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Abstract

The aim of this note is to extend to bilinear forms in characteristic 2 a result of Jacobson which states that
over any field, two Albert quadratic forms are similar if and only if they have the same Clifford invariant.

1. Introduction

Throughout this note F denotes a field. To a biquaternion algebras Q1 ⊗F Q2, we attach a
6-dimesnional quadratic form ϕ given by NQ1

⊥ −NQ2
≃ H ⊥ ϕ, where NQi

is the norm form
of the quaternion algebra Qi, and H is the hyperbolic plane (⊥ and ∼= mean the orthogonal
sum and isometry, respectively). The form ϕ has trivial signed discriminant (resp. trivial Arf
invariant) if the characteristic is 6= 2 (resp. if the characteristic is 2). We call such a form an
Albert quadratic form. A well-known result of Jacobson states that two biquaternion algebras
are isomorphic if and only if their corresponding Albert quadratic forms are similar [3]. In
other words, this result says that two Albert quadratic forms are similar if and only if they
have the same Clifford invariant. Using a method based on quadratic forms theory, Mammone
and Shapiro recovered Jacobson’s result [7], and also completed it in characteristic 2 (see [7,
comments in the middle of page 529]). The Clifford invariant of a quadratic form (nonsingular
quadratic form if the characteristic is 2) is defined in the 2-torsion 2Br(F ) of the Brauer group of
F . It is well-known that 2Br(F ) is isomorphic to I2F/I3F (resp. I2

q F/I3
q F ) if the characteristic

is not 2 (resp. if the characteristic is 2), where IkF = (IF )k, Ik
q F = Ik−1F ⊗ Wq(F ) and

IF denotes the ideal of the Witt ring of even dimensional quadratic forms or bilinear forms
according as the characteristic is different or equal to 2, and Wq(F ) denotes the Witt group of
nonsingualr quadratic forms [1]. These isomorphisms are due to Merkurjev [8] and Sah [10],
respectively. Since in characteristic 2 we should distinguish between quadratic and bilinear
forms, it is natural to ask whether an analogue of Jacobson’s result holds for bilinear forms in
characteristic 2. As for quadratic forms, an Albert bilinear form means a 6-dimensional form
with trivial determinant. Of course there is no notion of Clifford invariant for bilinear forms
in characteristic 2, but we have a result of Kato which gives an analogue of Merkurjev’s and
Sah’s results cited before (see Theorem 2.1), and where the group of finite sums of logarithmic
differential forms (see below) is used as for 2Br(F ) in the case of quadratic forms. We will see
that this ingredient suffices to get a result similar to that of Jacobson.

Recall that for n ≥ 1, one denotes by Ωn
F =

∧n
Ω1

F the vector space of n-differential forms
over F , where Ω1

F is the F -vector space generated by symbols dx, x ∈ F , subject to the
relations: d(x + y) = dx + dy and d(xy) = xdy + ydx, for x, y ∈ F . An element dx1

x1

∧ · · · ∧ dxn

xn

is called an n-logarithmic symbol. A sum of n-logarithmic symbols has length k if it is a sum
of k n-logarithmic symbols but not a sum of less that k n-logarithmic symbols.

For a1, · · · , an ∈ F ∗ := F\{0}, let 〈a1, · · · , an〉b denote the bilinear form given by∑n

i=1 aixiyi. It is clear that any Albert bilinear form γ is isometric to α 〈r, s, rs, u, v, uv〉b
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for suitable scalars α, r, s, u, v ∈ F ∗. We associate to such a form γ the following sum of
2-logarithmic symbols:

e2(γ) :=
dr

r
∧ ds

s
+

du

u
∧ dv

v
∈ Ω2

F .

This is an invariant of γ modulo I3F (see below). Our main result in this note is the following
theorem:
Theorem 1.1. Let F be a field of characteristic 2, and let γ1, γ2 be two Albert bilinear forms.
Then we have the following statements:
(1) The length of e2(γ1) is 2, 1 or 0 according as the Witt index of γ1 is 0, 1 or 3.
(2) γ1 is similar to γ2 if and only if e2(γ1) = e2(γ2).

