

IRREGULAR AND SINGULAR LOCI OF


COMMUTING VARIETIES


VLADIMIR L. POPOV∗


To Bertram Kostant on the occasion of his 80th birthday


Abstract. Let C be the commuting variety of the Lie algebra g of a connected noncom-
mutative reductive algebraic group G over an algebraically closed field of characteristic
zero. Let Csing be the singular locus of C and let Cirr be the locus of points whose G-
stabilizers have dimension > rkG. We prove that: (a) Csing is a nonempty subset of Cirr;
(b) codimCC


irr = 5 − max l(a) where the maximum is taken over all simple ideals a of
g and l(a) is the “lacety” of a; (c) if t is a Cartan subalgebra of g and α ∈ t∗ a root


of g with respect to t, then G(Ker α × Ker α) is an irreducible components of Cirr of
codimension 4 in C. This yields the bound codimCC


sing > 5−max l(a) and, in particular,
codim


C
Csing > 2. The latter may be regarded as an evidence in favor of the known long-


standing conjecture that C is always normal. We also prove that the algebraic variety C


is rational.


1. Introduction


1.1. Let g be a noncommutative reductive Lie algebra over an algebraically closed field k of
characteristic zero with adjoint group G. Let C = C(g) be the commuting variety of g,


C = C(g) := {(x, y) ∈ g × g | [x, y] = 0}.


The known long-standing conjectures assert that


(N) C is normal;
(R) the ideal of regular functions on g×g vanishing on C is generated by the coordinates


of [x, y] for a generic point (x, y) of g × g.


Let Csing be the singular locus of C. If Conjecture (N) is true, then, according to the known
theorem in algebraic geometry (see, e.g., [Sh, Ch. II, §5, Theorem 3]),


codimC Csing
> 2. (1)


1.2. In this paper we study codimC Csing. Our approach is based on the comparison of Csing


with the irregular locus Cirr whose codimension we manage to compute. The subvariety Cirr


is determined by the natural action of G on C as follows.
Let X be an algebraic variety endowed with an action of an algebraic group H . For a


point x ∈ X , denote by H(x) and Hx respectively the H-orbit and H-stabilizer of x. If Y is
a subset of X , we put


Y reg := {x ∈ Y | dim H(x) > dim H(y) for every y ∈ Y }, X irr := X \ Xreg
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(although the action is not reflected in this notation, below it is always clear from the contents
what action is meant). The set Y reg is open in Y .


As a first step we prove the following


Theorem 1.3.


(i) (0, 0) ∈ Csing, so Csing 6= ∅;


(ii) Csing ⊆ Cirr;


(iii) If Conjecture (R) is true, then Csing = Cirr.


1.4. Then we compute codimC Cirr. To this end we first prove that


2 6 codimC Cirr 6 4. (2)


We give a direct proof of (2) in the framework of decomposition classes of g. Actually we
deduce the upper bound in (2) from the following


Theorem 1.5. Let t be a Cartan subalgebra of g and let α ∈ t∗ be a root of g with respect


to t. Then


G(Ker α × Ker α),


is an irreducible component of Cirr of codimension 4 in C.


Then we apply bounds (2) to computing codimC Cirr. The latter problem is immediately
reduced to that for simple Lie algebras g. Indeed, the decomposition


g = g1 ⊕ · · · ⊕ gd ⊕ z,


where g1, . . . , gd are simple ideals and z is the center of g, clearly, implies the decomposition


C(g) = C(g1) × · · · × C(gd) × (z × z) (3)


that, in turn, implies that


Creg = C(g1)
reg × · · · × C(gd)


reg × (z × z)


and hence
codimC Cirr = min


i
codimC(gi)Cirr(gi).


For simple g, we obtain the following complete answer:


Theorem 1.6. Let g be a simple Lie algebra. Then


codimC Cirr = 5 − l,


where l is the “lacety” of g, i.e.,


l =

















1 if g is of type Ar, Dr, E6, E7, or E8,


2 if g is of type Br, Cr, or F4,


3 if g is of type G2.


The proof of Theorem 1.6 is reduced by means of (2) to finding dimensions of certain
subvarieties in the centralizers of some nilpotent elements of some semisimple Lie algebras
of rank 6 3. To tackle the latter problem we go case-by-case and utilize in our arguments
some computations.


1.7. The formulated results yield the following information about codimC Csing. Clearly, (3)
implies that


C \ Csing =
(


C(g1) \ C(g1)
sing


)


× · · · ×
(


C(gd) \ C(gd)
sing


)


× (z × z), (4)


that, in turn, yields
codimC Csing = min


i
codimC(gi)C(gi)


sing. (5)


Thereby computing codimC Csing is reduced to that for simple algebras g. Theorems 1.3 and
1.6 imply the following
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Theorem 1.8. Let g be a simple Lie algebra. Then


codimC Csing > 5 − l,


where l is the “lacety” of g.


The lower bound in (2) and Theorem 1.3 show that inequality (1) indeed holds for every
algebra g. Moreover, from Theorem 1.8 and (5) we deduce that for some algebras g a stronger
inequality holds:


Corollary 1.9. For every noncommutative reductive Lie algebra g we have:


(i) codimCCsing > 2;
(ii) If g contains no simple ideals of type G2, then codimC Csing > 3;
(iii) If every simple ideal of g is of type A, then codimC Csing > 4.


Example 1.10. Let g = sl2. Since SL2-stabilizer of every nonzero element of sl2 is one-
dimensional, we have girr = {0}. This implies that Cirr = {(0, 0)}. By Theorem 1.3 this,
in turn, yields that Csing = {(0, 0)}. As dim C = 4 by (10) below, we have codimCCsing =
codimCCirr = 4 that agrees with Theorems 1.6 and 1.8.


