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Preface

A Mathematician Said Who

Can Quote Me a Theorem that’s True?
For the ones that I Know

Are Simply not So,

When the Characteristic is Two!

This pretty limerick first came to my ears in May 1998 during a talk by
T.Y. Lam on field invariants from the theory of quadratic forms.! It is —
poetic exaggeration allowed — a suitable motto for this monograph.

What is it about? In the beginning of the seventies I drew up a special-
ization theory of quadratic and symmetric bilinear forms over fields [K4]. Let
A: K — LUoo be a place. Then one can assign a form A.(¢) to a form ¢ over
K in a meaningful way if ¢ has “good reduction” with respect to A (see §1).
The basic idea is to simply apply the place A to the coefficients of ¢ which
therefore of course have to be in the valuation ring of .

The specialization theory of that time was satisfactory as long as the
field L, and therefore also K, had characteristic # 2. It served me in the
first place as the foundation for a theory of generic splitting of quadratic
forms [Kj;], [Kg]. After a very modest beginning, this theory is now in full
bloom. It became important for the understanding of quadratic forms over
fields, as can be seen from the book [IKKV] of Izhboldin-Kahn-Karpenko-
Vishik for instance. One should note that there exists a theory of (partial)
generic splitting of central simple algebras and reductive algebraic groups,
parallel to the theory of generic splitting of quadratic forms (see [Ke R] and
the literature cited there).

In this book I would like to present a specialization theory of quadratic
and symmetric bilinear forms with respect to a place \: K — LU oo, without
the assumption that char L # 2. This is where complications arise. We have
to make a distinction between bilinear and quadratic forms and study them
both over fields and valuation rings. From the viewpoint of reductive algebraic
groups, the so-called regular quadratic forms (see below) are the natural
objects. But, even if we are only interested in such forms, we have to know
a bit about specialization of nondegenerate symmetric bilinear forms, since

1 “Some reflections on quadratic invariants of fields”, 3 May 1998 in Notre Dame
(Indiana) on the occasion of O.T. O’Meara’s 70th birthday.
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VIII  Specialization of Quadratic and Symmetric Bilinear Forms

they occur as “multipliers” of quadratic forms: if ¢ is such a bilinear form
and v is a regular quadratic form, then we can form a tensor product ¢ ® ¥,
see §5. This is a quadratic form, which is again regular when 1 has even
dimension (dim ¢ = number of variables occurring in ). However — and here
already we run into trouble — when dim is odd, ¢ ® 9 is not necessarily
regular.

Even if we only want to understand quadratic forms over a field K of char-
acteristic zero, it might be necessary to look at specializations with respect to
places from K to fields of characteristic 2, especially in arithmetic investiga-
tions. When K itself has characteristic 2, an often more complicated situation
may occur, for which we are not prepared by the available literature. Surely,
fields of characteristic 2 were already allowed in my work on specializations
in 1973 [K4], but from today’s point of view satisfactory results were only
obtained for symmetric bilinear forms. For quadratic forms there are gaping
holes. We have to study quadratic forms over a valuation ring in which 2
is not a unit. Even the beautiful and extensive book of Ricardo Baeza [Ba)
doesn’t give us enough for the theory of specializations, although Baeza even
allows semilocal rings instead of valuation rings. He only studies quadratic
forms whose associated bilinear forms are nondegenerate. This forces those
forms to have even dimension.

Let me now discuss the contents of this book. After an introduction to the
problem in §1, which can be understood without any previous knowledge of
quadratic and bilinear forms, the specialization theory of symmetric bilinear
forms is presented in §2 - §3. There are good, generally accessible sources
available for the foundations of the algebraic theory of symmetric bilinear
forms. Therefore many results are presented without a proof, but with a
reference to the literature instead. As an important application, the outlines
of the theory of generic splitting in characteristic # 2 are sketched in §4,
nearly without proofs.

From §5 onwards we address the theory of quadratic forms. In charac-
teristic 2 fewer results can be found in the literature for such forms than
for bilinear forms, even at the basic level. Therefore we present most of the
proofs. We also concern ourselves with the so-called “weak specialization”
(see §1) and get into areas which may seem strange even to specialists in the
theory of quadratic forms. In particular we have to require a quadratic form
over K to be “obedient” in order to weakly specialize it with respect to a
place \: K — LUoo (see §7). I have never encountered such a thing anywhere
in the literature.

At the end of Chapter I we reach a level in the specialization theory of
quadratic forms that facilitates a generic splitting theory, useful for many
applications. In the first two sections (§9, §10) of Chapter II we produce such
a generic splitting theory in two versions, both of which deserve interest in
their own right.

We call a quadratic form ¢ over a field k nondegenerate when its quasi-
linear part (cf. Arf [A]), which we denote by QL(¢), is anisotropic. We fur-
ther call — deviating from Arf [A] — ¢ regular when QL(p) is at most one-
dimensional and strictly regular when QL(¢) = 0 (cf. §6, Definition 3). When
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Preface IX

k has characteristic # 2, every nondegenerate form is strictly regular, but in
characteristic 2 the quasilinear part causes complications. For in this case ¢
can become degenerate under a field extension L DO k. Only in the regular
case is this impossible.

In §9 we study the splitting behaviour of a regular quadratic form ¢
over k under field extensions, while in §10 any nondegenerate form ¢, but
only separable extensions of k are allowed. The theory of §9 incorporates the
theory of §4, and so the missing proofs of §4 are subsequently filled in.

Until the end of §10 our specialization theory is based on an obvious
“canonical” concept of good reduction of a form ¢ over a field K (quadratic
or symmetric bilinear) to a valuation ring o of K, similar to what is known
under this name in other areas of mathematics (e.g. abelian varieties). There
is nothing wrong with this theory, however for many applications it is too
limited.

This is particularly clear when studying specializations with respect to
a place \: K — L U oo with char K = 0, char L = 2. If ¢ is a nondegener-
ate quadratic form over K with good reduction with respect to A, then the
specialization A.(p) is automatically strictly regular. However, we would like
to have a more general specialization concept, in which forms with quasilin-
ear part # 0 can arise over L. Conversely, if the place A is surjective, i.e.
AMK) = LU oo, we would like to “lift” every nondegenerate quadratic form
1 over L with respect to A to a form ¢ over K, i.e. to find a form ¢ over
K which specializes to 1 with respect to A. Then we could use the theory of
forms over K to make statements about .

We present such a general specialization theory in §11. It is based on the
concept of “fair reduction”, which is less orthodox than good reduction, but
which possesses quite satisfying properties.

Next, in §12, we present a theory of generic splitting, which unites the
theories of §4, §9 and §10 under one roof and which incorporates fair reduc-
tion. This theory is deepened in §13 and §14 through the study of generic
splitting towers and so we reach the end of Chapter II.

Chapter ITI (§15 - §27) is a long chapter in which we present a panorama of
results about quadratic forms over fields for which specialization and generic
splitting of forms play an important role. This only scratches the surface of
applications of the specialization theory of Chapters I and II. Certainly many
more results can be unearthed.

We return to the foundations of specialization theory in the final short
Chapter IV (§28 - §32). Quadratic and bilinear forms over a field can be
specialized with respect to a more general “quadratic place” A: K — L U oo
(defined in §28) instead of a usual place \: K — L U co. This represents a
considerable broadening of the specialization theory of Chapters I and II. Of
course we require again “obedience” from a quadratic form ¢ over K in order
for its specialization A.(q) to reasonably exist. It then turns out that the
generic splitting behaviour of A.(g) is governed by the splitting behaviour
of ¢ and A, in so far good or fair reduction is present in a weak sense, as
elucidated for ordinary places in Chapter II.
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X Specialization of Quadratic and Symmetric Bilinear Forms

Why are quadratic places of interest, compared to ordinary places? To
answer this question we observe the following. If a form ¢ over K has bad
reduction with respect to a place \: K — LUoo , it often happens that A\ can
be “enlarged” to a quadratic place A: K — LUoo such that ¢ has good or fair
reduction with respect to A in a weak sense, and the splitting properties of
q are handed down to A,(g) while there is no form A.(q) available for which
this would be the case. The details of such a notion of reduction are much
more tricky compared to what happens in Chapters I and II. The central
term which renders possible a unified theory of generic splitting of quadratic
forms is called “stably conservative reduction”, see §31.

One has to get used to the fact that for bilinear forms there is in general
no Witt cancellation rule, in contrast to quadratic forms. Nevertheless the
specialization theory is in many respects easier for bilinear forms than for
quadratic forms.

On the other hand we do not have any theory of generic splitting for
symmetric bilinear forms over fields of characteristic 2. Such a theory might
not even be possible in a meaningful way. This may well be connected to
the fact that the automorphism groups of such forms can be very far from
being reductive groups (which may also account for the absence of a good
cancellation rule).

This book is intended for audiences with different interests. For a math-
ematician with perhaps only a little knowledge of quadratic or symmetric
bilinear forms, who just wants to get an impression of specialization theory,
it suffices to read §1 - §4. The theory of generic splitting in characteristic # 2
will acquaint him with an important application area.

From 85 onwards the book is intended for scholars, working in the alge-
braic theory of quadratic forms and also for specialists in the area of algebraic
groups, for they have always been given something to look at by the theory
of quadratic forms.

When a reader has reached §10 of the book, he can lean back in his chair
and take a well-deserved break. He has then learned about the specialization
theory which is based on the concept of good reduction and has gained a
certain perspective on specific phenomena in characteristic 2. Furthermore he
has been introduced to the foundations of generic splitting and so has seen the
specialization theory in action. Admittedly he has not yet seen independent
applications of the weak specialization theory (§3, §7), for this theory has
only appeared up to then as an auxiliary one.

The remaining sections §11 - §14 of Chapter II develop the specialization
theory sufficiently far to allow an understanding of the classical algebraic
theory of quadratic forms (as presented in the books of Lam [L], [L'] and
Scharlau [S]) without the usual restriction that the characteristic should be
different from 2. Precisely this happens in Chapter III where the reader will
also obtain sufficient illustrations, enabling him to relieve other classical theo-
rems from the characteristic # 2 restriction, although this is often a nontrivial
task.

The final Chapter IV is ultimately intended for the mathematician who
wants to embark on a more daring expedition in the realm of quadratic forms
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Preface XI

over fields. It cannot be a mere coincidence that the specialization theory for
quadratic places is just as satisfying as the specialization theory for ordinary
places. It is therefore a safe prediction that quadratic places will turn out to
be generally useful and important in a future theory of quadratic forms over
fields.

Manfred Knebusch
Regensburg, June 2007
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§1 Introduction: on the Problem of
Specialization of Quadratic and Bilinear
Forms

Let ¢ be a nondegenerate symmetric bilinear form over a field K, in other
words
n
p(x,y) = Z AijTiYy,
i,j=1

where z = (z1,...,2,) € K™ and y = (y1,...,yn) € K" are vectors, (a;;) is
a symmetric (n X n)-matrix with coefficients a;; = aj; € K and det(a;;) # 0.
We like to write ¢ = (a;;). The number of variables n is called the dimension
of ¢, n = dim .

Let also A: K — L U oo be a place, 0 = o) the valuation ring associated
to K and m the maximal ideal of 0. We denote the group of units of ¢ by o*,
o* =0\ m.

We would like A to “specialize” ¢ to a bilinear form A, (p) over L. When
is this possible in a reasonable way? If all a;; € o and if det(a;;) € 0*, then
one can associate the nondegenerate form (A(a;;)) over L to . This naive
idea leads us to the following

Definition. We say that ¢ has good reduction with respect to A when ¢ is
isometric to a form (c¢;;) over K with ¢;; € o, det(c;;) € 0*. We then call
the form (A(ci;)) “the” specialization of ¢ with respect to A. We denote this
specialization by A, ().

Note. ¢ = (a;;) is isometric to (¢;;) if and only if there exists a matrix
S € GL(n, K) with (¢;j) = *S(a;;)S. In this case we write ¢ 2 (¢;;).

We also allow the case dim ¢ = 0, standing for the unique bilinear form
on the zero vector space, the form ¢ = 0. We agree that the form ¢ = 0 has
good reduction and set A.(¢) = 0.