By using Theorem 2.1 of Kato, we reduce the proof of Theorem 1.1 to the use of methods
from quadratic and bilinear forms theory as was used in [7]. However, some of our results differ
from those given in [7], and their proofs require more details. The reason is that for bilinear
forms in characteristic 2 some classical results, like the Witt cancellation and the representation
criterion, fail. Moreover, we will be based on the connection between totally singular quadratic
forms and bilinear forms, and the notion of norm degree introduced in [2, Section 8] will play
a crucial rôle.

The rest of this note is organized as follows. We finish this section by giving backgrounds on
quadratic and bilinear forms in characteristic 2. The next section in devoted to some results
needed for the proof of Theorem 1.1, and more specifically it will concern the similarity of
4-dimensional bilinear forms in characteristic 2, and then in the third section we prove the
theorem.

Form now on, we assume that F is of characteristic 2. The expression “bilinear form” means
“regular symmetric bilinear form of finite dimension”. To keep this note self-contained we
briefly recall some notions. More details can be found in [1], [2].

For a quadratic (or bilinear) form ϕ, we denote by dimϕ its dimension. Two quadratic (or
bilinear) forms ϕ and ψ are called similar if ϕ ∼= αψ for some scalar α ∈ F ∗. A quadratic
(or bilinear) form ϕ is called a subform of another form ψ if there exists a form ϕ′ such that
ψ ∼= ϕ ⊥ ϕ′.

To any bilinear form B with underlying vector space V , we associate a unique quadratic
form B̃ given by: B̃(v) = B(v, v) for v ∈ V . A quadratic form ϕ is called totally singular if
ϕ ∼= B̃ for some bilinear form B. If B ∼= 〈a1, · · · , an〉b, then we denote B̃ by 〈a1, · · · , an〉.

For a field extension K/F and a quadratic (or bilinear) form ϕ, the form ϕ ⊗ K is denoted
by ϕK .

For a quadratic form ϕ, we denote by F (ϕ) its function field, i.e., the function field of the
affine quadric given by ϕ = 0. The function field of a bilinear form B is by definition the field
F (B̃).

A quadratic form ϕ with underlying vector space V is isotropic if there exists v ∈ V \{0}
such that ϕ(v) = 0. A bilinear form B is isotropic if B̃ is isotropic too. A form (quadratic or
bilinear) is anisotropic if it is not isotropic.

Any bilinear form B decomposes as B ∼= Ban ⊥ M1 ⊥ · · · ⊥ Mn, where Ban is anisotropic

and Mi is given by the matrix

(
ai 1
1 0

)
for some ai ∈ F ∗ (1 ≤ i ≤ n). The form Ban is unique

up to isometry, we call it the anisotropic part of B. The interger n is called the Witt index
of B and it is denoted by iW (B). The form B is called metabolic if 2iW (B) = dimB. Two
bilinear forms B and C are called equivalent, denoted by B ∼ C, if B ⊥ M ∼= C ⊥ M ′ for
some metabolic forms M and M ′. By the uniqueness of the anisotropic part the condition
B ∼ C implies Ban

∼= Can. Recall that the isotropy of a bilinear form B is equivalent to say
that iW (B) ≥ 1.
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The form B = 〈1, a1〉b ⊗· · ·⊗ 〈1, an〉b is called an n-fold bilinear Pfister form, and is denoted

by 〈〈a1, · · · , an〉〉b. In this case, we denote B̃ by 〈〈a1, · · · , an〉〉 and we call it an n-fold quasi-
Pfister form. Recall that a bilinear Pfister form is isotropic if and only if it is metabolic, and
for any integer n ≥ 1, the ideal InF is additively generated by n-fold bilinear Pfister forms.

We say that a totally singular form ϕ is a quasi-Pfister neighbor if there exists a quasi-Pfister
form π such that ϕ is similar to a subform of π and 2 dimϕ > dimπ. In this case, π is unique
up to isometry, and for any field extension K/F , the forms ϕK and πK are simultaneously
isotropic or anisotropic.

