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1 Introduction

One of the central technical results in étale cohomology ([SGA4] théorème VII 5.7 and
its corollaries) is the good behaviour of Hq(S,G) for S = lim←−Sλ and G = lim←−Gλ under
reasonable assumptions on the schemes Sλ and the abelian group schemes Gλ. It is also
remarked without proof therein (ibid. remarque 5.14(a)) that similar results hold for non-
abelian H1 defined à la Čech, i.e., for sheaf torsors. This passage to the limit appears as
a crucial ingredient in the study of Galois cohomology of local and henselian rings, as well
as in the study of infinite dimensional Lie theory by cohomological methods (see [CTO],
[GP1], [GP2] and [GP3] for example). We have considered it useful to write down a detailed
proof of this important fact. For clarity of exposition we have chosen not to restrict our
attention to the case when the Sλ are affine (which would be sufficient for the work of Gille
and Pianzola under consideration).

2 Passage to to the limit for non-abelian H
1

If X is a scheme and G is a group scheme over X, then H1
fppf(X,G) will denote the

pointed set of Čech cohomology for the fppf topology of X (see [SGA3] Exp IV.6 for details.
See also [Gi] and [M]). H1

ét and H1
Zar are defined analogously.

Let S0 be a scheme. Throughout we assume that (Sλ)λ∈Λ is a projective system of
S0-schemes based on some non-empty directed set Λ such that for all λ ≥ µ the transition
morphisms uλµ : Sµ → Sλ are affine. We can then form the projective limit S = lim←−Sλ

in the category of S0-schemes ([EGAIV] §8.2). By construction, we have for each λ ∈ Λ a
canonical morphism uλ : S → Sλ.
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Let G0 be a group scheme over S0. For λ ∈ Λ let Gλ = G0 ×S0
Sλ, and G = G0 ×S0

S.

If Uα = (Uα
i → Sα) is a covering of Sα in the fppf topology, then the base change

(Uα
i ×Sα S) ×S (Uα

j ×Sα S) ≃ (Uα
i ×Sα Uα

j ) ×Sα S → Uα
j ×Sα Uα

j

maps cocycles in Z1
fppf (Uα,Gα) into cocycles in Z1

fppf(Uα ×Sα S,G). This leads to a map

H1
fppf(Uα,Gα) → H1

fppf(Uα ×Sα S,G) which, by passing to the limit over all coverings of

Sα, yields a map ψα : H1
fppf(Sα,Gα) → H1

fppf(S,G). By considering lim−→ψα we obtain a
canonical map

ψ : lim−→
λ∈Λ

H1
fppf (Sλ,Gλ) → H1

fppf(S,G).

Completely analogous considerations hold for the Zariski and étale topology.
The main result is as follows.

Theorem 2.1. Assume that S0 and the (Sλ)λ∈Λ are all quasicompact and quasiseparated,
and that the group G0 → S0 is locally of finite presentation. Then the canonical map

lim−→
λ∈Λ

H1
fppf(Sλ,Gλ) → H1

fppf(S,G)

is bijective. Similarly for H1
ét and H1

Zar .

We begin by establishing two preliminary results that will be used in the proof of the
Theorem. The notation is chosen to closely match that of [EGAIV] (to which all references
henceforth belong).

Lemma 2.2. Let S be a quasicompact scheme. Then any covering U = (Ui
φi
→ S)i∈I of S

(for either of our three topologies) admits a refinement V = (Vℓ
ψℓ→ S)ℓ∈L where L is finite

and the Vℓ are affine. If in addition S is quasiseparated, then the morphisms ψℓ of the
refinement V may be assumed to be of finite presentation.

Proof. The φi are open maps (being flat and locally of finite presentation. See théorème
2.4.6). Given that S is quasicompact, there exists a finite subcovering (in particular a
refinement) of U .

Assume henceforth that I is finite. Let S =
⋃

j∈J

Yj be a finite open covering of S by

affine Yj . Let Wij = φ−1
i (Yj), and let Wij = ∪k∈KVijk be an open affine cover of Wij (where

K is some index set). Consider the morphisms ψijk : Vijk → S defined by

ψijk : Vijk →֒ Wij

φi|Wij
→ Yj →֒ S.

The Vijk form a covering of S. Since any covering admits a finite subcovering, we may
assume that K is finite. Set L = I × J × K, and define τ : L → I by τ : (i, j, k) 7→ i. Then
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V = (Vijk

ψijk
→ S)(i,j,k)∈L together with τ yield a finite refinement by affine schemes of our

original U .
We claim that if S is quasiseparated, then the morphism ψijk above are of finite presen-

tation, i.e., quasicompact, quasiseparated, and locally of finite presentation. The ψijk are
locally of finite presentation since V is a covering in one of our three topologies. That ψijk

is quasiseparated is automatic since the Vijk, being affine, are quasiseparated (cor. 1.2.3(i)).
Finally, since any morphism from a quasicompact scheme into a quasiseparated scheme is
quasicompact (prop. 1.2.4), the ψijk are quasicompact.