Problem 1. Is this definition meaningful? Up to isometry A.(¢) should be
independent of the choice of the matrix (c;;).

We will later see that this indeed the case, provided 2 ¢ m, so that L has
characteristic # 2. If L has characteristic 2, then A, () is well-defined up to

“stable isometry” (see §3).

Problem 2. Is there a meaningful way in which one can associate a sym-
metric bilinear form over L to ¢, when ¢ has bad reduction?
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4 Chapter I. Fundamentals of Specialization Theory

With regards to this problem we would like to recall a classical result of
T.A. Springer, which lets us suspect that finding a solution to the problem is
not completely beyond hope. Let v: K — Z U oo be a discrete valuation of a
field K with associated valuation ring 0. Let 7 be a generator of the maximal
ideal m of 0, so that m = mo. Finally, let £ = 0/m be the residue class field of
o and \: K — k U oo the canonical place with valuation ring 0. We suppose
that 2 ¢ m, so that chark # 2 is.

Let ¢ be a nondegenerate symmetric bilinear form over K. Then there
exists a decomposition ¢ = g L w1, where ¢y and ¢1 have good reduction

with respect to A. Indeed, we can choose a diagonalisation ¢ = (ay, ..., an).
ai

{As usual (aq,...,a,) denotes the diagonal matrix .} Then we
0 an

can make all a; square-free, so that v(a;) = 0 or 1 for each ¢, and renumber
indices to get a; € 0* for 1 < i <t and a; = 7e;, where ; € 0™ for t < i < n.
{Possibly t = 0, so that g =0, or t = n, so that ¢; = 0.}

Theorem (Springer 1955 [Sp]). Let K be complete with respect to the discrete
valuation v. If ¢ is anisotropic (i.e. there is no vector x # 0 in K™ with
o(x,x) = 0), then the forms \(po) and Ai(p1) are anisotropic and up to
isometry independent of the choice of decomposition ¢ = oo L w1 .
Conversely, if 1y and ¥y are anisotropic forms over k, then there exists
up to isometry a unique anisotropic form ¢ over K with A«(po) = 1o and

A1) Z .

Given any place A: K — LUoo and any form ¢ over K, Springer’s theorem
suggests to look for a “weak specialization” Aw (¢) by orthogonally decom-
posing ¢ in a form ¢y with good reduction and a form ¢; with “extremely
bad” reduction, subsequently forgetting 1 and setting Ay (¢) = Ax(go)-

Given an arbitrary valuation ring o, this sounds like a daring idea.
Nonetheless we will see in §3 that a weak specialization can be defined in
a meaningful way. Admittedly Ay () is not uniquely determined by ¢ and
A up to isometry, but up to so-called Witt equivalence. In the situation of
Springer’s theorem, Ay (¢) is then the Witt class of g and A\ (mp) the Witt
class of ¢.

A quadratic form q of dimension n over K is a function ¢: K" — K,
defined by a homogeneous polynomial of degree 2,

g@)= > ajw

1<i<j<n
(x = (x1,...,2n) € K™). We can associate (a possibly degenerate) symmetric
bilinear form
n
By(z,y) = q(z +y) — q(z) —qly) = Z 204523y + Zaz’j (iy; + ;vi)
i=1 i<y

to q. It is clear that By(z,x) = 2¢(x) for all x € K.
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§1 Introduction 5

If char K # 2, then any symmetric bilinear form ¢ over K corresponds
to just one quadratic form g over K with By = ¢, namely ¢(z) = % o(z, ).
In this way we can interpret a quadratic form as a symmetric bilinear form
and vice versa. In characteristic 2 however, quadratic forms and symmetric
bilinear forms are very different objects.

Problem 3. Let \: K — L U oo be a place.

(a) To which quadratic forms ¢ over K can we associate “specialized”
quadratic forms A«(q) over L in a meaningful way?

(b) Let char L = 2 and char K # 2, hence char K = 0. Should one specialize
a quadratic form ¢ over K with respect to A as a quadratic form, or rather
as a symmetric bilinear form?

In what follows we will present a specialization theory for arbitrary non-
degenerate symmetric bilinear forms (§3), but only for a rather small class of
quadratic forms, the so-called “obedient” quadratic forms (§7). Problem 3(b)
will be answered unequivocally. If ¢ is obedient, B, will determine a really
boring bilinear form A, (B,) (namely a hyperbolic form) which gives almost no
information about ¢q. However, A, (q) can give important information about g.
If possible, a specialization in the quadratic sense is thus to be preferred over
a specialization in the bilinear sense.
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§2 An Elementary Treatise on Symmetric
Bilinear Forms

In this section a “form” will always be understood to be a mondegenerate
symmetric bilinear form over a field. So let K be a field.

Theorem 1 (“Witt decomposition”).
(a) Any form ¢ over K has a decomposition

a11 aT1
~ o L 1.1
v=vo (10) (10)

with po anisotropic and ay,...,ar € K (r >0).

(b) The isometry class of @ is uniquely determined by . (Therefore dim g
and the number r are uniquely determined.)

To clarify these statements, let us recall the following;:

(1) A form ¢ over K is called anisotropic if po(xz,x) # 0 for all vectors
x # 0.
(2) If char K # 2, then we have for every a € K* that

(Cll(l)) - ((1)(1)) = (1,-1) = (o, ~a).

Is char K = 2 however and a # 0, then (‘;é) 2 (?(1)) Indeed if p = (?(1))

we have p(x,z) = 0 for every vector € K2, while this is not the case for
al

¢ = ({,)- In characteristic 2 we still have ({ é) & (a,—a) (a € K*),

but () need not be isometric to (7 5) = (1, —1).

(3) The form ((1) (1)) is given the name “hyperbolic plane” (even in character-

istic 2), and every form ¢, isometric to an orthogonal sum r x ((1) é) of r

copies of ((1) é), is called “hyperbolic” (r > 0).

(4) Forms which are isometric to an orthogonal sum (%) L ... L (% })
are called metabolic (r > 0). If char K # 2, then every metabolic form is

hyperbolic. This is not the case if char K = 2.

(5) If char K = 2, then ¢ is hyperbolic exactly when every vector = of the
underlying vector space K™ is isotropic, i.e. ¢(x, ) = 0. If ¢ is not hyper-
bolic, we can always find an orthogonal basis such that ¢ & (aq, ..., a,)
for suitable a; € K*.
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8 Chapter I. Fundamentals of Specialization Theory

One can find a proof of Theorem 1 in any book about quadratic forms
when char K’ # 2 (see in particular [Boy], [L], [S]). Part (b) of the theorem
is then an immediate consequence of Witt’s cancellation theorem. There is
no general cancellation theorem in characteristic 2, as the following example
shows:

8 ($5) L a=(1g) L -0

for all a € K*. If e, f, g is a basis of K3 which has the left-hand side of (%)
as value matrix, then e+ g, f, g will be a basis which has the right-hand side
of (x) as value matrix. For characteristic 2 one can find proofs of Theorem 1
and the other statements we made in [MH, Chap.I and Chap.III, §1], [Ky,
§8], [M, §4]. The following is clear from formula (x):

Lemma 1. If a form ¢ with dimy = 2r is metabolic, then there exists a
~ 01

form 4 such that p 1 ¢ = r X (10) 1.
Definition 1. (a) In the situation of Theorem 1, we call the form ¢( the
kernel form of ¢ and r the (Witt) index of ¢. We write @9 = ker(p), r =
ind(g). {In the literature one frequently sees the notation po = Yanisotropic
(“anisotropic part” of ).}

(b) Two forms ¢, ¥ over K are called Witt equivalent, denoted by ¢ ~ 1,
if ker ¢ = ker ). We write ¢ ~ 1) when ker ¢ = kervy and dim ¢ = dim. On
the basis of the next theorem, we then call ¢ and 1 stably isometric.

Theorem 2. ¢ ~ 1) exactly when there exists a form x such that ¢ L x =
Y LX.

We omit the proof. It is easy when one uses Theorem 1, Lemma 1 and
the following lemma.

Lemma 2. The form x L (—x) is metabolic for every form x.

Proof. From Theorem 1(a) we may suppose that x is anisotropic. If x is

different from the zero form, then y = (aq,...,a,) with elements a; € K*
(n > 1). Finally, (a;) L (—a;) = (% é) O

As is well-known, Witt’s cancellation theorem (already mentioned above)
is valid if char K # 2. It says that two stably isometric forms are already
isometric: ¢ & Y = @ X .

Let ¢ be a form over K. We call the equivalence class of ¢ with respect to
the relation ~, introduced above, the Witt class of ¢ and denote it by {¢}.
We can add Witt classes together as follows:

{er +{v}:={e Ly}

The class {0} of the zero form, whose members are exactly the metabolic
forms, is the neutral element of this addition. From Lemma 2 it follows that
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§2 An Elementary Treatise on Symmetric Bilinear Forms 9

{¢} + {—¢} = 0. In this way, the Witt classes of forms over K form an
abelian group, which we denote by W (K). We can also multiply Witt classes
together:

{e} {v}={p @9}

Remark. The definition of the tensor product ¢ ®1 of two forms ¢, ¥ belongs
to the domain of linear algebra [Bos, §1, No. 9]. For diagonalizable forms we
have

(al,...,an) & <b1,...,bm> = (albl,...,albm,agbl,...,anbm>.

We also have (a1, ...,a,)® ((1)(1)) ~nx ((1)(1)) Finally, for a form (ll’(l)) with
b # 0 we have

(a) ® (ié) ~ (a) ® (b, —b) = (ab, —ab) = (Cllbé> .

Now it is clear that the tensor product of any given form and a metabolic
form is again metabolic. {For a conceptual proof of this see [K;, §3], [MH,
Chap. I].} Therefore the Witt class {¢p ® 1} is completely determined by the
classes {¢}, {¢}, independent of the choice of representatives ¢, .

With this multiplication, W (K') becomes a commutative ring. The iden-
tity element is {(1)}. We call W(K) the Witt ring of K. For char K # 2 this
ring was already introduced by Ernst Witt in 1937 [W].

We would like to describe the ring W (K) by generators and relations. In
characteristic # 2 this was already known by Witt [oral communication] and
is implicitly contained in his work [W, Satz 7].

First we must recall the notion of determinant of a form. For a € K*, the
isometry class of a one-dimensional form (a) will again be denoted by (a). The
tensor product (a) ® (b) will be abbreviated by (a)(b). We have (a)(b) = (ab)
and (a)(a) = (1). In this way the isometry classes form an abelian group
of exponent 2, which we denote by Q(K). Given a,b € K*, it is clear that
{a) = (b) exactly when b = ac? for a ¢ € K*. So Q(K) is just the group of
square classes K*/K*? in disguise. We identify Q(K) = K*/K*2.

It is well-known that for a given form ¢ = (a;;) the square class of the
determinant of the symmetric matrix (a;;) only depends on the isometry class
of ¢. We denote this square class by det(y), so det(¢) = (det(a;;)), and call
it the determinant of . A slight complication arises from the fact that the
determinant is not compatible with Witt equivalence. To remedy this, we
introduce the signed determinant

(n—1)

d(p): = (=1)"= - det(p)
(n:= dim ). One can easily check that d( L (] (1))) =d(p), for any a € K.
Hence d(¢) depends only on the Witt class {¢}. The signed determinant d(¢)
also has a disadvantage though, in contrast with det (), d(p) does not behave

well with respect to the orthogonal sum. Let v(p) denote the dimension index
of ¢, v(¢) = dim ¢ + 27 € Z/27Z. Then we have (cf. [S, I §2])
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10 Chapter I. Fundamentals of Specialization Theory

d(p Lv) = (=1)"@"Pd(p)d(y).

Let us now describe W(K) by means of generators and relations. Every
one-dimensional form (a) satisfies d({a)) = (a). This innocent remark shows
that the map from Q(K) to W(K), which sends every isometry class (a) to
its Witt class {(a)}, is injective. We can thus interpret Q(K) as a subgroup
of the group of units of the ring W(K), Q(K) C W(K)*.