The norm field of a nonzero totally singular form ϕ, denoted by NF (ϕ), is the field F 2(αβ |
α, β ∈ DF (ϕ)), where DF (ϕ) is the set of scalars in F ∗ represented by ϕ. We denote by
ndegF (ϕ) the integer [NF (ϕ) : F 2] and we call it the norm degree of ϕ. It is clear that NF (ϕ) =
NF (αϕ) for any scalar α ∈ F ∗. If ϕ is anisotropic and 2n < dim ϕ ≤ 2n+1, then ndegF (ϕ) ≥
2n+1, and ndegF (ϕ) = 2n+1 if and only if ϕ is a quasi-Pfister neighbor. If ψ is a quadratic form
such that ϕF (ψ) is isotropic, then ψ is totally singular and NF (ψ) ⊂ NF (ϕ). Moreover, there
is a bijection between anisotropic n-fold quasi-Pfister forms and purely inseparable extensions
of F 2 of degree 2n inside F , it is given by F 2(a1, · · · , an) ↔ 〈〈a1, · · · , an〉〉. We refer to [2,
Section 8] for more details on norm field and some of its applications.

2. Preliminaries

It is clear that the map d : F −→ Ω1
F : x 7→ dx, extends to a map d : Ωn

F −→ Ωn+1
F defined

by:

d (xdx1 ∧ dx2 ∧ · · · ∧ dxn) = dx ∧ dx1 ∧ dx2 ∧ · · · ∧ dxn.

There is a well-defined homomorphism ℘n : Ωn
F −→ Ωn

F /dΩn−1
F given on generators by:

℘n

(
x

dx1

x1
∧ · · · ∧ dxn

xn

)
= (x2 − x)

dx1

x1
∧ · · · ∧ dxn

xn

.

We write νF (n) the kernel of this map. A crucial result that we will use is the following
theorem due to Kato which gives a link between this kernel and bilinear forms. Kato also
established a relation between the cokernel of ℘n and quadratic forms, but we don’t need it
here.
Theorem 2.1 ([4]). For any integer n ≥ 1, there is an isomorphism en : InF/In+1F

∼−→
νF (n), given by:

en
(∑

〈〈a1, · · · , an〉〉b + In+1F
)

=
∑ da1

a1
∧ · · · ∧ dan

an

.

We will use this theorem in the case n = 2. Another result that we need is the following
theorem which gives information on the dimensions of bilinear forms in InF :

Theorem 2.2. Let B ∈ InF be anisotropic (n ≥ 1). Then:
(1) ([6]) dimB = 0 or dimB ≥ 2n.
(2) If dimB > 2n, then dimB ≥ 2n + 2n−1.

Statement (2) can be deduced from a result of Vishik [11] by the same argument used for
the proof of [6, Prop. 5.7].

Lemma 2.3. Let B be an anisotropic bilinear form and d ∈ F ∗\F ∗2. Then, B becomes
metabolic over F (

√
d) if and only if B ∼= α1

〈
1, d + x2

1

〉
b
⊥ · · · ⊥ αn

〈
1, d + x2

n

〉
b

for some
αi, xi ∈ F with αi 6= 0, 1 ≤ i ≤ n.



4 AHMED LAGHRIBI

Proof. Use [5, Lem. 3.4] and the fact that for a 6= 0, b ∈ F , the bilinear form given by the

matrix

(
a b
b ad

)
is isometric to α

〈
1, d + x2

〉
b

for some α 6= 0, x ∈ F .

Some results on bilinear forms of dimension 4 will be needed, more particularly properties on
the similarity between such forms. Before we give our contribution in this direction (Proposition
2.5 and Corollary 2.6), we start by clarifying the situation whether a 4-dimensional bilinear
form becomes isotropic over the inseparable quadratic extension given by its determinant.
Recall that an anisotropic quadratic form of dimension 4 (nonsingular if the characteristic
is 2) stays anisotropic over the quadratic extension given by its signed discriminant (or the
separable quadratic extension given by its Arf invariant). For bilinear forms in characteristic 2
the situation is different as shows the following proposition:

Proposition 2.4. Let B be a bilinear form of dimension 4 whose determinant is not trivial.
Then, B becomes isotropic over the quadratic inseparable extension given by its determinant
if and only if ndegF (B̃) ≤ 4.