This case is simple enough for obtaining this and further information directly, exploring
the equations. Namely, take an sl2-triple e, f, h, see [Bo2, §11, 1], as a basis of g. Then the
coordinates of [x1e + x2f + x3h, y1e + y2f + y3h] in this basis generate in the polynomial
algebra k[x1, x2, x3, y1, y2, y3] the ideal


J := (x2y3 − x3y2, x1y2 − x2y1, x1y3 − x3y1). (6)


Using (6) and, e.g., a computer algebra system (we used MAGMA), one immediately verifies
that J is prime. Hence Conjecture (R) is true in this case. This makes it possible to
prove that Csing = {(0, 0)} directly exploring the rank of the Jacobi matrix of the system of
generators of J given by (6).


Consider x1, x2, x3, y1, y2, y3 as the standard coordinate functions on the algebra


D := {diag(a1, . . . , a6) ∈ Mat6×6 | ai ∈ k}.
Then C is a closed subset of D. The group D∗ of invertible elements of D is a 6-dimensional
torus and (6) implies that the intersection of kernels of the characters x1x


−1
2 y−1


1 y2 and


x1x
−1
3 y−1


1 y3 of D∗ coincides with the open subset T := C ∩ D∗ of C. Since C is irreducible,
this means that T is a 4-dimensional subtorus of D∗ and C is its closure in D. Hence C is the
affine toric variety, namely, the closure of T -orbit of the identity matrix I6 ∈ D with respect
to the action of T on D by the left multiplication. Applying the criterion of normality of
such orbit closures [PV1, Theorem 10], one easily verifies that the variety C is normal, i.e.,
in this case Conjecture (N) is true as well. ¤


Corollary 1.9(i) may be regarded as an evidence in favor of Conjecture (N).


1.11. Finally, we prove the following


Theorem 1.12. The algebraic variety C is rational.


1.13. We close this introduction by noting that the arguments and techniques of this paper
are suitable, mutatis mutandis, for obtaining analogous results on commuting varieties asso-
ciated with symmetric spaces and, more generally, cyclically graded semisimple Lie algebras,
cf. [PV2, 8.5].


1.14. Notational conventions.


x = xs +xn is the Jordan decomposition of an element x ∈ g with xs semisimple
and xn nilpotent.
t is a Cartan subalgebra of g.
Φ ⊆ t∗ is the root system of g with respect to t.
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∆ is a system of simple roots of Φ.
Φ+ is the set of positive roots of Φ with respect to ∆.
m := dim g.
r := dim t.
ab is the centralizer of a subset b of g in a subset a of g,


ab := {x ∈ a | [x, y] = 0 for all y ∈ b}.
z(a) := aa is the center of a.
Lie H is the Lie algebra of an algebraic groups H .
Tx(X) is the tangent space to an algebraic variety X at a point x ∈ X .
|M | is the number of elements of a set M .
〈S 〉 is the k-linear span a subset S of a vector space over k.
In is the identity n × n matrix.


We say that a property holds for points in general position of an algebraic variety X if it
holds for every point laying off a proper closed subset of X .


Our numeration of simple roots is that of Bourbaki [Bo1].


2. Morphism µ


2.1. If x ∈ g, then Lie Gx = gx. Hence, for every (x, y) ∈ g × g,


Lie G(x,y) = gx ∩ gy = (gx)y = (gy)x. (7)


By [R] we have C = G(t × t). This immediately implies that C is an irreducible variety,


Creg = {(x, y) ∈ C ⊂ g × g | dim(gx)y = r},
Cirr = {(x, y) ∈ C ⊂ g × g | dim(gx)y > r},


(8)


and the fibers of the morphism


π1 : C → g, (x, y) 7→ x, (9)


over points in general position in g are isomorphic to t. Since π1 is surjective, the latter
property yields, by theorem on dimension of fibres (see, e.g., [Sh, Ch. I, §6, Theorem 7]),
that


dim C = m + r. (10)


2.2. Consider the morphism


µ : g × g → g, (x, y) 7→ [x, y]. (11)


We have C = µ−1(0).


Lemma 2.3. Let z = (a, b) be a point of g × g. Then


(i) dim Ker dzµ = m + dim Gz;


(ii) dim ([g, a] + [g, b]) = dim G(z).


Proof. We identify in the natural way g ⊕ g (respectively, g) with Tz(g × g) (respectively,
Tµ(z)(g)). Then (11) implies that the differential dzµ : g ⊕ g → g is given by the formula


dzµ((x, y)) = [x, b] + [a, y] for every (x, y) ∈ g ⊕ g. (12)


Let g × g → k, (x, y) 7→ 〈x, y〉, be a nondegenerate G-invariant symmetric bilinear form
(since g is reductive, it exists). Then from (12) we deduce that for every t ∈ g, (x, y) ∈ g⊕g,
we have


〈t, dzµ((x, y))〉 = 〈t, [x, b]〉 + 〈t, [a, y]〉 = 〈[b, t], x〉 + 〈[t, a], y〉.







IRREGULAR AND SINGULAR LOCI OF COMMUTING VARIETIES 5


This means that if g∗ and (g⊕g)∗ = g∗⊕g∗ are identified by means of 〈 , 〉 with, respectively,
g and g ⊕ g, then the map (dzµ)∗ : g → g ⊕ g dual to dzµ is given by the formula


(dzµ)∗(t) = ([b, t], [t, a]). (13)


¿From (13) we deduce that
Ker (dzµ)∗ = ga ∩ gb,


which, together with (7), imply that


rk (dzµ)∗ = m − dim(ga ∩ gb) = m − dimGz . (14)


Now (i) follows from (14) because


rk dzµ = rk (dzµ)∗. (15)


Further, by (12) the image of dzµ is [g, a] + [g, b]. Since dimG(z) = m − dimGz , this,
(14), and (15) imply (ii). ¤


Lemma 2.4. Let z be a point of C. Then


(i) dim Ker dzµ > dim C;


(ii) The following properties are equivalent:


(a) dim Kerdzµ = dim C;


(b) z ∈ Creg.