W(K) is additively generated by the subset Q(K), since every non-
hyperbolic form can be written as (a1, ...,an) = {(a1) L ... L {a,). Hence
Q(K) is a system of generators of W (K). There is an obviously surjective
ring homomorphism

@: ZIQ(K)] — W(K)

from the group ring Z[Q(K)] to W(K). Recall that Z[Q(K)] is the ring of
formal sums ) ngg with ¢ € Q(K), ny € Z, and almost all n, = 0. &
g

associates to such a sum an in W(K) constructed sum )  nyg.

9

The elements of the kernel of @ are the relations on Q(K) we are looking
for. We can write down some of those relations immediately: for every a € K*
is (a) + (—a) clearly a relation. For a,b € K* and given A, p € K*, the form
{a,b) represents the element c:= A\2a + p2b. If ¢ # 0, then we can find
another element d € K* with (a,b) & (¢,d) Comparing determinants shows
that (d) = (abc). Hence (a) + (b) — {(c¢) — {abc) = ({a) + (b))({1) — {c}) is also
a relation. We have the technically important

Theorem 3. The ideal Ker @ of the ring Z|Q(K)] is additively generated
(i.e. as abelian group) by the elements (a) + (—a), a € K* and the elements
{a)+(b)—(c)—(abc) with a,b € K*, (b) # (—a), c = N2a+u>b with \,u € K*.

Remark. Ker @ is therefore generated as an ideal by the element (1) + (—1)
and the elements ({1)+(a))(1—{(c)) with {a) # (—1), c = 1+\%a with A\ € K*.
For application in the next section, the additive description of Ker & above
is more favourable though.

A proof of Theorem 3, which also works in characteristic 2, can be found
in [Ky, §5], [KRW, §1], [K3 II, §4] (even over semi-local rings instead of over
fields?), [MH, p.85]. For characteristic # 2 the proof is a bit simpler, since
every form has an orthogonal basis in this case, see [S, I § 9].

2 The case where K has only 2 elements, K = Fa, is not covered by the more general
theorems there. The statement of Theorem 3 for K = s is trivial however, since
K has only one square class (1) and (1,1) ~ 0.
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83 Specialization of Symmetric Bilinear
Forms

In this section, a “form” will again be understood to be a nondegenerate
symmetric bilinear form. Let \: K — L U oo be a place from the field K
to a field L. Let o = 0y be the valuation ring associated to A and m its
maximal ideal. As usual for rings, o* stands for the group of units of o, so
that o* = o\ m. This is the set of all z € K with A(z) # 0, cc.

We will denote the Witt class of a one-dimensional form (a) over K (or L)
by {a} this time. The group of square classes Q(0) = 0*/0*? can be embedded
in Q(K) = K*/K*? in a natural way via ao*? — aK*2. We interpret Q(o)
as a subgroup of Q(K), so Q(0) = {(a) | a € 0*} C Q(K). Our specialization
theory is based on the following

Theorem 1. There exists a well-defined additive map A\w: W (K) — W(L)
1.

given by Aw ({a}) = {Ma)} if a € 0%, and A\w({a}) = 0 if (a) & Q(o0) (i.e
(aK*?)No* =0).3

7

Proof. (Copied from [Ky4, §3].) Our place ) is a combination of the canonical
place K — (0/m) U oo with respect to o, and a field extension A:0/m < L.
Thus it suffices to prove the theorem for the canonical place. So let L = o/m
and A(a) =a:=a+m for a € o.

We have a well-defined additive map A:Z[Q(K)] — W(L) such that
A({a)) = {a} if a € o*, and A({a)) = 0 if (a) € Q(0). Clearly A vanishes
on all elements (a) + (—a) with a € K*. According to §2, Theorem 3 we will
be finished if we can show that A also disappears on every element

Z = (a1) + (a2) — (az) — (aa)

with a; € K* and (a1, a2) = (a3, a4). This will be the case when the four
square classes (a;) are not all in Q(o).

Suppose from now on, without loss of generality, that a; € 0*. Then we
have Z = (a1)y, where

y=1+(c) —(b) = (bc)

is an element such that (1,¢) = (b, bc). So b = u?+w?c for elements u, w € K.
Clearly the equation A({a)x) = {a}A(z) is satisfied for any a € o*, x €
Z|Q(K)]. Therefore it is enough to verify that A(y) = 0. We suppose without

3 The letter W in the notation Ay refers to “Witt” or “weak”, see §1 and §7.
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12 Chapter I. Fundamentals of Specialization Theory

loss of generality that v and w are not both zero, otherwise we already have
that y = 0.
Let us first treat the case (¢) € Q(0), so without loss of generality ¢ € o*.

Then we have
Aly) = (1 + {c})A(1 — (b)).

If {¢} = {-1}, we are done. So suppose from now on that {¢} # {—1}.
Then the form (1,¢) is anisotropic over L. Since we are allowed to replace u
and v by gu and gv for some g € K*, we may additionally assume that u
and v are both in o, but not both in m. Since (1,¢) is anisotropic, we have
b=1u%+ew? #0 and

Aly) = (1 +{e})(1 — {@® +ew’}) = 0.

The case which remains to be tackled is when the square class cK*?
doesn’t contain a umit from o. Then u~2w?c is definitely not a_unit and
either b = u*(1 + d) or b = w?c(1 + d) with d € m. Hence A(1 — (b)) is 0 or

1 —{¢}, and both times A(y) = 0. O

Scholium. The map Ay : W(K) — W(L) can be described very conveniently
as follows: Let ¢ be a form over K. If ¢ is hyperbolic (or, more generally
metabolic), then Ay ({¢}) = 0. If ¢ is not hyperbolic, then consider a diag-
onalisation ¢ 2 (a1, as,...,a,). Multiply each coefficient a;, for which it is
possible, by a square so that it becomes a unit in 0, and leave the other coef-
ficients as they are. Let for example a; € o* for 1 < ¢ < r and {a;) € Q(o) for
r <i<mn (possibly » =0 or » = n). Then Aw ({¢}) = {{(A(a1),..., A(a,))}.

Let us now recall a definition from the Introduction §1.

Definition 1. We say that a form ¢ over K has good reduction with respect to
A, or that ¢ is d-unimodular if ¢ is isometric to a form (a,;) with a;; € 0 and
det(ai;) € 0*. We call such a representation ¢ = (a;;) a A-unimodular repre-
sention of ¢ (or a unimodular representation with respect to the valuation
ring o).

This definition can be interpreted geometrically as follows. We associate
to ¢ a couple (F, B), consisting of an n-dimensional K-vector space E (n =
dim ¢) and a symmetric bilinear form B: F x E — K such that B represents
the form ¢ after a choice of basis of E. We denote this by ¢ = (F, B). Since
¢ has good reduction with respect to A, E contains a free o-submodule M
of rank n with E = KM, ie. E = K ®, M, and with B(M x M) C o, such
that the restriction B|M x M: M x M — o is a nondegenerate bilinear form
over o, i.e. gives rise to an isomorphism z — B(z, —) from the o-module M

v
to the dual o-module M = Hom, (M, o).

By means of Theorem 1 we can now quite easily find a solution of the
first problem posed in §1.

Theorem 2. Suppose that the form ¢ over K has good reduction with respect
to X\. Let ¢ = (ai;) be a unimodular representation of . Then the Witt
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83 Specialization of Symmetric Bilinear Forms 13

class Aw ({¢}) is represented by the (nondegenerate!) form (A(aij)) over L.
Consequently the form (A ai;)) is up to stable isometry independent of the
choice of unimodular representation. (Recall that if two forms ¢ and ¢’ are
Witt equivalent and dim ¢ = dim¢’, then ¢ ~ ¢)’.)

To prove this theorem, we need the following easy lemma about lifting
orthogonal bases.

Lemma. Let M be a finitely generated free o-module, equipped with a non-
degenerate symmetric bilinear form B:M x M — o. Let k:= o/m and let
m M — M/mM be the natural epimorphism from M to the k-vector space
M/mM. Further, let B be the (again nondegenerate) bilinear form induced
by B on M/mM, B(r(z),n(y)): = B(x,y) +m. Suppose that the vector space
M/mM has a basis €1,...,€y,, orthogonal with respect to B. Then M has a
basis €1, ..., en, orthogonal with respect to B, with w(e;) =& (1 <i<n).

Proof. By induction on n, which obviously is the rank of the free o-module
M. For n = 1 nothing has to be shown. So suppose that n > 1. We choose
an element e; € M with 7(e;) = ;. Then B(ey, e;) € o* since B(e;,e;) # 0.
Hence the restriction of B to the module oe; is a nondegenerate bilinear form
on oe;y. Invoking a very simple theorem (e.g. [MH, p.5, Th.3.2], §5, Lemma
1 below) yields M = (0e1) L N with N = (0e1)t = {x € M | B(x,e1) =
0}. The restriction 7|N: N — M/mM is then a homomorphism from N to

n
(ke1)t = @ ke; with kernel mN. By our induction hypothesis, N contains
i=2

an orthogonal basis es, ..., e, with m(e;) =€ (2 < < n) which can be
completed by e; to form an orthogonal basis of M which has the required
property. O

Remark. Clearly the lemma and its proof remain valid when o is an arbitrary
local ring with maximal ideal m, instead of a valuation ring.

We also need the following

Definition 2. A bilinear o-module is a couple (M, B) consisting of an o-
module M and a symmetric bilinear form B: M x M — o. A bilinear module is
called free when the o-module M is free of finite rank. If ey, ..., e, is a basis of
M, we write (M, B) = (ai;) with a;;: = B(e;, e;5). If e1, .. ., e, is an orthogonal
basis (B(e;, e;) = 0 for i # j), then we also write (M, B) = (a1, ..., a,) with
a;:= Ble;, e;).

Note. The form B is nondegenerate exactly when det(a;;) is a unit in o,
respectively when all a; are units in o.

All this makes sense and remains correct when o is an arbitrary commu-
1722

tative ring (with 1), instead of a valuation ring. As before, “~” stands for
“isometric”, also for bilinear modules.
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14 Chapter I. Fundamentals of Specialization Theory

Proof of Theorem 2. For a € o, let @ denote the image of a in 0/m. We suppose
for the moment that the bilinear space (@;;) over o/m is not hyperbolic. Then
it has an orthogonal basis. By the lemma, the bilinear module (a;;) over o
also has an orthogonal basis. Hence over o,

(*) (aij) = (al,...,an)

for certain a; € o*. The isometry () is then also valid over K, and so we

have in W (L)
)\W({(P}) = {<)‘(a1)a s 7)‘(an)>}
On the other hand (*) implies that

(@ij) = (@,...,a,) overo/m.

If we now apply the (injective) homomorphism z; o/m — L induced by A
(thus we tensor with the field extension given by A), we obtain

(Maij)) = (Mar), .- Man))

over L. Consequently the Witt class Aw ({¢}) is represented by the form

(Aaiz))-
Let us now tackle the remaining case, where the form (a,;) over o/m is
hyperbolic. We can apply what we just have proved to the form t: = ¢ L (1).

This gives us
Aw ({¢}) = {(AMaij)) L (1)}
= {(Maiy))} +{{1)}
in W(L). On the other hand we have Aw ({¢}) = Aw ({¢}) + {(1)}, and we
find again that Aw ({}) = {(A(ai;))}- O

Remark. If char L # 2, a hyperbolic form over o/m also has an orthogonal
basis, so that the distinction between the two cases above is unnecessary.

Definition 3. If ¢ has good reduction with respect to A, ¢ = (a;;) with
a;j € o0, det(a;;) € 0*, we denote the form (A(a;;)) over L by A.(¢) and call
it “the” specialization of ¢ with respect to \.

If char L = 2 we run into trouble with this definition, since A\, () is only
up to stable isometry uniquely determined by ¢ . We nevertheless use it, since
it is so convenient. If char L # 2, A, () is up to isometry uniquely determined

by ¢.

Ezxample. Every metabolic form ¢ over K has good reduction with respect
to A. Of course is A, (p) ~ 0.

