We then get maps

Hα →֒ Hj(α) → H̃ (α ∈ Λ).

Since these maps agree over their intersections they yield a map η : H → H̃ . Given
that the images of the Hα generate H (resp. H̃), we get that η ◦ ξ = id eH and
ξ ◦ η = idH .

3.2 The group G(k[t]) as a direct limit

Theorem 3.1 yields.

Corollary 3.5. Let V be the set of vertices of Q. The group Γ = G(k[t]) is the direct
limit of the family (Γx)x∈V with respect to their intersections.

¿From the Corollary we see that Γ is generated by the Γx. By Proposition 2.5.(1)
Γx consists of products of elements of G(k) and elements of U(k[t]), where U stands
for the unipotent radical of the minimal parabolic subgroup attached to S and ∆.
From this we obtain.

Corollary 3.6. G(k[t]) =
〈

G(k), U(k[t])
〉
.

Another presentation of Γ is given by means of Proposition 3.2.(2).

Corollary 3.7. The group Γ = G(k[t]) is the direct limit of the family (Γx)x∈Q with
respect to their intersections.

Proof. We have to check that hypothesis (i) through (iv) of Proposition 3.2 are sat-
isfied for the action of Γ on the Bruhat-Tits building T , which is a metric space.

(i) Two points of T are linked by a unique geodesic [3, §2.5].

(ii) Lemma 2.5.11 of loc. cit. guarantees that for any x ∈ X, there exists an open
ball Dx of center x such that for any simplex F of X, Dx ∩ F 6= ∅ =⇒ x ∈ F .

(iii) The group G(K) acts isometrically on T (ibid).
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(iv) Since G is simply connected, the stabilizer of a simplex F of T (or facet with
the terminology of Bruhat-Tits) under Γ ⊂ G(K) is also its pointwise stabilizer [4,
prop. 4.6.32] and also of F [3, prop. 2.4.13].

The Corollary now follows from Proposition 3.2.

We shall now give a nicer presentation of Γ. Given a subset I ⊂ ∆, define

QI :=
{
x ∈ Q | Ix = I

}
.

It is a subcone of Q, i.e. zQI ⊂ QI for all z > 0. Define the subgroup ΓI =
UI(k[t]) ⋊ LI(k).

Lemma 3.8. 1. The (Γx)x∈QI
form a directed family of subgroups of Γ.

2. ΓI is the direct limit of the Γx for x ∈ QI .

Proof. (1) The sector Q is equipped with the partial order x ≤ y if y − x ∈ Q. By
restriction, we get a partial order on QI which is directed. Indeed, given x, y ∈ QI ,
we have x + y ∈ QI and x + y ≥ x and x + y ≥ y.

Let x, y be elements of QI such that x ≤ y. Then b(y) ≥ b(x) for all b ∈ [I]+,
hence my(b) ≤ mx(b) for all b ∈ [I]+. It follows that for b ∈ [I]+ we have

Ub,mx(b).U2b,mx(2b) ⊂ Ub,my(b).U2b,my(2b).

Now Proposition 2.5.(2) shows that Γx ⊂ Γy. Since QI is a directed subset of Q, we
conclude that the (Γx)x∈QI

form a directed family of subgroups of Γ.

(2) By Lemma 3.4.(1), it is enough to show that
⋃

x∈QI

Γx = ΓI .(3.1)

Proposition 2.5.1 shows that the inclusion ⊂ holds. Conversely, suppose that we are
given an element g ∈ ΓI . Let x ∈ QI . By Proposition 2.5.(3) there exists a real
number z ≥ 1 such that g ∈ Γzx. Since zx ∈ QI , g belongs to the left handside of
3.1.

Theorem 3.9. The group Γ = G(k[t]) is the direct limit of the family of subgroups
(ΓI)I⊂∆ with respect to their intersections

Proof. Lemma 3.8.(2) shows that ΓI is the limit of the directed family of subgroups
(Γx)x∈QI

. To finish the proof we apply Lemma 3.4.(2) to the decomposition

Q = ⊔I⊂∆ QI

of Q into directed subsets.
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3.3 Application to Whitehead groups

Let G(k)+ be the (normal) subgroup of G(k) generated by the (RuP)(k) for P running
over all parabolic k–subgroups of G. If card(k) ≥ 4, Tits has shown that every proper
normal subgroup of G(k)+ is central [15]. The quotient W (k,G) = G(k)/G(k)+ is
the Whitehead group of G [17]. By Tits’ result this group detects whether G(k) is
projectively simple.

It turns out that the Whitehead group admits another characterization. Denote
by HG(k) the (normal) subgroup of G(k) which consists in elements g ∈ G(k) for
which there exists an element h ∈ Γ = G(k[t]) such that h(0) = e and h(1) = g. We
denote by π0(k,G) = G(k)/HG(k) this näıve group of connected components of G.

Theorem 3.10. There is a canonical isomorphism W (k,G)
∼
−→ π0(k,G).

Proof. The unipotent radical V of a k–parabolic subgroup Q of G is a split unipo-
tent group, so it satisfies H(V)(k) = V(k). Hence we have G(k)+ ⊂ HG(k) and
a surjection G(k)/G(k)+ → π0(k,G) = G(k)/HG(k). It remains to show that
HG(k) ⊂ G(k)+. Let g ∈ HG(k), and choose h ∈ G(k[t]) satisfying h(0) = e and
h(1) = g. According to Corollary 3.6, the element h can be written in the form

h = g1u1 g2 u2 · · · gnun

with gi ∈ G(k) and ui ∈ U(k[t]) where U is the unipotent radical of a minimal
parabolic k–subgroup of G. We can assume that ui(0) = e, so the condition h(0) = e
reads g1 · · · gn = e. It follows that

h = g′
1 u1 g′−1

1 · · · g
′
n un g′−1

n

with g′
1 = g1, g′

2 = g1g2, ..., g′
n = g1 · · · gn = e ∈ G(k). Hence g = h(1) =

g′
1 u1(1) g′−1

1 · · · g
′
n un(1) g′−1

n ∈ G(k)+ as desired.
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