Proof. This follows from Lemma 2.3(i), (7), (8), and (10). ¤


2.5. Proof of Theorem 1.3. By (4), proving (i), we may (and shall) assume that g is simple.
The point (0, 0) is fixed under the action of G on g × g and the G-module T(0,0)(g × g)
is isomorphic to g ⊕ g. Since g is simple, this implies that every proper submodule of
T(0,0)(g × g) is isomorphic to g and, in particular, its dimension is m. But T(0,0)(C) is
a nonzero submodule of T(0,0)(g × g) and dim T(0,0)(C) > dim C = m + r > m. Hence
T(0,0)(C) = T(0,0)(g × g) and therefore dim T(0,0)(C) = 2m. Since m > r,we deduce from
here that dim T(0,0)(C) > dim C. This proves (i).


As C = µ−1(0), we have, for every point z ∈ C, the inclusion


Tz(C) ⊆ Ker dzµ. (16)


Let z ∈ Csing, i.e., dim Tz(C) > dim C. Then inclusion (16) yields that dimKer dzµ > dim C;
whence z ∈ Cirr by Lemma 2.4(ii). This proves (ii).


Assume that Conjecture (R) is true. Then Tz(C) = Ker dzµ for every point z ∈ C and
hence the inclusion z ∈ Csing is equivalent to the inequality dim Ker dzµ > dim C. By
Lemma 2.4(ii) the latter inequality is equivalent to the inclusion z ∈ Cirr. This proves (iii).
¤


2.6. Remark. It is claimed in [NS, Theorem 1.1] that Csing = Cirr for g = gln. Unfortunately,
the proof of this claim given in [NS] is incorrect since the arguments on p. 548 are based on
the implicit assumption that Conjecture (R) is true. However, these arguments do prove the
inclusion Csing ⊆ Cirr for g = gln that is the paricular case of Theorem 1.3(ii).


Similar mistake is made in paper [Bre] aimed to explore the singular locus of the com-
muting variety of pairs of symmetric matrices.


3. Lower and upper bounds for codimC Cirr


3.1. Our further arguments are based on consideration of decomposition classes (“Zerle-
gungsklassen”) [BK], [Bro1], [Bro2] (a.k.a. “packets” [Sp], [E] and “Jordan classes” [TY]).


Recall that two elements x, y ∈ g are called decomposition equivalent if there is a g ∈ G
such that gxs


= gg(ys) and xn = g(yn). This defines an equivalence relation on g whose
equivalence classes are called decomposition classes. Every decomposition class D is an
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irreducible locally closed smooth G-stable subvariety of g. All G-orbits in D are of the same
dimension and D ⊆ Dreg


. If z ∈ D, then


D = G(z(gzs
)reg + zn),


dim D = dim z(gzs
) + dimG(z). (17)


3.2. As z(gzs
) is a Levi subalgebra, it is conjugate to a standard one with respect to ∆.


This yields the following description of decomposition classes. Let I be a subset of ∆ (may
be empty), let Φ(I) be the set elements of Φ that are linear combinations of elements of I,
and let Φ(I)+ := Φ+ ∩ Φ(I). Consider the Levi subalgebra


g(I) := t ⊕ ∑


α∈Φ(I) gα.


We have


g(I) = t(I) ⊕ s(I) where t(I) := z(g(I)), s(I) := [g(I), g(I)],


and


t(I) =
⋂


α∈I Ker α, t(I)reg = t(I) \
⋃


α/∈Φ(I) Ker α. (18)


Let x be a nilpotent element of s(I). Then


D(I, x) := G(t(I)reg + x) (19)


is a decomposition class, every decomposition class coincides with some D(I, x), and D(I, x) =
D(J, y) if and only if I = J and x and y lay in the same orbit of the adjoint group of s(I). In
particular, since the number of nilpotent orbits in s(I) is finite, there are only finitely many
decomposition classes.


If I consists of a single element α, we shall write t(α) in place of t({α}) etc.


Lemma 3.3.


(i) dimD(I, x) = m − dim s(I)x;


(ii) The following are equivalent:


(a) D(I, x) ⊆ girr;


(b) dim s(I)x > |I|;
(c) x ∈ s(I)irr.


Proof. If t ∈ t(I)reg, then gt = g(I) by (18). For z = t+x ∈ D(I, x), we have t = zs, x = zn.
This yields


gz = (gt)x = (t(I) ⊕ s(I))x = t(I) ⊕ s(I)x. (20)


¿From (17) and (20) we then deduce that dimD(I, x) = dim t(I)+m−dim gz = m−dim s(I)x.
This proves (i).


It is well known [K2] that


girr = {z ∈ g | dim gz > r}. (21)


By (18) we have dim t(I) = r − |I|, so (20) yields dim gz = r − |I| + dim s(I)x; whence by
(21) the equivalence (a)⇔(b) in (ii). Since s(I) is a semisimple Lie algebra of rank |I|, the
equivalence (b)⇔(c) in (ii) follows from the description of irregular loci in reductive Lie
algebras given by (21). ¤


Corollary 3.4. Let α ∈ ∆. Then D(α, x) ⊆ girr if and only if x = 0.