Proof. Write B = α 〈r, s, rs, d〉b for suitable scalars α, r, s ∈ F ∗. One has NF (B̃) = F 2(r, s, d)

and thus ndegF (B̃) ≤ 8. We may suppose that B is anisotropic, in particular 〈r, s, rs〉b is

anisotropic too, and thus [F 2(r, s) : F 2] = 4. Hence, ndegF (B̃) ∈ {4, 8}.
Suppose ndegF (B̃) = 4. Hence, d ∈ F 2(r, s). Since d 6∈ F 2, one can write F 2(r, s) = F 2(d, k)

for some k ∈ F ∗. In particular, 〈〈r, s〉〉 ∼= 〈〈d, k〉〉. Now it is clear that 〈〈r, s〉〉
F (

√
d) is isotropic.

Then, 〈r, s, rs, d〉F (
√

d) is also isotropic, i.e., BF (
√

d) is isotropic.
Conversely, if B

F (
√

d) is isotropic, then (〈〈r, s〉〉b)F (
√

d) is metabolic. By Lemma 2.3 it is

clear 〈〈r, s〉〉b ∼=
〈〈

d + x2, y
〉〉

for suitable scalars x, y ∈ F . Hence, d ∈ F 2(r, s) and then

ndegF (B̃) = 4.

The following proposition is in the spirit of a result due to Wadsworth [12, Theorem 7]. In
our case, the notion of norm degree plays an essential rôle:

Proposition 2.5. Let B = 〈r, s, rs, d〉b and C = 〈u, v, uv, d〉b be two anisotropic bilinear

forms of dimension 4 having the same determinant d. Suppose that ndegF (B̃) = 8 and
〈r, s, rs, u, v, uv〉 is isotropic. Then, B and C are similar over F (

√
d) if and only if there exists

x ∈ F ∗ such that
〈
r, s, rs, d + x2

〉
is similar to

〈
u, v, uv, d + x2

〉
.

Proof. It is clear that NF (B̃) = F 2(r, s, d). Suppose that
〈
r, s, rs, d + x2

〉
b

is similar to〈
u, v, uv, d + x2

〉
b

for some x ∈ F . Since (
〈
d + x2

〉
b
)
F (

√
d)

∼= (〈1〉b)F (
√

d)
∼= (〈d〉b)F (

√
d), it

is clear that the forms 〈r, s, rs, d〉b and 〈u, v, uv, d〉b are similar over F (
√

d).
Conversely, suppose that BF (

√
d) is similar to CF (

√
d). Then, by using the multiplicativity

of bilinear Pfister forms, we get that (〈〈r, s〉〉b ⊥ 〈〈u, v〉〉b)F (
√

d) is metabolic. The isotropy of
〈r, s, rs, u, v, uv〉b and Lemma 2.3 imply that

〈〈r, s〉〉b ⊥ 〈〈u, v〉〉b ∼ α
〈
1, d + x2

〉
b
⊥ β

〈
1, d + y2

〉
b

for suitable α, β, x, y ∈ F with α, β 6= 0. But by comparing determinants in the last relation,
we may suppose that x = y. Moreover, by the subform theorem for bilinear forms [5, Prop.
1.1], we may suppose that α is represented by 〈r, s, rs〉b, and thus 〈〈r, s〉〉b ∼= α 〈〈r, s〉〉b. Hence
we get

α(〈〈r, s〉〉b ⊥
〈
1, d + x2

〉
b
) ∼ 〈〈u, v〉〉b ⊥ β

〈
1, d + x2

〉
b
.