Proposition 2.3. Assume S0 is quasicompact and quasiseparated. Let f : X → S be a
morphism of S0-schemes which is of finite presentation. Then.

(i) There exist α ∈ Λ, and a scheme morphism fα : Xα → Sα of finite presentation, such
that Xα ×Sα S ≃ X as S-schemes.

(ii) If α is as in (i), then for f to be surjective (resp. an open immersion, flat, faithfully
flat, étale), it is necessary and sufficient that there exist λ ≥ α for which fλ = fα × ISλ

:
Xα ×Sα Sλ → Sα ×Sα Sλ ≃ Sλ is surjective (resp. an open immersion, flat, faithfully flat,
étale).

Proof. The existence of fα : Xα → Sα as in (i) is given by théorème 8.8.2. In view of (i), to
establish (ii) we may assume with no loss of generality that X = Xα×Sα S and f = fα×IS .
For all λ ≥ α set

Xλ = Xα ×Sα Sλ and fλ = fα × ISλ
.

The existence of λ as prescribed in (ii) follows from théorème 8.10.5 (for f surjective or
an open immersion), théorème 11.2.6 (for f flat), and proposition 17.7.8 (for f étale).
Combining surjectivity with flatness yields a λ for which fλ is faithfully flat.

We are now ready to establish our main result.

Proof (of Theorem 2.1). For future use we begin with an observation. For α ∈ Λ the
morphism uα : S → Sα is affine, hence quasicompact and quasiseparated. Thus S itself is
quasicompact and quasiseparated.

In what follows we fix one of our three topologies on S. All coverings, cocycles, and H1

will refer to this chosen topology.

ψ is surjective. Let c ∈ H1(S,G), and choose a covering U = (Ui → S)i∈I so that c

corresponds to a cocycle z ∈ Z1(U ,G). Taking into account that Čech cohomology is defined
by passing to the limit of all refinements of covers of S, we may by Lemma 2.2 assume with
no loss of generality that I is finite and that the Ui → S are of finite presentation. Given
that Λ is directed, Proposition 2.3 now yields the existence of an α ∈ Λ and a covering
Uα = (Uα

i → Sα) which induces U under the base change uα : S → Sα. Thus,
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zij ∈ G
(

(Uα
i ×Sα S) ×S (Uα

j ×Sα S)
)

≃ G(Uα
i ×Sα Uα

j ×Sα S) = G(Uα
i ×Sα Uα

j ×Sα lim←−
λ≥α

Sλ)

= lim−→
λ≥α

Gλ(Uα
i ×Sα Uα

j ×Sα Sλ)

= lim−→
λ≥α

Gλ

(

(Uα
i ×Sα Sλ) ×Sλ

(Uα
j ×Sα Sλ)

)

(this penultimate equality of limits because G is locally of finite presentation. See théorème

8.8.2(i)). This yields the existence of a β ≥ α for which there exists elements z
β
ij ∈

Gβ

(

(Uα
i ×Sα Sβ)×Sβ

(Uα
j ×Sα Sβ)

)

such that z
β
ij 7→ zij under the base change uβ : S → Sβ.

We do not know whether the z
β
ij satisfy the cocycle condition, but since the zij do, we can

again use the fact that G is locally of finite presentation to conclude that there exists γ ≥ β

such that the image z
γ
ij of the z

β
ij under the base change uβγ : Sγ → Sβ form a cocyle. Since

z
γ
ij 7→ zij , our map ψ is surjective.

ψ is injective. Let c1 ∈ H1(Sα1
,Gα1

) and c2 ∈ H1(Sα2
,Gα2

) be such that ψ(c1) = ψ(c2).
We must show that c1 and c2 have the same image under the respective canonical maps

(2.2) H1(Sαn ,Gαn) → lim−→
λ≥αn

H1(Sλ,Gλ),

where n = 1, 2. Since Λ is directed, we may assume with no loss of generality that α1 =
α2 = α for some α ∈ Λ. We may also assume, as explained above and after taking a
common refinement, that cn corresponds to a cocyle zα

n ∈ Z1(Uα,Gα) for some covering
Uα = (Uα

i → Sα)i∈I of Sα with I finite and Uα
i affine. Since ψ(c1) = ψ(c2), there exists a

refinement V = (Vj → S)j∈J of the cover Uα ×Sα S = (Uα
i ×Sα S → S)i∈I where the images

of zα
1 and zα

2 become cohomologous. We may again assume J to be finite and the Vj to be
affine.