Proof. Since s(α) is isomorphic to sl2 and (sl2)
irr = {0}, see Example 1.10, the claim follows


from the equivalence (a)⇔(c) in Lemma 3.3(ii). ¤


3.5. The following statement should be known to the experts, but I failed to find a proper
reference and shall give a short proof (for the conjugating action of G on G, the counterpart
of this statement is proved in [St1] (see also [St2])).







IRREGULAR AND SINGULAR LOCI OF COMMUTING VARIETIES 7


Lemma 3.6.


(i) For every α ∈ ∆, the variety G(Ker α) = D(α, 0) is an irreducible component of girr.


(ii) Every irreducible components of girr is of this type.


(iii) dimD(α, 0) = m − 3 for every α ∈ Φ.


Proof. Since in every decomposition class all G-orbits are of the same dimension, (21) implies
that girr is a union of decomposition classes. Take a decomposition class D(I, y) ⊆ girr. Then
by Lemma (3.3)(ii) we have s(I) 6= 0 and y ∈ s(I)irr. Hence by [K1, Theorem 5.3] there is a
root α ∈ I such that the orbit of y under the action of the adjoint group of s(I) intersects
the subalgebra


∑


γ∈Φ(I)+\{α} gγ . Therefore


D(I, y) = D(I, x) for some x ∈ ∑


γ∈Φ(I)+\{α} gγ . (22)


On the other hand, according to [BK, 5.4] (see also [TY, 39.2.2]),


D(α, 0) ⊇ t(α) +
∑


γ∈Φ+\{α} gγ . (23)


¿From (18), (19), (22), (23) we then deduce that


D(I, y) ⊆ D(α, 0) = G(Ker α). (24)


For every root γ ∈ ∆, by Corollary 3.4 we have D(γ, 0) ⊆ girr and, since s(γ) is isomorphic
to sl2, Lemma 3.3(i) yields that dimD(γ, 0) = m − 3. By virtue of (24) this completes the
proof. ¤


3.7. Remarks. (a) D(α, 0) = D(β, 0) if and only if W (α) = W (β) where W is the Weyl
group. Hence the number of irreducible components of girr is equal to |Φ/W |.


(b) Since D(α, 0) = G(t(α)) and t(α) is a reductive subalgebra of g, Lemma 3.6(iii) is a
special case of the following more general


Lemma 3.8. Let l be a reductive subalgebra of g and let c be its maximal torus. Assume


that c ⊆ t. Then


dimG(l) = dim c + |{α ∈ Φ | c * Ker α}|.


Proof. Taking into account that the image of morphism G× l → g, (g, x) 7→ g(x), contains an


open subset of G(l), and the union of maximal tori of l contains an open subset of l, we coclude


that points x in general position in l are nonsingular points of G(l) and Tx(G(l)) = l+ g(x).


Hence dim G(l) = dim(l + g(x)). The root decomposition of g with respect to t yields


g(x) =
⊕


{α∈Φ | c * Ker α} gα. (25)


The right-hand side of (25) is the sum of all weight subspaces of g with respect to c with the
nonzero weights. Since every root space of l with respect to c lies in this sum, we obtain


l + g(x) = c +
⊕


{α∈Φ | c * Ker α} gα;


whence the claim. ¤


3.9. It is convenient to introduce the following notation.
Let a be a reductive Lie algebra and let x be its element. Put


I(ax) := {y ∈ ax | dim(ax)y > rk a}. (26)


Clearly, I(ax) is empty if and only if x ∈ areg. If x is semisimple, then ax is a reductive
algebra of rank rk a, whence I(ax) = a irr


x . For nonsemisimple x, this equality, in general,
does not hold (see below Subsection 4.5).


Lemma 3.10. Let x ∈ [a, a]. Then I(ax) is isomorphic to z(a) × I([a, a])x).
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Proof. Since a = z(a)⊕ [a, a], we have ax = z(a)⊕ [a, a]x. Hence, for z ∈ z(a) and y ∈ [a, a]x,
we have (ax)z+y = z(a) ⊕ ([a, a]x)y. Since rk a = dim z(a) + rk [a, a], this and (26) show that
z + y ∈ I(ax) if an only if y ∈ I([a, a])x; whence the claim. ¤


By (18) this yields


Corollary 3.11. Let I be a subset of ∆ and let x be an element of s(I). Then


dim I(g(I)x) = r − |I| + dim I(s(I)x). (27)


3.12. It follows from (7), (8), (21) that the restriction to Cirr of the projection π1 (see (9))
is a surjective morphism


π := π1|Cirr : Cirr → girr. (28)


Let y be a point of girr. Then by (8) and (26) we have


π−1(y) = {(y, z) ∈ g × g | z ∈ I(gy)}.
This shows that the second projection yields an isomorphism


π−1(y)
≃−→ I(gy). (29)


3.13. Now we shall prove lower bound (2) for codimC Cirr.


Theorem 3.14. codimC Cirr > 2.


Proof. Let X be an irreducible component of Cirr. By (10) we have to show that


dimX 6 m + r − 2. (30)


By theorem on dimension of fibres, for every point y ∈ π(X), we have the inequality


dimX 6 dimπ(X) + dim(π−1(y) ∩ X) (31)


Since π(X) is an irreducible variety and g is the union of decomposition classes, there is
a decomposition class D = D(I, x) such that


π(X) ∩ D = π(X). (32)


By (32) we have π(X) ∩ D 6= ∅. Take a point y ∈ π(X) ∩ D. Since π−1(y) is isomorphic to
I(gy), we have


dim(π−1(y) ∩ X) 6 dim I(gy). (33)


¿From (17) we obtain that


dimD = dim t(I) + dimG(y). (34)


It follows from (32) that π(X) ⊆ D. This and (31), (33), (34) then imply that


dimX 6 dim t(I) + dimG(y) + dim I(gy)


= dim t(I) + dimG(y) + dim gy − codimgy
I(gy) (35)


= dim t(I) + m − codimgy
I(g, y) 6 dim t(I) + m.