The anisotropic part of 〈〈r, s〉〉b ⊥
〈
1, d + x2

〉
b

has dimension 4, and thus it is isometric to〈
r, s, rs, d + x2

〉
b
, otherwise the form 〈r, s, rs〉b would represent d + x2, and thus d ∈ F 2(r, s),

a contradiction with ndegF (B̃) = 8. By the uniqueness of the anisotropic part, the form
〈〈u, v〉〉b ⊥ β

〈
1, d + x2

〉
b

also has an anisotropic part of dimension 4. It follows from the
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multiplicativity of bilinear Pfister forms that α
〈
r, s, rs, d + x2

〉
b
∼= λ

〈
u, v, uv, d + x2

〉
b

for
some scalar λ ∈ F ∗. Hence, the claim.

We don’t know if Proposition 2.5 remains true in the case of norm degree 4. As a corollary
of this proposition we get the following:

Corollary 2.6. Let B and C be anisotropic bilinear forms of dimension 4 such that B ⊥ C ∈
I3F . Then, B is similar to C.

Proof. The forms B and C have the same determinant since B ⊥ C ∈ I3F . Set B =
α 〈r, s, rs, l〉b and C = β 〈u, v, uv, l〉b. We may suppose that l is not a square, otherwise we
get the similarity by Theorem 2.2 and the multiplicativity of bilinear Pfister forms.

Since B ⊥ C ∈ I3F , it follows from Theorem 2.1 that e2(B ⊥ C) = du
u

∧ dv
v

+ dr
r

∧
ds
s

+ d(αβ)
αβ

∧ dl
l

= 0. Hence, by statement (1) of Theorem 1.1 the form 〈r, s, rs, u, v, uv〉b is
isotropic (note that we can use statement (1) of Theorem 1.1 since its proof is independent
of this corollary). Moreover, Theorem 2.2(1) implies that the forms BF (C) and CF (B)

are isotropic, and thus NF (B̃) = NF (C̃) = F 2(r, s, l). Since B ⊥ C ∈ I3F , we get
(〈〈r, s〉〉b ⊥ 〈〈u, v〉〉b)F (

√
l) ∈ I3F (

√
l), and again by Theorem 2.2(1) we deduce the isometry

(〈〈r, s〉〉b)F (
√

l)
∼= (〈〈u, v〉〉b)F (

√
l). Now it is clear that B

F (
√

l) similar to C
F (

√
l). We discuss two

cases:
(1) Suppose that ndegF (B̃) = 8: In this case we conclude by Proposition 2.5 that〈

r, s, rs, l + x2
〉

b
∼= k

〈
u, v, uv, l + x2

〉
b

for some scalars x, k 6= 0 ∈ F . In particular,

〈〈r, s〉〉b ∼
〈
1, l + x2

〉
b
⊥ k 〈〈u, v〉〉b ⊥ k

〈
1, l + x2

〉
b
.

If we combine this relation with B ⊥ C ∈ I3F , it is clear that modulo I3F we get

αk
〈
1, l + x2

〉
b
⊥ α

〈
l, l + x2

〉
b
⊥ β 〈1, l〉b ∈ I3F.

Hence

αk
〈
1, l + x2

〉
b
⊥ α

〈
l, l + x2

〉
b
∼ β 〈1, l〉b .

Since 〈r, s, rs, l〉b ∼ k 〈〈u, v〉〉b ⊥ k
〈
1, l + x2

〉
b
⊥

〈
l, l + x2

〉
b
, it follows that 〈r, s, rs, l〉b ∼

k 〈〈u, v〉〉b ⊥ αβ 〈1, l〉b. By the uniqueness of the anisotropic part and the multiplicativity of
bilinear Pfister forms, we conclude that B ∼= mC for some scalar m ∈ F ∗.

(2) Suppose that ndegF (B̃) = 4: Since 〈r, s, rs〉b is anisotropic, the form 〈〈r, s〉〉b is anisotropic

too, and then [F 2(r, s) : F 2] = 4. Hence, NF (B̃) = NF (C̃) = F 2(r, s) = F 2(u, v) and l ∈
F 2(r, s).