Proof. Tt suffices to prove this in the case dimy = 2, so ¢ = (“ 1) with

10
a € K. Let ¢=(FE, B) and let e, f be a basis of F with value matrix ('f é)
Choose an element ¢ € K* with ac? € 0. Then ce,c!f is a basis of E with
value matrix (afZ é) O
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83 Specialization of Symmetric Bilinear Forms 15

Theorem 3. Let ¢ and ¢ be forms over K, having good reduction with respect
to A. Then ¢ 1 1 also has good reduction with respect to A and

Alp L) = Aulp) L A(¥).

Proof. This is clear. O

Until now we got on with our specialization theory almost without any
knowledge of bilinear forms over o. Except for the lemma above about the
existence of orthogonal bases, we needed hardly anything from this area. We
could even have avoided using this little bit of information if we would only
have considered diagonalised forms over fields.

We are still missing one important theorem of specialization theory (es-
pecially for applications later on), Theorem 4 below. For a proof of this
theorem we need the basics of the theory of forms over valuation rings, which
we will present next using a “geometric” point of view. In other words, we
interpret a form ¢ over a field as an “inner product” on a vector space
and use more generally “inner products” on modules over rings, while until
now a form was usually interpreted as a polynomial in two sets of variables
Tlyeo s TpnysYly-o5Yn-

For the moment we allow local rings instead of the valuation ring o since
this won’t cost us anything extra. So let A be a local ring.

Definition 4. A bilinear space M over A is a free A-module M of finite
rank, equipped with a symmetric bilinear form B: M x M — A which is
nondegenerate, i.e. which determines an isomorphism = — B(z,—) from M

Vv
on the dual module M = Hom4 (M, A).

Remark. We usually denote a bilinear space by the letter M. If confusion is
possible, we write (M, B) or even (M, Byy).

In what follows, M denotes a bilinear space over A, with associated bi-
linear form B.

Definition 5. A subspace V of M is a submodule V' of M which is a direct
summand of M, i.e. for which there exists another submodule W of M with
M=VaoW.

To a subspace V' we can associate the orthogonal submodule
Vi ={ze M| B(z,V) =0},
and we have an exact sequence
0—V— M5 1\} — 0.

v
Here V = Homu(V, A) and ¢ maps € M to the linear form y — B(x,y)
v

on V. The sequence splits since V is free. Thus V= is again a subspace of
M.
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16 Chapter I. Fundamentals of Specialization Theory

Definition 6. A subspace V of M is called totally isotropic when B(V, V) =
{0},i.e. when V C V+. V is called a Lagrangian subspace of M when V = V+,
If M contains a Lagrangian subspace, M is called metabolic. M is called
anisotropic if it doesn’t contain any totally isotropic subspace V' # {0}.

Lemma 1.
(a) Every bilinear space M over A has a decomposition

M= M, L M

with My anisotropic and M1 metabolic.

(b) Fvery metabolic space N over A is the orthogonal sum of spaces of the
form (1),
Ne (B (et
10 10

with ay,...,a, € A.
These statements can be inferred from more general theorems, which can
be found in e.g. [Ba, §1], [K1, §3], [Kq, I §3], [KRW, §1].

Remark. If 2 is a unit in A, Witt’s cancellation theorem ([K3], [R]) holds for
bilinear spaces over A and every metabolic space over A is even hyperbolic,
i.e. is an orthogonal sum r X (? (1)) of copies of the “hyperbolic plane” (? (1))
over A. Now the anisotropic space My in Lemma 1(a) is up to isometry

uniquely determined by M. If 2 ¢ A* this is false in general.

If A — C is a homomorphism from A to another local ring C, we
can associate to a bilinear space (M,B) = M over A a bilinear space
(C®aM,B")=C®4 M over C as follows: the underlying free C-module is
the tensor product C ® 4 M determined by «, and the C-bilinear form B’ on
this module is obtained from B by means of a basis extension, so

Bc®r,d®y)=cda(B(z,y))

(x,y € M;c,d € C). The form B’ is again nondegenerate. If (a;;) is the value
matrix of B with respect to a basis e, ..., e, of M, then (a(a;;)) is the value
matrix of B’ with respect to the basis 1 ® e1,...,1® e, of C @4 M.

If A doesn’t contain any zero divisors and if K is the quotient field of A,
we can in particular use the inclusion A — K to associate a bilinear space
K ®4 M to the bilinear space M over A. Now we can interpret M as an
A-submodule of the K-vector space K 4 M (z = 1® z for z € M) and
reconstruct B from B’ by restriction, B = B'|M x M: M x M — A.

Let us return to our place A\: K — L U oo and the valuation ring o.

Lemma 2. Let M be a bilinear space over o.

(a) If K ®, M is isotropic, then M is isotropic.
(b) If K ®, M is metabolic, then M is metabolic.
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83 Specialization of Symmetric Bilinear Forms 17

Proof. Let E:= K ®, M. We interpret M as an o-submodule of £ and have
E=KM.

(a) If E is isotropic, there exists a subspace W # {0} in E with W C
W+, The o-submodule V:= W N M of M satisfies KV = W and so V #
{0}. Furthermore V C V+. The o-module M/V is torsion free and finitely
generated, hence free. This is because every finitely generated ideal in o is
principal, cf. [CE, VII, §4]. Therefore V is a totally isotropic subspace of E.

(b) If W = W+, then V = V*. Hence M is metabolic. O

Now we are fully equipped to prove the following important theorem [Ky,
Prop.2.2].

Theorem 4. Let ¢ and v be forms over K. If ¢ and ¢ 1 1 have good
reduction with respect to A, then 1 also has good reduction with respect to .

Proof. Adopting geometric language, the statement says: Let F' and G be
bilinear spaces over K and E: = F 1 G. If F and E have good reduction, i.e.
F2K®, N, E= K ®, M for bilinear spaces N and M over o, then G has
good reduction as well.

By §2, Theorem 1 there is a decomposition G = Gy L G; with G
anisotropic and G; metabolic. From above (cf. the example following Def-
inition 3), G1 has good reduction. Hence it suffices to show that Gy has good
reduction.

Now E L (-=F) 2 F 1 (-F) L Go L G1.* Since F L (—F) L Gy is
metabolic, but G1 anisotropic, Gy is the kernel space of E L (—F). (“Kernel
space” is the pendant of the word “kernel form” (= anisotropic part) in
the geometric language.) We decompose M L (—N) following Lemma 1(a),
M 1 (—=N)= R 1 S where R is anisotropic and S metabolic. Tensoring with
Kgives FE L (-F)2K®, R 1L K®,S. Now K ®, S is metabolic and,
according to Lemma 2, K ®, R is anisotropic. Hence K ®, R is also a kernel
space of E 1 (—F). Applying §2, Theorem 1 gives K ®, R = G, and we are
finished. O

Corollary. Let ¢ and v be forms over K with @ ~ 1. If ¢ has good reduction
with respect to A, ¥ also has good reduction with respect to A and M. (p) ~
A (). If furthermore ¢ ~ 1, then A\ (p) = A (¥).

Proof. There are Witt decompositions ¢ = @9 L u, ¥ = g L v with g,
1 anisotropic and u, v metabolic. As established above, u and v have good
reduction with respect to A and A, (), A«(v) are metabolic. By assumption
¢ has good reduction with respect to A and g is isometric to 9. Theorem 4
implies that g has good reduction with respect to A. Therefore 1)y, and hence
1, has good reduction with respect to A, and (according to Theorem 3)

() = Aulpo) L As(p) ~ As(po),
() = A(t0) L A(v) ~ (o).

1 1If E = (E, B) is a bilinear space, then —E denotes the space (E, —B).
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18 Chapter I. Fundamentals of Specialization Theory

Naturally A (¢o) & A(%0), 80 Au(p) ~ A(¥). If ¢ & 1), then ¢ and ¢ have
the same dimension and so A () = A (). O

Let us give a small illustration of Theorem 4.

Definition 7. Let ¢ and ¥ be forms over a field K. If there exists a form
x over K with ¢ 21 1 x, we say that ¢ represents the form ¢ and write

P < .

For example, the one-dimensional forms represented by ¢ are exactly the
square classes (p(x,x)), where x runs through the anisotropic vectors of the
space belonging to ¢.

Theorem 5 (Substitution Principle). Let k be a field and K = k(t), where
t = (t1,...,t) is a set of indeterminates. Let (f;;(t)) be a symmetric (nxn)-
matriz and (gri(t)) a symmetric (mxm)-matriz, for polynomials f;;(t) € klt],
and gii(t) € k[t]. Let further be given a field extension k C L and a point
c € L" with det(fij(c)) # 0 and det(gwi(c)) # 0. If chark = 2, also suppose
that the form (fi;(c)) is anisotropic over L.

Claim: if (gri(t)) < (fi;(t)) (as forms over K), then (gri(c)) < (fij(c))
(as forms over L).

Proof. Going from k[t] to L[t], we suppose without loss of generality
that L = k. For every s € {1,...,r} there is exactly one correspond-
ing place Ag:k(ty,...,ts) — k(t1,...,ts—1) U oo with A;(u) = u for all
u € k(ty,...,ts—1) and As(ts) = cs. {Read k(t1,...,ts—1) = k when s = 1.}
The composition A\; o Ag 0 --- 0 g of these places is a place \: K — kU oo
with A(a) = a for all @ € k and A(t;) = ¢; for i = 1,...,7. Let ¢ denote
the form (f;;(t)) over K and ¢ the form (gxi(t)) over K. {Note that obvi-
ously det(f;;(t)) # 0, det(gri(t)) # 0.} The forms ¢ and ¥ both have good
reduction with respect to A and A (¢) = (fi;(c)), A\(¥) =~ (gri(c)).

Now let ¢ < . Then there exists a form y over K with ¥ 1 x &
. According to Theorem 4, x has good reduction with respect to A and
according to Theorem 3, A (¥) L Ai(x) = A(p). Hence \i(v) L Au(x) &
A«(p) if chark # 2. If char k = 2 and A, (p) is anisotropic, this remains true,
since A« () is up to isometry the unique anisotropic form in the Witt class
Aw (@), and A (¥) L A (x) has the same dimension as A\ (¢). O

Let us now return to our arbitrary place \: K — L U oo and to the
conventions made at the beginning of the paragraph. The Lemmas 1 and 2
allow us to give an easier proof of Theorem 2, which is interesting in its own
right.

Second proof of Theorem 2. We adopt the geometric language. Let F be a
bilinear space over K, having good reduction with respect to A and let M
and N be bilinear spaces over o with £ =2 K ®, M =2 K ®, N. We have
to show that L ®\ M =~ L ® N, where the tensor product is taken over o,
and L is regarded as an o-algebra via the homomorphism Ao : 0 — L. The
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83 Specialization of Symmetric Bilinear Forms 19

space K ®, (M L (—N)) is metabolic. According to Lemma 2, M 1 (—N)
is metabolic. Hence L ® (M L (=N)) = L®x M L (—L ®, N) is also
metabolic. Therefore L @y M ~ L ®) N. O

We can now describe the property “good reduction” and the specialization
of a form by means of diagonal forms as follows.

Theorem 6. Let ¢ be a form over K, dim p = n.

(a) The form @ has good reduction with respect to X if and only if v is Witt
equivalent to a diagonal form {(ai,...,a,) with units a; € o*. In this case
dim A () = n and A (@) ~ (Ma1),...,Aa,)). Furthermore one can
choose r =n + 2.

(b) Let 2 € o*, i.e. char L # 2. The form ¢ has good reduction with respect
to X if and only if ¢ is isometric to a diagonal form {(a1,...,a,) with
a; € o*. In this case M\(v) =2 (Aa1),..., A(an)).

Proof of part (a). If ¢ ~ {(ai,...,a,) with units a; € 0*, then by the Corol-
lary ¢ has good reduction with respect to A and A.(¢) ~ (AM(a1),...,A(a,)).
Suppose now that ¢ has good reduction with respect to A. The form ¢ corre-
sponds to a bilinear space K ®, M over K, which comes from a bilinear space
M over o. If M/mM is not hyperbolic, then M has an orthogonal basis by the
Lemma following Theorem 2. Therefore ¢ = (aq,...,a,) with units a; € o*.
In general we consider the space M':= M 1 (1,—1) over o. Then M'/mM’
is definitely not hyperbolic. Hence ¢ L (1,—1) = (by,...,byt2) with
units b;. O

The proof of part (b) is similar, but simpler since now M/mM always has
an orthogonal basis. We don’t need the Corollary here.