As π(X) ⊆ girr and all G-orbits in D are of the same dimension, π(X) ∩ D 6= ∅ implies
that D ⊆ girr. By Lemma 3.3 this yields I 6= ∅, hence dim t(I) 6 r − 1.


If dim t(I) 6 r − 2, then (35) implies (30).
So it remains to consider the case where dim t(I) = r − 1, i.e., D = D(α, x) for some


root α. Since D ⊆ girr, we deduce from Corollary 3.4 that x = 0. By (19) this means
that y is a semisimple element. Hence I(gy) = (gy)irr. By Lemma 3.6 this implies that
codimgy


I(gy) = 3. Plugging this in (35), we obtain dimX 6 m + r − 4; whence (30). This
completes the proof. ¤


3.15. The following statement is used in the proof of upper bound (2) for codimC Cirr.
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Lemma 3.16. Let ϕ : X → Y be a dominant morphism of algebraic varieties. Assume that


Y is irreducible (but X may be not). Then


(i) There are an integer c > 0 and an irreducible component Z of X such that


(a) dim ϕ−1(y) = c for points y in general position in Y ;


(b) dim Z = c + dim Y .


(c) ϕ(Z) = Y ;


(ii) If the fibers of ϕ over points in general position in Y are irreducible, then Z is the


unique irreducible component of Y whose image under ϕ is dense in Y and there is


an open subset U of Y such that Z = ϕ−1(U).


Proof. Since ϕ is dominant and Y is irreducible, there is an irreducible component of X
whose image under ϕ is dense in Y . Let Z1, . . . , Zn be all such components. Put ψi :=
ϕ|Zi


: Zi → Y . By theorem of dimension of fibers applied to ψi there is an integer ci > 0
such that dimψ−1


i (y) = ci for points y in general position in Y and


dimZi = ci + dimY. (36)


Put c = max
i


ci and let c = ci0 . By construction, for points y in general position in Y ,


we have
ϕ−1(y) =


⋃n
i=1 ψ−1


i (y). (37)


Hence dim ϕ−1(y) = c. This and (36) show that we can take Z := Zi0 . This proves (i).
If ϕ−1(y) in (37) is irreducible, then ϕ−1(y) = ψ−1


i0
(y) because of the dimension reason.


Hence there is an open subset U in Y such that for every i we have ψ−1
i (U) ⊆ Z. Since Zi


is irreducible, we obtain Zi = ψ−1
i (U) ⊆ Z, i.e., i = i0. This proves (ii). ¤


3.17. Proof of Theorem 1.5. Let Y be an irreducible component of girr, let X := π−1(Y )
(see (28)), and let ϕ := π|X : X → Y . By Lemma 3.16 there is an irreducible component Z
of X and an integer c > 0 such that properties (a), (b), (c) in the formulation of this lemma
hold.


The variety Z is an irreducible component of Cirr. Indeed, since Z is irreducible, there is
an irreducible component Z ′ of Cirr containing Z. By (c) we have Y ⊆ π(Z ′). Since Y is


an irreducible component of girr and π(Z ′) is an irreducible subvariety of girr, this implies


Y = π(Z ′). Hence Z ′ ⊆ X . Since Z is a maximal irreducible closed subset of X and Z ⊆ Z ′,
we have Z = Z ′.


By Lemma 3.6 there is α ∈ ∆ such that


Y = G(Ker α). (38)


For every y ∈ (Ker α)reg, we have gy = g(α). Since s(α) is isomorphic to sl2, this yields
girr


y = Ker α. As y is semisimple, the discussion in Subsection 3.9 then implies that


ϕ−1(y) = {(y, z) ∈ C | z ∈ Ker α}. (39)


This, in particular, shows that ϕ−1(y) is irreducible and


c = dimϕ−1(y) = r − 1. (40)


¿From (38), (39), and Lemma 3.16 it clearly follows that Z = G(Ker α × Ker α). Since
by Lemma 3.6 we have


dimY = m − 3,


Lemma 3.16 and (40) yield that dimZ = m + r − 4. By virtue of (10) this completes the
proof. ¤


3.18. Theorems 1.5 and 3.14 reduce computing codimCCirr to finding out whether there are
irreducible components of Cirr of codimensions 2 and 3 or not. We now turn to solving this
problem.
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Lemma 3.19. Let C be an irreducible component of Cirr. Then there is a decomposition


class D ⊆ girr such that C is the closure of one of the irreducible components of π−1(D).


Proof. Since girr is the union of decomposition classes and π is surjective, we have


Cirr =
⋃n


i=1 Ci,


where C1, . . . , Cn is the set of all irreducible components of all varieties π−1(D) where D
runs through the set of all decomposition classes contained in girr. Hence


C =
⋃n


i=1 C ∩ Ci.


Since C is irreducible, this implies that C = C ∩ Cj for some j. Hence C ⊆ Cj ⊆ Cirr. As


Cj is irreducible and C is a maximal irreducible closed subset of Cirr, from this we deduce


that C = Cj . ¤


Lemma 3.20.


(i) There is an irreducible component Z of π−1(D(I, x)) such that


codimCZ = codims(I)x
I(s(I)x) + |I| (41)


and π(Z) is dense in D(I, x).
(ii) codimCZ ′ > codimCZ for every irreducible component Z ′ of π−1(D(I, x)).