(i) If B ⊥ C is isotropic, then it is metabolic and thus B ∼= C.
(ii) If B ⊥ C is anisotropic. By Theorem 2.2(1), B ⊥ C becomes metabolic over its function

field. It follows from [5, Cor. 5.5] that B ⊥ C is similar to 3-fold bilinear Pfister form. Hence,

ndegF (B̃ ⊥ C) = 8 = ndegF (α(B̃ ⊥ C)). By a simple computation with the fact l ∈ F 2(r, s) =

F 2(u, v), one has NF (α(B̃ ⊥ C)) = F 2(r, s, αβ). Moreover, 〈〈r, s〉〉 ∼= 〈〈u, v〉〉 since F 2(r, s) =
F 2(u, v). Hence, 〈u, v, uv〉 is isotropic over K := F (〈〈r, s〉〉) since it is a quasi-Pfister neighbor
of 〈〈u, v〉〉. Consequently, (〈u, v, uv〉b)K ∼ (〈1〉b)K and similarly (〈r, s, rs〉b)K ∼ (〈1〉b)K . Hence,
after extending the relation α(B ⊥ C) ∈ I3F to the field K, we conclude that (〈〈l, αβ〉〉b)K is
metabolic. In particular, 〈〈l, αβ〉〉 ∼= 〈〈e, f〉〉 for some e, f ∈ F 2(r, s) [5, Th. 1.2]. This implies
that αβ ∈ F 2(r, s), and thus [F 2(r, s, αβ) : F 2] = 4, a contradiction.

3. Proof of Theorem 1.1

(1) (i) If e2(γ1) has length 2, then it is clear that iW (γ1) = 0.
(ii) If e2(γ1) has length 1: Let k, l ∈ F ∗ be such that e2(γ1) = dk

k
∧ dl

l
. Let K be the function

field of τ = 〈〈k, l〉〉b. Since τK is metabolic, one has e2(γ1)K = 0. It follows from Theorem
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2.1 that (γ1)K ∈ I3K, and by Theorem 2.2 (γ1)K is metabolic. Since ndegF (τ̃ ) = 4 because
τ is anisotropic, it follows from [5, Th. 1.2] that γ1 is isotropic. Moreover, the form γ1 is not
metabolic by reason of lenght, hence iW (γ1) = 1.

(iii) If e2(γ1) has length 0, then it follows from Theorems 2.1 and 2.2 that iW (γ1) = 3.

(2) Let γ1, γ2 be two Albert bilinear forms. We have to show that γ1 is similar to γ2 if and
only if e2(γ1) = e2(γ2).

Suppose that γ1 is similar to γ2. Then, γ1 ⊥ γ2 ∈ I3F . Il follows from Theorem 2.1 that
e2(γ1) = e2(γ2).

Conversely, suppose that e2(γ1) = e2(γ2). Then, again by Theorem 2.1 γ1 ⊥ γ2 ∈ I3F .
After multiplying, if necessary, γ1 and γ2 by suitable scalars, we may suppose that γ1 ⊥ γ2 is
isotropic. By Theorem 2.2(2) the Witt index of γ1 ⊥ γ2 is at least 2. Let k, l ∈ F ∗ be such
that γ1

∼= k 〈1, l〉 ⊥ B and γ2 = k 〈1, l〉 ⊥ C for some 4-dimensional bilinear forms B and C
which have the same determinant l. Write B = α 〈r, s, rs, l〉 and C = β 〈u, v, uv, l〉. An easy
computation of e2(γ1) = e2(γ2) gives that

dr

r
∧ ds

s
+

dl

l
∧ d(kα)

kα
=

du

u
∧ dv

v
+

dl

l
∧ d(kβ)

kβ
.

In particular,

dr

r
∧ ds

s
+

du

u
∧ dv

v
=

dl

l
∧ d(k2αβ)

k2αβ
.

We conclude by statement (1) that 〈r, s, rs, u, v, uv〉b is isotropic. Since B ⊥ C ∈ I3F , it follows
from Corollary 2.6 that B ∼= mC for some scalar m ∈ F ∗. Since γ1 ⊥ γ2 ∈ I3F , one deduces
that mγ1 ⊥ γ2 ∈ I3F , i.e., mk 〈1, l〉 ⊥ k 〈1, l〉 ∈ I3F . Hence, mk 〈1, l〉 ∼= k 〈1, l〉, and γ1

∼= mγ2.
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