Finally, we consider the specialization of tensor products of forms.

Theorem 7. Let ¢ and ¥ be two forms over K, which have good reduction
with respect to A\. Then ¢ ® 1 also has good reduction with respect to A\, and

AP ®9) = Au() © Au(9).

Proof. According to Theorem 6 we have the following Witt equivalences,
@~ (a1,...,am), ¥ ~ (b1,...,b,), with units a;,b; € 0*. Then ¢ ® ¢ ~
(a1by,a1ba, ..., a1by, ..., amby,). Again according to Theorem 6, ¢ ® 1 has
good reduction and

Al @ 9) ~ (Man)A(b1), -+ Alam)A(bn))

Aa1),- .y Mam)) @ (A1), ..., A(bn))

() @ A (¥).

Now the forms A, (¢ ® ¥) and A, (@) @ A«(¥) both have the same dimension
as ¢ ® 1. Therefore Ay (p @ ¥) = A(@) @ Au(). O

R 2

2
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20 Chapter I. Fundamentals of Specialization Theory

If we use a bit more multilinear algebra, we can come up with the following
conceptually more pleasing proof of Theorem 7.

Second proof of Theorem 7. Adopting geometric language, ¢ corresponds to
a bilinear space K ®, M and v corresponds to a space K ®, N with bilinear
spaces M and N over o. Hence ¢ ® ¥ corresponds to the space

(K®eM)®Kr (K®, N) =2 K®, (M®,N)

over K. Now the free bilinear module M ®, N is again nondegenerate (cf.
e.g. [MH, I §5]). Consequently ¢ ® 1 has good reduction with respect to A,
and A (p ® ¥) can be represented by the space L ®y (M ®, N), obtained
from the space M ®, N by base extension to L using the homomorphism
Mo:o—= L. Now LRy (M®,N) = (LexM)®L (L®yN). In other words,
(@ © 1) 2 A () ® A (0), since Au(¢) = Ly M, A (¥) = Loa N, O

Page: 20 job: 389 macro: PMONOO1 date/time: 13-Apr-2008/12:32



§4 Generic Splitting in Characteristic #= 2

In this section we outline an important application area of the specialization
theory developed in §3, namely the theory of generic splitting of bilinear
forms. Many proofs will only be given in §7, after also having developed a
specialization theory of quadratic forms.

Let k be a field and let ¢ be a form over k, which is just as before un-
derstood to be a nondegenerate symmetric bilinear form over k. Our starting
point is the following simple

Observation. Let K and L be fields, containing k, and let \: K — L U co be

a place over k, i.e. with A(c) = ¢ for all ¢ € k.

(a) Then p® K has good reduction with respect to A and M\, (9@ K) ~ ¢®L.5
Indeed, if ¢ = (ai;) with a;; € k, det(a;;) # 0, then also ¢ ® K = (a;;),
and this is a unimodular representation of ¢ with respect to A, since k is
contained in the valuation ring o of A. So A (¢ @ K) = (A(aij)) = (asj)
and since this symmetric matrix is now considered over L, we conclude
that Ai(p @ K) =~ o ® L.

(b) Suppose that ¢ ® K has kernel form ¢; and Witt index 71, i.e.

@@K%gﬁlJ_T1XH,

where H denotes from now on the hyperbolic “plane”® (? é) According
to the corollary of Theorem 4 in §3, the form ¢; has good reduction with
respect to A. Therefore, applying A, yields

YL ~ A\(p1) Lr1 x H.
Hence we conclude that ind(¢ ® L) > ind(¢ ® K) and that
As(ker(p @ K)) ~ ker(p® L).
(Recall the terminology of §2, Definition 1.)
Definition 1. We call two fields K D k, L D k over k specialization equiva-

lent, or just equivalent, if there exist places \: K — LUoco and u: L — KU oo
over k. We then write K ~p L.

> ¢ ® K is the form ¢, considered over K instead of over k. If E is a bilinear space
over k corresponding to ¢, then K ®; E — as described in §3 — is a bilinear space
corresponding to ¢ ® K.

6 We do not make a notational distinction between the forms (

fields occurring here.

01

1 0) over the different
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22 Chapter I. Fundamentals of Specialization Theory

The following conclusions can be drawn immediately from our observa-
tion:

Remark 1. If K ~y L, then every form ¢ over k satisfies:

(1) ind(p ® K) =ind(p ® L).

(2) ker(¢® K) has good reduction with respect to every place A from K to L
and A, (ker(¢ ® K)) 2 ker(¢ ® L). (Note that “>” holds, not just “a”!)

From a technical point of view, it is a good idea to treat the following
special case of Definition 1 separately:

Definition 2. We call a field extension K D k inessential if there exists a
place A: K — kU oo over k.

Obviously this just means that K is equivalent to k over k. In this case,
Remark 1 becomes:

Remark 2. If K is an inessential extension of k, then every form ¢ over k
satisfies:

(1) ind(p ® K) = ind(y),
(2) ker(p ® K) = ker(¢) @ K.

We will see that the forms ¢ and ¢ ® K exhibit the “same” splitting
behaviour with respect to an inessential extension K/k in a broader sense
(see Scholium 4 below).

Let us return to the general observation above. It gives rise to the following

Problem. Let ¢ be a form over k, dimyp = n > 2, and let ¢ be an integer

with 1 <¢ < 5. Does there exist a field extension K D k which is “generic

with respect to splitting off ¢ hyperbolic planes”?, i.e. with the following

properties:

(a) ind(p® K) > t.

(b) If L is a field extension of k with ind(p® L) > ¢, then there exists a place
from K to L over k.

We first address this problem for the case t = 1. As before, let ¢ be a
form over a field k.

Definition 3. An extension field K D k is called a generic zero field of ¢ if

the following conditions hold:

(a) p® K is isotropic.

(b) For every field extension k — L with ¢ ® L isotropic, there exists a place
A K — LUoo over k.

Note that if ¢ is isotropic, then the field k is of course itself a generic zero
field of ¢.
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84 Generic Splitting in Characteristic # 2 23

In the rest of this section, we assume that chark # 2. Now ¢ can also
be viewed as a quadratic form,” ¢(z): = ¢(z,z). We define a field extension
k(p) of k, which is a priori suspected to be a generic zero field of .

Definition 4. Let dimy > 3 or let dimp = 2 and ¢ % H. Let k(¢) denote
the function field of the affine quadric (X1, ..., X,,) = 0 (where n =
dim ¢), i.e. the quotient field of the ring A: = k[ X1, ..., X,]/(o(X1,..., X5))
with indeterminates X1, ..., X,.

Observe that the polynomial (X7, ..., X,) is irreducible. To prove this

we may suppose that ¢ is diagonalised, ¢ = (a1, as,...,a,). The polynomial
a1 X?+ax X3+ ...+ a,X2 is clearly not a product of two linear forms (since
chark # 2).

If ¢ = H, then p(X1,X2) = X;X5. On formal grounds we then set
k(p) = k(t) for an indeterminate t.

Let x1, ..., x, be the images of the indeterminates X, ..., X,, in A. Then
o(x1,...,2,) = 0. Hence ¢ ® k(¢p) is isotropic. (This is also true for ¢ = H.)
On top of that we have the following important

Theorem 1. Let dim > 2. Then k(p) is a generic zero field of ¢.

Note that the assumption dim ¢ > 2 is necessary for the existence of a
generic zero field, since forms of dimension < 1 are never isotropic.

Theorem 1 can already be found in [K5]. We will wait until §9 to prove it
in the framework of a generic splitting theory of quadratic forms.

It is clear from above that every other generic zero field K of ¢ over k is
equivalent to k(y). It is unknown which bilinear forms possess generic zero
fields in characteristic 2.

Given an arbitrary form ¢ over k, we now construct a tower of fields
(K, | 0 <r < h) together with anisotropic forms ¢, over K, and numbers
ir € Np as follows: choose K to be any inessential extension of the field k.8
Let o be the kernel form of ¢ ® Ky and ip the Witt index of ¢. Then

(p@KO = @OL’L'()XH.

If dim g < 1, then Stop! Otherwise choose a generic zero field K1 O Ky of
@o. Let 1 be the kernel form of pg ® K; and i; the Witt index of ¢o ® K;.
Then

@O@Kl = (Plj—il x H.
If dim¢; < 1, then Stop! Otherwise choose a generic zero field Ky O K; of
1. Let o be the kernel form of ¢ ® Ks and i the Witt index of ¢ ® Ko.
Then

(p1®K2 = (pQLiQXH,
etc.

" In keeping with our earlier conventions, it would perhaps be better to write ¢(z) =
1¢(x, z). However, the factor 3 is not important for now.

8 In earlier works (especially [K5]) Ko was always chosen to be k. From a technical
point of view it is favourable to allow Ky to be an inessential extension of k, just

as in [KR].
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24 Chapter I. Fundamentals of Specialization Theory

The construction halts after h < [d‘—l;f} steps with a Witt decomposition

oh-1 @ Kp = pp Lip x H,

dim ¢y, < 1.

Definition 5. (K, | 0 < r < h) is called a generic splitting tower of ¢. The
number h is called the height of ¢, denoted h = h(p). The number 4, is called
the r-th higher index of ¢ and the form @, the r-th higher kernel form of .

Remark. Obviously ¢, is the kernel form of ¢ ® K, and ind(p ® K,) =
i + ...+ 1. Note that h = 0 iff the form ¢ “splits”, i.e. iff its kernel form is
zero or one-dimensional.

We will see that the number h and the sequence (i, ...,i) are indepen-
dent of the choice of generic splitting tower and also that the forms ¢, are
determined uniquely by ¢ in a precise way. For this the following theorem is
useful.

Theorem 2. Let ¥ be a form over a field K. Let \: K — LU oo be a place,
such that v has good reduction with respect to \. Suppose that L (and therefore
K) has characteristic # 2. Then A\ () is isotropic if and only if A can be
extended to a place p: K(¢) — L U oco.

If X\ is a trivial place, i.e. a field extension, then this theorem says once
more that K (1) is a generic zero field of ¢ (Theorem 1).

One direction of the assertion is trivial, just as for Theorem 1: if A can
be extended to a place u: K (1) — LU oo, then ¢ ® K(3) has good reduction
with respect to g and p. (¢ ® K()) =2 A (v). Since ¢ ® K (1) is isotropic,
A« (1) is also isotropic.

The other direction will be established in §9. For a shorter and simpler
proof, see [K5] and the books [S], [KS].

Theorem 3 (Corollary of Theorem 2). Let ¢ be a form over a field k. Let
(K, | 0 <r < h) be a generic splitting tower of ¢ with associated higher kernel
forms @, and indices i,.. Suppose that ¢ has good reduction with respect to
some place v:k — L Uoo. Suppose that L (and hence k) has characteristic
% 2. Finally let \: K,;, — LU oo be a place for some m, 0 < m < h which
extends v and which cannot be extended to Kpy11 if m < h. Then ¢, has
good reduction with respect to X. The form v.(¢) has kernel form A\ (om) and
Witt index ig + ... + .

Proof. There is an isometry
(1) 0@ Ky = o L (ig+ ... +im) x H.

The form ¢ ® K, has good reduction with respect to A and \.(¢p ® K,,,) =
~«(). Using Theorem 4 and Theorem 3 from §3, (1) implies that ¢, has
good reduction with respect to A and
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84 Generic Splitting in Characteristic # 2 25

(2) V() =2 Aom) L (ig+ ... +im) x H

(cf. the observation at the beginning of this section). If A, (¢, ) were isotropic,
then we would have m < h, since dim ¢;, < 1. It would then follow from The-
orem 2 that A can be extended to a place from K,, 1 to L, contradicting our
assumption. Therefore A, (¢n,) is anisotropic and so (2) is the Witt decom-
position of 7. (). O

Note that this theorem implies in particular, that any attempt to suc-
cessively extend the given place \:k — L U oo to a “storey” K,, of the
generic splitting tower, which is as high as possible, always ends at the same
number m.