Proof. Let z be a point of t(I)reg and let y = z +x. We have gz = g(I); whence gy = (gz)x =
g(I)x. From this and (29) we deduce that π−1(y) is isomorphic to I


(


g(I)x


)


. Therefore by
(27) we have


dimπ−1(y) = r − |I| + dim I(s(I)x). (42)


It follows from (19) and (42) that dimension of fiber of π over every point of D(I, x) is
equal to r − |I| + dim I(s(I)x). By theorem on dimension of fibers this, Lemma 3.3(i), and
Lemma 3.16 imply that there is an irreducible component Z of π−1(D(I, x)) such that π(Z)
is dense in D(I, x),


dimZ = m − dim s(I)x + r − |I| + dim I(s(I)x), (43)


and dimZ > dimZ ′ for every irreducible component Z ′ of π−1(D(I, x)). Since (41) follows
from (43) and (10), this completes the proof. ¤


3.21. Theorems 1.5, 3.14 and Lemmas 3.19, 3.20, 3.3(ii) reduce our problem to finding the
numbers


c(I, x) := codims(I)x
I(s(I)x) + |I| (44)


for all the cases where


1 6 |I| 6 3 and x is a nilpotent element of s(I)irr. (45)


Namely, codimCCirr = 2 if and only if there is a subset I of ∆ and a nilpotent element
x ∈ s(I)irr such that |I| 6 2 and c(I, x) = 2. If codimCCirr 6= 2, then codimCCirr = 3 if and
only if there is a subset I of ∆ and a nilpotent element x ∈ s(I)irr such that |I| 6 3 and
c(I, x) = 3. If codimCCirr 6= 2 and 3, then codimCCirr = 4 by Theorems 3.14 and 1.5.


3.22. If x = 0, then s(I)x = s(I) and I(s(I)x) = s(I)irr. So by Lemma 3.6 we have


c(I, 0) = 3 + |I|. (46)


3.23. This covers the cases where |I|=1. Indeed, then s(I) is isomorphic to sl2, hence x = 0
by (45) and therefore by (46) in this case we have


c(I, x) = 4.
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3.24. To explore the cases |I| = 2 and 3, in the next section we obtain a necessary informa-
tion on codimax


I(ax) for some semisimple Lie algebras a of rank 6 3 and nonzero nilpotent
elements x ∈ airr.


Below, for such a, we denote by Ψ the root system of a with respect to a fixed Cartan
subalgebra c and by {αi} a system of simple roots of Ψ. We fix a Chevalley system (Xα)α∈Ψ of
(a, c) and put Hα = [X−α, Xα], cf. [Bo2, §2, 4]. For classical a, we take Xα and Hα as in [Bo2,
§13]. The integers Nα,β for α, β, α+β ∈ Ψ are defined by the equality [Xα, Xβ] = Nα,βXα+β,
cf. [Bo2, §2, 4].


4. I(ax) for some algebras a of rank 6 3


4.1. Case a = sl2 ⊕ sl2.


Up to an outer automorphism, x = (y, 0) for a nonzero nilpotent element y ∈ sl2. Then
ax = 〈y〉 ⊕ sl2 and so I(ax) = 〈y〉 ⊕ {0}. Therefore


codimax
I(ax) = 3.


4.2. Case a = sl3.


In this case, the subregular orbit is the unique nonzero nilpotent orbit of the adjoint
group of a in airr. It contains Xα1


. Since Kerα1 = 〈Hα1
+ 2Hα2


〉 and, for every α ∈ Ψ, the
subalgebra aXα


is the linear span of Kerα and all the Xβ’s such that α + β /∈ Ψ, this yields


aXα1
= 〈Xα1


, Xα1+α2
, X−α2


, Hα1
+ 2Hα2


〉. (47)


As Nα1+α2,−α2
= −1, we obtain, for a, b, c, d ∈ k and y = aXα1


+ bXα1+α2
+ cX−α2


+
d(Hα1


+ 2Hα2
) ∈ axα1


, that


[y, Xα1+α2
] = cXα1


+ 3dXα1+α2
,


[y, X−α2
] = −bXα1


− 3dX−α2
,


[y, Hα1
+ 2Hα2


] = 3bXα1+α2
− 3cX−α2


.


(48)


¿From (47) and (48) we deduce that


dim(aXα1
)y = dim aXα1


− dim[y, aXα1
]


= 4 − rkA,


where


A =








c 3d 0
−b 0 −3d
0 3b −3c





 .


Since rkA 6 2 for all b, c, d, and rkA < 2 only for b = c = d = 0, this implies that I(aXα1
)


is the center of aXα1
,


I(aXα1
) = 〈Xα1


〉. (49)


Therefore by (47) and (49) we have


codimaXα1
I(aXα1


) = 3.


4.3. Case a = so5.


Like in the previous case we obtain


aXα2
= 〈Xα2


, Xα1+2α2
, X−α1


, Hα1+α2
〉. (50)


By the dimension reason (50) implies that Xα2
is a subregular element of a. If a, b, c, d ∈ k,


then, for the element y = aXα2
+ bXα1+2α2


+ cX−α1
+ dHα1+α2


∈ aXα2
, we have


[y, Xα1+2α2
] = 2dXα1+2α2


,


[y, X−α1
] = −2dX−α1


,


[y, Hα1+α2
] = 2bXα1+2α2


− 2cX−α1
.


(51)
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¿From (50) and (51) we deduce that


dim(aXα2
)y = dim aXα2


− dim[y, aXα2
]


= 4 − rkA,


where


A =








2d 0
0 −2d
2b −2c





 .


Since rkA = 2 if d 6= 0, and rkA < 2 otherwise, this implies that


I
(


aXα2


)


= 〈Xα1
, X2α1+α2


, X−α2
〉. (52)


Therefore by (50) and (52) we have


codimaXα2
I(aXα2


) = 1.