Let Λ′ = {λ ∈ Λ : λ ≥ α}. Assume i ∈ I and j ∈ J are such that a morphism
Vj → Uα

i ×Sα S is part of our refinement. The same reasoning used at the end of the proof
of Lemma 2.2 shows that this morphism is of finite presentation.1

For λ ∈ Λ′ define S′
λ = Uα

i ×Sα Sλ and S′ = Uα
i ×Sα S. Then S′ = lim←−S′

λ where the

limit is taken over Λ′. By Proposition 2.3 applied to S′ , there exists λ ∈ Λ′ such that our
(flat, étale...) morphism Vj → S′ comes from a (flat, étale...) morphism V λ

j → S′
λ by the

base change S′ → S′
λ arising from uλ. In fact, since I and J are finite and Λ′ is directed,

there exists β ≥ α such that our entire refinement V of Uα comes from a refinement Vβ of
the covering Uα ×Sα Sβ by the base change S → Sβ. Replacing the zα

n by their respective

images z
β
n ∈ Z1(Uα ×Sα Sβ,Gβ), and then Uα ×Sα Sβ by its refinement Vβ does not change

1To see that Uα
i
×Sα

S is quasiseparated observe that because Uα
i

is affine, it is quasiseparated
over Sα. Thus Uα

i ×Sα
S is quasiseparated over S, and we can now conclude from the fact that S is

quasiseparated.
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our cn. This allows us to reduce to the case where our original cocycles zα
1 and zα

2 are such
that their images z1 and z2 in Z1(Uα×Sα S,G) are cohomologous. Accordingly, there exists
elements gi ∈ G(Uα

i ×Sα S) such that

(2.3) gi(z1)ijg
−1
j = (z2)ij for all i, j ∈ I

(where in (2.3) the gi’s are restricted to the Uα
i ×Sα Uα

j ×Sα S as usual). Because G is
locally of finite presentation the gi’s may be assumed to come from some elements g

γ
i ∈

Gγ(Uα
i ×Sα Sγ) for some γ ≥ α. Replacing zα

1 and zα
2 by their images z

γ
1 and z

γ
2 under

the base change uαγ : Sγ → Sα we see that g
γ
i (zγ

1 )ij(g
γ
j )−1 and (zγ

2 )ij have the same image
under the base change uγ : S → Sγ . Again since G is of finite presentation, we obtain that
gδ
i (z

δ
1)ij(g

δ
j )

−1 = (zδ
2)ij after a base change uγδ : Sδ → Sγ with δ ≥ γ suitably chosen.

Remark 2.4. We assume throughout that S0 and the Sλ are quasicompact and quasisep-
arated.

(a) If G0 is flat, affine and locally of finite presentation over S0, then by descent theory
the sheaf torsors whose isomorphism classes are measured by H1

fppf(Sλ,Gλ) are repre-

sentable. Similarly for H1
fppf (S,G). The surjectivity of the map lim−→H1

fppf(Sλ,Gλ) →

H1
fppf(S,G) is as in (10.16) of [SGA3] VIB (where the case when the Sλ are affine and the

Gλ are of finite presentation is studied). Groups which are locally of finite presentation but
not finitely presented (which are covered by our result) arise naturally in the classification
of reductive groups, in particular of tori.

(b) Let G be a finitely presented group scheme over S. By Proposition 2.3 the group
G is obtained from a finitely presented group over Sα by base change. Replacing Λ by
Λα = {λ ∈ Λ : λ ≥ α} puts us back within the assumptions of Theorem 2.1. Thus,
H1(S,G) can be computed in terms of direct limits.

(c) If G is a flat affine and finitely presented group scheme over S, and if Y is a torsor over
S under G, then the twisted S-group Y G is also finitely presented and the considerations
of (b) above apply.

(d) In Theorem 2.1 the assumption that G0 be representable is not crucial. The proof
goes through as long as G0 is a group functor on S0 which is locally of finite presentation.2

An important example is the case when G0 is the group of automorphisms AutS0
(X0) of a

finitely presented scheme X0 over S0 (see [A] for details).
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triviaux, I.H.É.S. Publ. Math. 75 (1992), 97–122.

[GP1] P. Gille and A. Pianzola, Isotriviality of torsors over Laurent polynomials rings, C.
R. Acad. Sci. Paris, Ser. I 340 (2005) 725–729.

[GP2] P. Gille and A. Pianzola, Galois cohomology and forms of algebras over Laurent
polynomial rings, Math. Annalen (in press).

[GP3] P. Gille and A. Pianzola, Isotriviality and étale cohomology of Laurent polynomial
rings, preprint (2007).
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