Theorem 3 gives rise to a number of interesting statements about the
splitting behaviour of forms and the extensibility of places.

Scholium 1. Let ¢ be a form over k and (K, | 0 < r < h) a generic splitting
tower of ¢ with kernel forms ¢, and indices ¢,.. Furthermore, let £k C L be a
field extension. If we apply Theorem 3 to the trivial place v: k — L, we get:

(1) Let \: K, — LU oo be a place over k& (0 < m < h), which cannot be
extended to K,,4+; in case m < h. Then ¢, has good reduction with
respect to A and A, (¢, ) is the kernel form of ¢ ® L. The index of p ® L
is i0+...+im.

(2) If N: K, — LU oo is a place over k, then » < m and X can be extended
to a place pu: K, — L U oo.

(3) Given a number ¢ with 1 < ¢t < {d’—g"e} =49+ ...+ 1p, let m € Ny be
minimal with ¢t <4y + ...+ iy,. Then K, is a generic field extension of
k with respect to splitting off ¢ hyperbolic planes of ¢ (in the context of
our problem above).

Definition 6. Let ¢ be a form over k. We call the set of indices ind(p ® L),
where L traverses all field extensions of k, the splitting pattern of ¢, denoted
by SP(p).

This definition also makes sense in characteristic 2, and it is a priori clear
that SP(y) consists of at most [d‘—glf} + 1 elements. Usually the elements of

SP (i) are listed in ascending order. If chark # 2 and (i, | 0 < r < h) is the
sequence of higher indices of a generic splitting tower (K, | 0 < r < h) of ¢,
then Scholium 1 shows:

SP(QD): (io,i0+il,i0+il+Z.2,...,Z.0+’L'1+...+ih).

Since the numbers i, with r > 0 are all positive, it is evident that the height
h and the higher indices i, (0 < r < h) are independent of the choice of

generic splitting tower of . Obviously is ig + ...+ iy = [di%]

Scholium 2. Let (K, |0 <r <h)and (K, |0 <r <h) be two generic split-
ting towers of the form ¢ over k. Applying Scholium 1 to the field extensions
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26 Chapter I. Fundamentals of Specialization Theory

k C Ks and k C K, yields: if \: K, — K! U oo is a place over k, then r < s
and A can be extended to a place u: Ky — K. U oco. The fields Ks and K
are equivalent over k. For every place u: Ky — K. U oo, the kernel form ¢, of
» ® K has good reduction with respect to pu and p.(ps) is the kernel form
¢ of o ® K.

Scholium 3. Let ¢ be a form over k and v:k — L U co a place such that
¢ has good reduction with respect to 7. Applying Theorem 3 to the places
jov:k — LU oo, being the composites of v and trivial places j: L — L/,
yields:

(1) SP(7x()) C SP(¢).

(2) The higher kernel forms of 7. () arise from certain higher kernel forms
of ¢ by means of specialization. More precisely: if (K, |0 <r <h)is a
generic splitting tower of ¢ and (K. | 0 < s < h’) is a generic splitting
tower of v, (), then b’ < h and for every s with 0 < s < A/ we have

ind(7.(p) @ KL) =ig+ ... +im

for some m € {0,...,h}. The number m is the biggest integer such that
v can be extended to \: K, — K’ U oco. The kernel form ¢,, of ¢ ® K,,
has good reduction with respect to every extension A of this kind, and
A« (m) is the kernel form of v.(¢) @ K.

(3) If p: K, — K. U oo is a place, which extends v:k — L U oo, then r < m
and p can be further extended to a place from K, to K.

Scholium 4. Let L/k be an inessential field extension (see Definition 2 above)
and ¢ again a form over k. Let (L; | 0 < i < h) be a generic splitting tower
of o ® L. It is then immediately clear from Definition 5 that this is also a
generic splitting tower of ¢. Hence SP(p® L) = SP(i), and the higher kernel
forms of ¢ ® L can also be interpreted as higher kernel forms of .

Which strictly increasing sequences (0, ji, j2,...,Jn) occur as splitting
patterns of anisotropic forms? What do anisotropic forms of given height
h look like? These questions are difficult and at the moment the object of
intense research. The first efforts towards answering them can be found in
[K4], [K5], while more recent ones can be found in [Hz], [HR4], [HRz], [Ka]
amongst others.

A complete answer is only known in the case h = 1. A form (1,a1)®...®
(1,aq) (d>1, a; € k) is called a d-fold Pfister form over k. If 7 is a Pfister
form of degree d, then the form 7/, satisfying (1) L 7’ = 7, is called the pure
part of T.

Theorem 4. An anisotropic form ¢ over k has height 1 if ¢ = ar (dim¢

even) or ¢ = ar’ (dim ¢ odd), with a € k* and T an anisotropic Pfister form
of degree d > 1 in the first case and d > 2 in the second case.

9 The form (1) also counts as a Pfister form, more precisely a 0-fold Pfister form.
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84 Generic Splitting in Characteristic # 2 27

Note that therefore SP(p) = (0,2971) when dim ¢ is even and SP(p) =
(0,297 — 1) when dim ¢ is odd. Is k¥ = R for example, then all d > 1, resp.
d > 2 occur. One can take for instance ¢ = 2¢ x (1), resp. ¢ = (2% — 1) x (1).

A proof of Theorem 4 can be found in [K5] and the books [S], [KS]. In §20
and §21 we will prove two theorems for fields of arbitrary characteristic, from
which Theorem 4 can be obtained in characteristic # 2 (§20, Theorem 5, §21,

Theorem H).
Little is still known about forms of height 2, but the known results are

interesting and partly deep, see e.g. [K¢|, [F], [Ka], [Hi], [Hs].
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5 An Elementary Treatise on Quadratic
Modules

We want to construct a specialization theory for quadratic forms, similar to
the theory in §3 for symmetric bilinear forms. In order to do this we need
some definitions and theorems about quadratic modules over rings, and in
particular over valuation rings.

Let A be any ring (always commutative, with 1). We recall some fun-
damental definitions and facts about quadratic forms over A, cf. [MH, Ap-
pendix 1].

Definition 1. Let M be an A-module. A quadratic form on M is a function
q: M — A, satisfying the following conditions:

(1) g(\x) = N2q(x) for A\ € A, 2 € M.

(2) The function By: M x M — A, By(z,y):= q(z +y) — q(x) —q(y) is a
bilinear form on M.

The pair (M, q) is then called a quadratic module over A.

Note that the bilinear form B, is symmetric. Furthermore By(z,z) =
2q(x) for all z € M. If 2 is a unit in A, 2 € A*, we can retrieve ¢ from B,.
Also, every symmetric bilinear form B on M comes from a quadratic form ¢
in this case, namely ¢(z) = %B(ac, x). So, if 2 € A*, bilinear modules (see §3,
Def. 2) and quadratic modules over A are really the same objects.

If 2 ¢ A*, and 2 is not a zero-divisor in A, we can still identify quadratic
forms on an A-module M with special symmetric bilinear forms, namely the
forms B with B(z,z) € 2A for all x € M (“even” bilinear forms). However,
if 2 is a zero-divisor in A, then quadratic and bilinear modules over A are
very different objects.

In what follows, primarily free quadratic modules will play a role, i.e.
quadratic modules (M, q) for which the A-module is free and always of finite
rank. If M is a free A-module with basis e, ..., e, and (a;;) a symmetric
(n x n)-matrix, then there exists exactly one quadratic form ¢ on M with

q(e;) = ai; and By(ej,ej) = a5 for i # 35 (1 <4,5 <n), namely
n n
q (Z -Tiei> = Zaiixf + Z Qi T;Tj.
i=1 i=1 1<i<j<n

We denote this quadratic module (M, ¢) by a symmetric matrix in square
brackets, (M, q) = [ai;], and call [a;;] the value matriz of ¢ with respect to
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30 Chapter I. Fundamentals of Specialization Theory

the basis eq, ..., en. If (a;;) is a diagonal matrix with coefficients a1, ..., an,
then we write (M, q) = [a1,...,a,].

Definition 2. Let (M1,q1) and (Ma,q2) be quadratic A-modules. The or-
thogonal sum (My,q1) L (Ma,qe) is the quadratic A-module

(M1 ® Ma, 1 L q2),
consisting of the direct sum M; & M, and the form

(1 L g2)(z1 +22): = q1(21) + g2(22)

for x1 € My, x5 € Ms.

If (M1,q1) = [A1] and (M2, g2) = [A2] are free quadratic modules with
corresponding symmetric matrices Ay, A, then

Ay 0}

(M1, q1) L (Ma,q2) = { 0 A

Now it is also clear how to construct a multiple orthogonal sum
(My,q1) L ... L (M,,q,). In particular we have for elements a1, ...,a, € A
that

[a1] L ... L [ar] =[a1,...,ar]

Let (M, q) be a quadratic o-module and suppose that M; and M, are
submodules of the o-module M, then we write M = M; L Ms, when
By (Mi, M) =0 (“internal” orthogonal sum, in contrast with the “external”
orthogonal sum of Definition 2). Clearly (M, q) = (Mi,q|M1) L (Ma,g|Ma)
in this case.

If : M x M — A is a — not necessarily symmetric — bilinear form, then
q(z): = B(z,z) is a quadratic form on M. If M is free, one can easily verify
that every quadratic form on M is of this form. Furthermore, two bilinear
forms 3, 8’ give rise to the same quadratic form ¢ exactly when 8 — 3 = v is
an alternating bilinear form: y(z,z) = 0 for all z € M, and hence y(z,y) =
—(y,z) for all z,y € M.

Suppose now that (Mj, By) is a free bilinear module (cf. §3) and that
(Ms, g2) is a free quadratic module. We equip the free module M: = M;® 4 M,
with a quadratic form ¢ as follows: first we choose a bilinear form 33 on My
with ga(x) = B2(x,x) for all € Ms. Next we form the tensor product
B:= B1 ® B2: M x M — A of the bilinear forms By, 82. This bilinear form g
is characterized by

B(r1 @ 22,91 @ y2) = Bi(1,y1)P2(2, y2)

for x1,y1 € My and x9,y2 € My (cf. [Boy, §1, No.9]). Finally we let ¢(x): =
B(x,x) for x € My ® My. This quadratic form ¢ is independent of the choice
of the bilinear form (s, since if 5 is an alternating bilinear form on M, then
Bj ® 2 is an alternating bilinear form on M.
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§5 An Elementary Treatise on Quadratic Modules 31

Definition 3. We call g the tensor product of the symmetric bilinear form
Bi and the quadratic form ¢o, denoted ¢ = B; ® g2, and call the quadratic
module (M, q) the tensor product of the bilinear module (M7, By) and the
quadratic module (Ms, g2), (M, q) = (M, B1) ® (Ma, ¢2).

The quadratic form ¢ = By ® g2 is characterized by B, = B1 ® By, and

q(v1 ® 22) = Bi(z1,21) g2(22)

for 1 € My, x2 € Ms. For a one-dimensional bilinear module (¢) and a
quadratic free module (M, q) there is a natural isometry (c) ® (M,q) =
(M, cq). In particular is for a symmetric (n X n)-matrix A

(c) @ [A] = [cA].

Later on we will often denote a quadratic module (M, q) by the single
letter M and an (always symmetric) bilinear module (E, B) by the single
letter . The tensor product F ® M is clearly additive in both arguments,

E® (M, L M) = (E® M;) L (E® M,).

Consequently we have for example (a;,b; € A):
<a1, e ,ar> (24 [bl, N ,bs] = [albl,ale, N ,arbs].