4.4. There is a unique nonzero nilpotent orbit O of the adjoint group of a distinct from the
subregular one, see, e.g., [CM]. Its dimension is 4. Since


aXα1
= 〈Xα1


, Xα1+α2
, Xα1+2α2


, X−α2
, X−α1−2α2


, Hα1+2α2
〉, (53)


by the dimension reason we have Xα1
∈ O. As Nα1+α2,−α2


= 2, Nα1+2α2,−α2
= −1,


Nα1+α2,−α1−2α2
= 1, we obtain, for a, b, c, d, e, f ∈ k and y = aXα1


+ bXα1+α2
+ cXα1+2α2


+
dX−α2


+ eX−α1−2α2
+ fHα1+2α2


∈ s(I)Xα1
, that


[y, Xα1+α2
] = −2dXα1


− eX−α2
+ fXα1+α2


,


[y, Xα1+2α2
] = dXα1+α2


+ eHα1+2α2
+ 2fXα1+2α2


,


[y, X−α2
] = 2bXα1


− cXα1+α2
− fX−α2


,


[y, X−α1−2α2
] = bX−α2


− cHα1+2α2
− 2fX−α1−2α2


,


[y, Hα2+2α1
] = −bXα1+α2


− 2cXα1+2α2
+ dX−α2


+ 2eX−α1−2α2
.


(54)


It follows from (53) and (54) that


dim(aXα1
)y = dim aXα1


− dim[y, aXα1
]


= 6 − rkA,


where


A =




















−2d f 0 −e 0 0
0 d 0 0 2f e
2b −c 0 −f 0 0
0 0 0 b −2f 0
0 b −2c d 2e 0




















.


An elementary exploration of rk A as function of b, c, d, e, f yields that I(axα1
) is the union


of six 3-dimensional linear subspaces of aXα1
:


I(aXα1
) = 〈Xα1


, Xα1+2α2
, X−α2


〉 ∪ 〈Xα1
, Xα1+α2


, Xα1+2α2
〉


∪ 〈Xα1
, Xα1+α2


, X−α2
〉 ∪ 〈Xα1


, X−α2
, X−α1−2α2


〉
∪ 〈Xα1


, X−α2
+
√
−1Xα1+α2


, Xα1+2α2
〉


∪ 〈Xα1
, X−α2


−
√
−1Xα1+α2


, Xα1+2α2
〉.


(55)


Therefore by (53) and (55) we have


codimaXα1
I(aXα1


) = 3.







IRREGULAR AND SINGULAR LOCI OF COMMUTING VARIETIES 13


4.5. Case a = LieG2.


It is easy to verify (see also [GQT, p. 10]) that


e = Xα2
+ X3α1+α2


, f = −2X−α2
− 2X−3α1−α2


, h = 2Hα2
+ 2H3α1+α2


is an sl2-triple. Since α1(h) = 0, α2(h) = 2, the classification of nilpotent orbits in a,
see, e.g., [CM, 8.4], implies that


x = e = Xα2
+ X3α1+α2


(56)


is a subregular nilpotent element of a and


dim ax = 4. (57)


Since [Xα, Xβ ] = 0 if α + β /∈ Φ, we have Xα1+α2
, X3α1+2α2


, X2α1+α2
∈ ax. Hence it


follows from (56), (57) that


ax = 〈Xα2
+ X3α1+α2


, Xα1+α2
, X3α1+2α2


, X2α1+α2
〉. (58)


¿From (56), (58) we deduce that, for every y ∈ ax, we have [y, ax] ∈ 〈X3α1+2α2
〉; whence


dim(ax)y = dim ax− dim[y, aXα1
] > 4 − 1 = 3.


This proves that I
(


ax


)


= ax, i.e.,


codimax
I(ax) = 0.


4.6. As for the algebras a of rank 3, it will be sufficient for our purposes to consider only
those a whose simple ideals are of type A, and to prove that for such a the inequality
codimax


I(ax) > 1 always holds. We deduce this statement from the following general lemma.


Lemma 4.7. Let x be a nilpotent element of m := sln1
⊕. . .⊕slnq


. Then there is semisimple


element h ∈ m such that x is a regular element of mh.


Proof. Clearly, it suffices to prove this statement for q = 1. Therefore we now assume that
m = sln. If x ∈ mreg, then h = 0. Now let x ∈ mirr. Then by the Jordan normal form theory
we may (and shall) assume that


x = diag(Jd1
, . . . , Jds


), where Ji =

















0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . . .
0 0 0 . . . 1
0 0 0 . . . 0

















∈ Mati×i and s > 2. (59)


Since s > 2, there are a1, . . . , as ∈ Z such that


a1 > . . . > as, (60)


d1a1 + · · · + dsas = 0. (61)


By (61) the semisimple matrix diag(a1Id1
, . . . , asIds


) lies in m. We claim that one can take


h := diag(a1Id1
, . . . , asIds


).


Indeed, from (60) we deduce that


[mh, mh] = {diag(A1, . . . , As) | Ai ∈ sldi
for every i}, (62)


and the claim readily follows from (59) and (62). ¤


Corollary 4.8. Maintain the notation of Lemma 4.7. Then


codimmx
I(mx) > 1.


Proof. Since the element h from Lemma 4.7 is semisimple, the algebra mh is reductive and
its rank is equal to that of m. As x is a regular element of mh, this implies the equality
dim(mh)x = rkm. But (mh)x = (mx)h. Therefore y /∈ I(mx); whence the claim. ¤







14 VLADIMIR L. POPOV


5. Proofs of Theorems 1.6 and 1.12


5.1. Proof of Theorem 1.6. Let I be a subset of ∆ such that 1 6 |I| 6 3 and let x be a
nilpotent element of s(I)irr. If |I| = 1, then according to Subsection 3.23 we have c(I, x)=4.
Now consider the cases |I| = 2 and 3.