Let M = (M,q) be a free quadratic A-module and a: A — C a ring
homomorphism. We associate to M a quadratic C-module M’ = (M’,q’) as
follows: The C-module M’ is the tensor product C' ® 4 M, formed by means
of a. Choose a bilinear module 8: M x M — A with ¢(z) = B(z,x) for all
€ M. Let f/: M’ x M’ — C be the bilinear form over C associated to /3, in
other words

(%) Flewr,doy) =cda(f(z,y))

for z,y € M, ¢,d € C. Let ¢'(u): = ' (u,u) for u € M’. This quadratic form
¢’ is independent of the choice of 3, since if 7y is an alternating bilinear form
on M, then the associated C-bilinear form 7’ on M’ is again alternating. The
form ¢’ can be characterized as follows:

¢ (c®z)=cPalq(x)), Bylc®z,d®y)=cda(By(z,y)),
forece M,ye M,ceC,deC.

Definition 4. We say that the quadratic C-module (M’, ¢’) arises from M =
(M, q) by means of a base extension determined by «, and denote M’ by
C ®a M or by C ®, M or, even more precisely, by C ®4,, M. We also use
the notation ¢’ = q¢.

If M is given by a symmetric matrix, M = [a;;] then C ®4 M = [a(aij)]-
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Given a bilinear A-module M = (M, B), we similarly define a bilinear
C-module C®4 M = (C®4 M, Bc), where B is determined in the obvious
way by B, cf. (%) above.

If M = (M,q) is a quadratic module over A and N a submodule of
M, we also interpret N as a quadratic module, N = (N, ¢|N) (quadratic
submodule). Furthermore we denote by N+ the submodule of M consisting
of all elements x € M with By(z,y) = 0 for all y € N. Of course, we
also interpret N+ as a quadratic module. In particular we can look at the
quadratic submodule M+ of M. If M~ is free of finite rank r, then M~ has
the form [ay,...,a,] with elements a; € A.

Later on we will frequently use the following elementary lemma.

Lemma 1 [MH, p.5|. Let M = (M, B) be a bilinear A-module and let N
be a submodule of M. Suppose that the bilinear form B is nondegenerate
on N, i.e. the homomorphism x +— B(xz,—)|N from N to the dual module

v
N =Homu(N, A) is an isomorphism. Then M = N 1 N*.

Let M = (M, q) be a quadratic module and let N be a submodule of M
such that the bilinear form B, is nondegenerate on IV, then according to the
lemma we also have that M = N 1L N-=t.

To finish this section, we briefly examine free hyperbolic modules, being
quadratic modules of the form 7 x [(1) (ﬂ with » € Ng, in other words direct
sums of r copies of the quadratic module [(IJ (ﬂ {When r = 0, the zero

module is meant.}

Lemma 2. Let (M,q) be a quadratic A-module whose associated bilinear
form By is nondegenerate. Let U be a submodule of M with q|U = 0. Suppose
that U is free of rank v and that it is a direct summand of the A-module
M. Then there exists a submodule N D U of M with N = r x [? é] and
M=N 1L Nt

Proof. (cf. [Ba, p.13 f]). We saw already in §3 (just after Definition 5) that
there exists an exact sequence of A-modules

O—)UJ‘—>ML>[\JC—>O’

Vv
with U:= Homy (U, A), where o maps an element z € M to the linear form
v
B(z,—)|U on U. Since U is free, this sequence splits. Choose a submodule

V of M with M = Ut @& V. Then o|V:V — U is an isomorphism. The
modules U and V are therefore in perfect duality with respect to the pairing
UxV — A, (z,y) — Bq(z,y).

Now choose a — not necessarily symmetric — bilinear form 5:V x V — A
with B(x,z) = q(z) for x € V. We then have an A-linear map ¢: V' — U such
that (v, z) = By(v, ¢(x)) for v € V, x € V. Therefore

9(z = ¢(2)) = ¢(x) = By(z,¢(z)) = ¢(x) = B(z,2) = 0
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for every x € V. Let W:= {z — p(z) | z € V'}. Since
By(u, & — ¢(x)) = By(u, z)

forallu € U and = € V, the modules W and U are also in perfect duality with
respect to B,. Furthermore is ¢|W = 0. Choose a basis e, ..., e, for U and
let f1,..., fr be the dual basis of W with respect to By, i.e. By(e;, fj) = ;5.
Then N:=U & W can be written as

N= | (Aei+Afi) = rx {0 1}.
— 10

An appeal to Lemma 1 yields M = N 1 N-=t. O

Given a quadratic A-module M = (M, q), we denote (M, —q) by —M, as
is already our practice for bilinear spaces.

Theorem. Let M = (M, q) be a quadratic A-module. Suppose that the bilin-
ear form B, is nondegenerate and that M is free of rank r. Then

ML(M)er[(l) (1)]

Proof. Let (E,§):= (M, q) L (M,—q). We interpret the module E = M & M
as the cartesian product M x M. The diagonal D:= {(z,z) | z € M} is
a free F-submodule of rank r and D is a direct summand of FE, for £ =
D @ (M x {0}). Furthermore ¢|D = 0. The statement now follows from
Lemma 2. O
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§6 Quadratic Modules over Valuation Rings

In this section we let 0 be a valuation ring with maximal ideal m, quotient
field K and residue class field k = o/m. The case m = 0, i.e. K =k =0 is
explicitly allowed. We shall present the theorems about quadratic modules
over o necessary for our specialization theory, and prove most of them.

Lemma 1. Let (M, B) be a free bilinear module over o, and let N be a
submodule of M. The submodule N+ of M is free with finite basis and is a
direct summand of M. Every submodule L of M with M = N+ @ L is also
free with finite basis.

Proof. M/N* is torsion free and finitely generated, hence free with finite
basis. This follows from the fact that every finitely generated ideal of o is
principal, cf. [CE, VII, §4]. (We used this already in the proof of Lemma 2,
§3.) If T1,...,7, is a basis of M/N=+ and x1,...,2, are the pre-images of
the =; in M, then Lg:= oxy + ... + ox, is free with basis z1,...,x, and
M=N'® Ly If M=N-®L as well, then L = M/N+ = L, so that L
is also free with finite basis. Finally, N is torsion free and finitely generated,
hence free with finite basis. O

In particular, if (M, B) is a free bilinear module over o, there is an or-
thogonal decomposition M = My | M+ with B|]M*+ x M+ = 0.

Definition 1. M+ is called the radical of the bilinear module (M, B). If
(M, q) is a free quadratic o-module, then the radical M+ of (M, B,), equipped
with the quadratic form ¢|M*, is called the quasilinear part of M, and is
denoted by QL(M). If M = M+~, the quadratic module (M, q) is called
quasilinear.

Definition 2. Let M be a free o-module with basis ej,...,e,. We call a
vector x € M primitive in M, if for the decomposition x = Aje; +...+ Apen

m
(A\i € 0) the ideal )~ ;o is equal to o, i.e. at least one \; is a unit.
1

This property is independent of the choice of basis: x is primitive when
M /ox is torsion free, hence when oz is a direct summand of the module M.

Definition 3. We call a quadratic module (M, q) over o nondegenerate if it
satisfies the following conditions:
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(Q0) M is free of finite rank.

(Q1)  The bilinear form By, induced by B, on M/M* in the obvious way,
is nondegenerate.

(Q2) q(z) € o* for every vector x in M+, which is primitive in M~ (and
hence in M).

If instead of (Q2), the following condition is satisfied

(Q2)) QL(M)=0o0r QL(M) = [g] with ¢ € o*,

then we call (M, q) regular. In the special case M+ = 0, we call (M, q) strictly
regular.

Remark. The strictly regular quadratic modules are identical with the “qua-
dratic spaces” over o in [Ky4]. In case 0 = K, the term “nondegenerate” has
the same meaning as in [K4]. “Strictly regular” is a neologism, constructed
with the purpose of avoiding collision with the confusingly many overlapping
terms in the literature.

From a technical point of view, Definition 3 is the core definition of
this book. The idea behind it is, that the term “nondegenerate” captures
a possibly large class of quadratic o-modules, which work well in the spe-
cialization theory (see §7 and following). {We will settle upon the agreement
that a quadratic K-module E has “good reduction with respect to o” if
EF =2 K ®, M, where M is a nondegenerate quadratic o-module, see §7,
Def.1.} The requirements (Q0) and (Q1) are obvious, but (Q2) and (Q2')
deserve some explanation.

If char K # 2, i.e. 2 # 0 in o, then ¢/M* = 0 and the requirement (Q2)
implies that M=+ = 0, hence implies — in conjunction with (Q0) and (Q1) —
strict regularity. If 2 € 0*, then the nondegenerate quadratic o-modules are
the same objects as the nondegenerate bilinear o-modules in the sense of our
earlier definition.

Suppose now that char K = 2. The condition M+ = 0, in other words
strict regularity, is very natural, but too limited for applications. Indeed, if
M+ = 0, then the bilinear module (M, B,) is nondegenerate and we have
By(z,z) = 2¢q(x) = 0 for every x € M. This implies that M has even dimen-
sion, as is well-known. (To prove this, consider the vector space K ®, M.) So
if we insist on using strict regularity, we can only deal with quadratic forms
of even dimension.

On the other hand, property (Q2) has an annoying defect: it is not always
preserved under a basis extension. If o’ D o is another valuation ring, whose
maximal ideal m’ lies over m, i.e. m’No = m, and if M is nondegenerate, then
0’ ®, M can be degenerate.

However, if M satisfies (Q2), this clearly cannot happen. Therefore we
will have to limit ourselves later (from §9 onwards) in some important cases
to regular modules.

The arguments will be clearer however, when we allow arbitrary nonde-
generate quadratic modules as long as possible, and a lot of results in this
generality are definitely important.

Our use of the terms “regular” and “nondegenerate” finds its justifica-
tion in the requirements of the specialization theory presented in this book.
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Regular quadratic modules over valuation rings and fields (in the sense of
Definition 3) are just those quadratic modules, for which the generic split-
ting theory in particular functions in a “regular way”, as we are used to
in the absence of characteristic 2 (cf. §4), see §9 below. The nondegenerate
quadratic modules are those ones, for which the generic splitting theory still
can get somewhere in a sensible way, see §10 and §12 below.

The author is aware of the fact that in other areas (number theory in
particular) a different terminology is used. For example, Martin Kneser calls
our regular modules “half regular” and our strictly regular modules “regular”
in his lecture notes [Kngs], and has a good reason to do so. In the literature,
the word “nondegenerate” is almost exclusively used for the more restrictive
class of quadratic modules, which we call “strictly regular”, see Bourbaki
[Bo1, §3, No. 4] in particular. In our context, however, it would be a little bit
silly to give the label “degenerate” to every quadratic module, which is not
strictly regular.

We need some formulas, related to quadratic modules of rank 2.
Lemma 2. Let a € 0, B € 0, A € 0. Then

ORI

and furthermore

o el e )

1 B 1 A1
Finally, if o € 0*, B € 0 then
a 17 _ 11
) IR it

Proof. Let (M, q) be a free quadratic module with basis e, f and associated

value matrix {?\‘ Z\J Then e, \"'f is also a basis of M, whose associated

value matrix equals h )\}zﬁ}- This settles (1). Furthermore (\) ® [‘f é] is
determined by the quadratic module (M, Aq), and so (A\)® [‘f [15} = [)‘)\a )\)‘ﬁ} .

Applying (1) to this, results in (2). Clearly (3) is a special case of (2). O

Theorem 1. Let M = (M, q) be a nondegenerate quadratic module over o.

a) Then M is an orthogonal sum of modules | %| with 1 —4af3 € o* and
18

modules [e] with € € o*.
(b) If M is regular and dim M even (recall that dim M denotes the rank of
the free module M), then M is strictly regular and equal to an orthogonal

sum of modules {Cf H with 1 — 4af € o*.
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Proof. First suppose that 2 € o*. Then (M, B,) is a bilinear space. Hence
(M, By) has an orthogonal basis, as is well-known (cf. [MH, I, Cor.3.4]), and
SO

(M,By) = (e1,...,€n)-

Therefore (M,q) = [,...,%]. For a binary quadratic module N = [a, b]
with units a,b € 0*, we have

a 2a
b =
[, 0] {2@ a—l—b]7

since, if e, f is a basis of the module N with value matrix [8 2], then e, e+ f

is a basis with value matrix [2‘2 ffr’b}. Lemma (2), formula (1) then yields

[a, 8] = ﬁ (2a)11(a+b>]'

Hence all the assertions of the theorem are clear when 2 € o*.