(a) Let g be of type Ar, Dr, E6, E7, or E8. Then every simple ideal of s(I) is of type
A. Therefore, if |I| = 2, then s(I) is isomorphic to sl2 ⊕ sl2 or sl3; whence by (46) and
Subsections 4.1, 4.2 we have c(I, x) = 5. If |I| = 3, then s(I) is isomorphic to sl2 ⊕ sl2 ⊕ sl2,
sl2 ⊕ sl3, or sl4; whence by Corollary 4.8 we have c(I, x) > 4. As is explained in Subsection
3.21, this information implies that codimCCirr = 4.


(b) Let g be of type Br, Cr, or F4. If |I| = 2, then s(I) is isomorphic to so5, sl2 ⊕ sl2,
or sl3, and there is I such that sl(I) is isomorphic to so5. By (46) and Subsections 4.3, 4.4,
if s(I) is isomorphic to so5, then c(I, x) > 3 and there is x such that c(I, x) = 3. On the
other hand, as we have seen in (a), if s(I) is isomorphic to sl2 ⊕ sl2 or sl3, then c(I, x) = 5.
According to Subsection 3.21, this information implies that codimCCirr = 3.


(c) Let g be of type G2. Then I = ∆ and s(I) = g. According to Subsection 4.5, there is
x such that c(I, x) = 2. As is explained in Subsection 3.21, this implies that codimCCirr = 2.
¤


5.2. Proof of Theorem 1.12. Let N be the normalizer of t in G. We endow t ⊕ t with the
natural N -module structure. Let G×N(t⊕ t) be the algebraic homogeneous vector G-bundle
over G/N with fiber t ⊕ t, see [Se, §2], [PV2, 4.8], [LPR, 2.17]. Denote by g ∗ t the image of
point (g, t) ∈ G × (t ⊕ t) under the natural projection G × (t ⊕ t) → G ×N (t ⊕ t).


Since C = G(t × t), the natural G-equivariant morphism


ϕ : G ×N(t ⊕ t) → C, g ∗ t 7→ g(t), (63)


is dominant. We claim that ϕ is a birational isomorphism. As chark = 0, proving this claim
is equivalent to showing that ϕ−1(x) is a single point for points x in general position in C.
To show that the latter property holds, notice that there is a nonempty open G-stable subset
U of C laying in G(treg × treg). Let x ∈ U . Since ϕ is G-equivariant, the fibers ϕ−1(x) and
ϕ−1(g(x)) for g ∈ G are isomorphic. Hence it would be sufficient to prove that ϕ−1(x) is a
single point for x ∈ treg × treg.


To do this, take a point x = (x1, x2) ∈ treg × treg. Since xi ∈ treg, we have


gxi
= t. (64)


Let g ∗ t ∈ ϕ−1(x) where t = (t1, t2) ∈ t⊕ t. By (63) we have g(ti) = xi. This and (64) yield


g(gti
) = gg(ti) = gxi


= t. (65)


It follows from (65) that dim gti
= dim t. Since t ⊆ gti


, this yields gti
= t. By virtue of (65)


the latter equality implies that g ∈ N . From this and the definition of g ∗ t we now deduce
that g ∗ t = e ∗ g(t) = e ∗ x. Thus, ϕ−1(x) = e ∗ x. This proves the claim.


Since algebraic homogeneous vector bundles are locally trivial in Zariski topology, see [Se],
the varieties G×N(t⊕ t) and G/N × (t⊕ t) are birationally isomorphic. Hence the varieties C
and G/N × (t⊕ t) are birationally isomorphic as well. Given this, the proof comes to a close
because the variety G/N of maximal tori of G is rational, see [C], [G, 6.1], [BS, 7.9]. ¤
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[BK] W. Borho, H. Kraft, Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Grup-


pen, Comment. Math. Helv. 54 (1979), 61–104.
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(1968), 443–497.







IRREGULAR AND SINGULAR LOCI OF COMMUTING VARIETIES 15


[Bre] J. P. Brennan, On the normality of commuting varieties of symmetric matrices, Commun. in Algebra
22 (1994), no. 15, 6409–6414.


[Bro1] A. Broer, Lectures on decomposition classes, in: Representation Theories and Algebraic Geometry,
NATO ASI Series C: Mathematical and Physical Sciences, Vol. 514, Kluwer, Dordrecht, 1998, pp. 39–
83.


[Bro2] A. Broer, Decomposition varieties in semisimple Lie algebras, Canad. J. Math. 50 (1998), 929–971.
[C] C. Chevalley, On algebraic group varieties, J. Math. Soc. Japan 6 (1954), 303–324.
[CM] D. H. Collingwood, W. M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand


Reinhold, New York, 1993.
[E] A. G. Зlaxvili, Plasty prostyh algebr Li osobogo tipa, v sb.: IssledovaniÂ po algebre,


kaf. alg. i geom. TGU, kaf. vysx. alg. MGU, Tbilisi, 1985, str. 171–194. A. G. Elashvili,
Sheets of exceptional simple Lie algebras, in: Researches in Algebra, Dept. of Alg. and Geom., Tbilissi
State Univ., Dept. of Alg. Moscow State Univ., Tbilissi, 1985, pp. 171–194 (in Russian).
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applications, Exposé no. 1, Secr. math. 11 rue Pierre Curie, Paris 5e, 1958, 1-01–1-37. Reprinted in:
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