Next suppose that 2 € m. The quasilinear part M= is of the form
[e1,...,&] with &; € 0*. Let N be a module complement of M~ in M.
Then (N, ¢|N) is strictly regular. We will show, by induction on dim N, that

N is the orthogonal sum of binary modules [i‘ H .

If N =0, nothing has to be done. So suppose that NV # 0. We choose a
primitive vector e in N. Since the bilinear form B,|N x N is nondegenerate,
there exists a vector f € N with By(e, f) = 1. Let a = g(e), 8 = q(f). The

determinant of the matrix (210‘ 215) is the unit 1 — 4a3. Hence the module

oe+of is free with basis e, f. Using Lemma 1 from §5, we get an orthogonal

decomposition N = (oe + of) L N;i. Now oe + of = [i‘ é )
our induction hypothesis, NV is also an orthogonal sum of binary quadratic
modules of this form.

This establishes part (a) of the proof. In particular, NV has even dimension.
If M is regular, then r < 1. Is in addition dim M even, then r = 0, in other

words, M has to be strictly regular. O

and by

If M is a free o-module, we interpret M as a subset of the K-vecor space
K ®, M, by identifying x € M with 1 ® . Then K ®, M = KM.

Definition 4. A quadratic o-module (M, q) is called isotropic if there exists
a vector x # 0 in M with ¢(z) = 0. Otherwise (M, q) is called anisotropic.

Remark. In this definition of “isotropic”, we proceed in a different way, com-
pared to §3, Definition 6, since the bilinear form B, can be degenerate. This
would cause trouble over a local ring instead of over o.

Lemma 3. Suppose that (M, q) is a quadratic o-module, and that M is free
of finite rank over o. The following assertions are equivalent:

(a) (M,q) is isotropic.
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86 Quadratic Modules over Valuation Rings 39

(b) (K ®, M,qK) is isotropic.
(¢) The module M has a direct summand V # 0 with ¢|V = 0.

Proof. The implications (a) = (b) and (c¢) = (a) are trivial. (b) = (c): Let
E=K®, M = KM. Now q = qg|M. The K-vector space E contains a
subspace W # 0 with gx|W = 0. Let V:= W N M. The o-module V is a
direct summand of M, since M/V is torsion free and finitely generated, hence
free. We have KV = W. Therefore certainly V # 0 and ¢|V = 0. O

Definition 5. Let (M, q) be a quadratic o-module. A pair of vectors e, f in
M is called hyperbolic if g(e) = q(f) = 0 and By(e, f) = 1.

Note that according to §5, Lemma 1, we then have that

01

M= (oe+of) L N = L 0

} 1 N
where N is a quadratic submodule of M, namely N = (oe + of)L.

Lemma 4. Let (M, q) be a nondegenerate quadratic o-module, and let e be a
primitive vector in M with g(e) = 0. Then e can be completed to a hyperbolic
vector pair e, f.

Proof. We choose a decomposition M = N L M~ and write e = x + y with
x € N,y € M~*. Suppose for the sake of contradiction that the vector x is not
primitive in N, hence not primitive in M. Then y is primitive in M. According
to condition (Q2), we then have ¢(y) € o*. Hence also g(z) = —q(y) € o*.
Therefore x has to be primitive, contradiction.

Hence z is primitive in N. Since B, is nondegenerate on IV, there exists
an element z € N with By(z,z) = 1. We also have By(e, z) = 1. Clearly
f:=z — q(2)e completes the vector e to a hyperbolic pair. O

Theorem 2 (Cancellation Theorem). Let M and N be free quadratic o-
modules. Let G be a strictly regular quadratic o-module, and suppose that
G1lM®=GL1LN. Then M = N.

For the proof we refer to [Ks], in which such a cancellation theorem
is proved over local rings. An even more general theorem can be found in
Kneser’s works [Kns], [Kng, Erginzung zu Kap. I]. A very accessible source
for many aspects of the theory of quadratic forms over local rings is the book
[Ba] of R. Baeza. Admittedly, Baeza only treats strictly regular quadratic
modules, which he calls “quadratic spaces”.

In the field case 0 = K, Theorem 2 was already demonstrated for 2 = 0
by Arf [A] and for 2 # 0 — as is well-known — by Witt [W]. A very nice
discussion of the cancellation problem over fields, with a view towards the
theory over local rings, can again be found in Kneser’s work [Kn;].

Theorem 3. Let M be a nondegenerate quadratic module over 0. There exists
a decomposition
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0 1
M = My L
(*) 0 TX[I 0]

with My nondegenerate and anisotropic, v > 0. The number r € Ny and the
isometry class of My are uniquely determined by M.

Proof. Lemma 3 and Lemma 4 immediately imply the existence of a decom-
position as in (x). Suppose now that

0 1
M = M) L x
1 0
is another decomposition. Suppose without loss of generality that r» < 7.
Then Theorem 2 implies that

0 1
MONM(SJ_(TIT)X|: }
Since My is anisotropic, we must have r = r’. O

In the field case 0 = K, this theorem can again be found back in Arf [A]
for 2 =0 and in Witt [W] for 2 # 0.

Definition 6. We call a decomposition (x), as in Theorem 3, a Witt decom-
position of M. We call My the kernel module of the nondegenerate quadratic
module M and r the Witt index of M and write My = ker(M), r = ind(M).

Furthermore, we call two nondegenerate quadratic modules M and N
over o Witt equivalent, denoted by M ~ N, when ker(M) = ker(N). We
denote the Witt class of M, i.e. the equivalence class of M with respect to
~, by {M}.

It is now tempting to define an addition of Witt classes {M}, {N} of two
nondegenerate quadratic modules M, N over o in the same way as we did this
for nondegenerate bilinear modules over fields in §2, namely {M} + {N}:=
{M 1 N}.

Although the orthogonal sum of two nondegenerate quadratic modules
could be degenerate, the addition makes sense if one of the modules M, N is
strictly regular, as we will show now.

Proposition. Let M, M’ be strictly reqular quadratic o-modules with
M ~ M', and let N, N’ be nondegenerate quadratic o-modules with N ~ N'.
Then the modules M L N and M’ L N’ are nondegenerate and M 1 N ~
M L N'.

Proof. Tt follows immediately from Definition 3 that M 1 N and M’ 1 N’
are nondegenerate. Suppose without loss of generality that dim M’ > dim M.
Then M’ = M L sx [ }] for an s > 0. Therefore M’ L N = (M L

10
N) 1L sx [(1) (1)], and so M’ 1L N ~ M 1 N. A similar argument shows
that M L. N~ M 1 N’ O
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Definition 7a. We denote the set of Witt classes of nondegenerate quadratic
o-modules by Wg(0). We denote the subset of Witt classes of regular, resp.
strictly regular quadratic o-modules by Wqr(o), resp. Wq(o).

Because of the proposition above, we now have a well-defined “addition”
of classes {M} € Wq(o) with classes {N} € Wq(o),

(M} +{N}:={M L N}.

The zero module M = 0 gives rise to a neutral element for this addition,
{0} +{N} = {N}, {M} + {0} = {M}. If M and N are strictly regular,
then {M} +{N} ={N}+{M} ={M L N} € Wq(o). Therefore Wg(o) is
an abelian semigroup with respect to this sum. The theorem at the end of
§5 shows that Wg(o) is in fact an abelian group, since if (M, q) is a strictly
regular quadratic o-module, then {(M,q)} + {(M,—q)} = 0.

Definition 7b. We call the abelian group Wq(o) the quadratic Witt group
of 0, the set Wq(o) the quadratic Witt set of o and Wqr (o) the regular quadratic
Witt set of o.

The group Wq(o0) acts on the set Wq(o) by means of the addition, intro-
duced above. One can show easily that the isomorphism classes of nonde-
generate quasilinear quadratic o-modules (see Definition 1) form a system of
representatives of the orbits of this action. Wgr(o) is a union of orbits.

If m = 0, hence 0 = K, then Witt classes of degenerate quadratic modules
can be defined without difficulties. We will explain this next.

Definition 8. Let M = (M, ¢) be a finite dimensional quadratic module over
K. The defect (M) of M is the set of all x € M+ with ¢q(x) = 0.

The defect §(M) is clearly a subspace of M, and M is nondegenerate if
and only if §(M) = 0. The form ¢ induces a quadratic form g: M/§(M) — K
on the vector space M/6(M) in the obvious way: g(Z): = ¢(z) for z € M,
where T is the image of z in M/§(M). The quadratic K-module (M/§(M),q)
is clearly nondegenerate.

Definition 9. If (M) = 0, i.e. if M is nondegenerate, then we call M =
(M, q) a quadratic space over K. In general we denote the quadratic space

A A
(M/§(M),q) over K by M | and call M the quadratic space associated to M.

We have N N
M= M 1§M>2M 1 sx][0]

with s:= dim §(M). Furthermore, given a quadratic space E over K, we
obviously have

S(E L M)=6(M) and (E L M»=>=E 1 M.

Page: 41 job: 389 macro: PMONOO1 date/time: 13-Apr-2008/12:32



42 Chapter I. Fundamentals of Specialization Theory

Now it is clear, that in the field case, Theorem 3 can be expanded as
follows:

Theorem 3'. Let M be a finite dimensional quadratic K-module. There
erists a decomposition

1
MNMOJ_rx[O ]
1 0

A
with M o anisotropic and r > 0. The number r € Ny and the isometry class
of My are uniquely determined by M.

Definition 10. We call My the kernel module of M and r the Witt index
of M, and write My = ker M, r = ind(M). Just as before, we call two
finite dimensional quadratic K-modules M and N Witt equivalent, and write
M ~ N, when ker(M) = ker(N). We denote the Witt equivalence class of
M by {M}.

Remark. It may seem more natural to call M and N equivalent when their
“kernel spaces” (ker M)", (ker N)" are isometric. Our results in §7 and §11
are a bit stronger if we use the finer equivalence defined above.

We denote the set of Witt classes {M} of finite dimensional quadratic
K-modules M by Wq(K) and call this the defective quadratic Witt set of K.
The abelian group Wq(K) acts on Wq(K) in the usual way: {E} + {M}:=

L

{E L M} for {E} € Wy(K), {M} € Wg(K). It even makes sense to add
two arbitrary Witt classes together:

(M}+{N}:={M L N}.

The result is independent of the choice of representatives M, N, as can be
shown by an argument, analogous to the proof of the proposition, preceding
Definition 7a. Therefore Wq(K) is an abelian semigroup, having Wq(K) as a
subgroup. -

Look out! If char K = 2, the semigroup Wq(K) does not satisfy a cancel-
lation rule. Is for example a € K*, then [a] L [a] = [0] L [a], but it is not
so that [a] ~ [0].

To a field homomorphism a: K — K’ (i.e. a field extension), we can
associate a well-defined map a: ﬁ/\q(K ) — /Wq(K "), which sends the Witt
class {M} to the class { K/ ®4 M }. This map is a semigroup homomorphism.
By restricting o, we can find maps from Wq(K) to Wg(K"') and from Wgr(K)

to Wgr(K'), but (if char K = 2) in general no map from Wq(K) to Wq(K').

This is the reason why we sometimes will extend the Witt set Wq(K) to the
semigroup ﬁ/\q(K ).
Let us now return to quadratic modules over arbitrary valuation rings.
At the end of §5 we introduced free hyperbolic modules. From now on, we
call those modules simply “hyperbolic”. { In this way, we stay in harmony
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with the terminology, used in the literature, for valuation rings (or local rings
in general), cf. [By, V §2], [Bz].} Hence

Definition 11. A quadratic o-module M is called hyperbolic if

01
M =
<1 o]

for some r € Ny.

So, if M is not the zero module, this means that M contains a basis
e1, f1,€2, fo,...,er, fr, Where e;, f; are hyperbolic vector pairs, such that oe; +
of; is orthogonal with oe; + of; for i # j. Clearly a hyperbolic module is
strictly regular.

Lemma 5. Let M = (M,q) be a strictly reqular quadratic o-module. M
is hyperbolic if and only if M contains a submodule V with q|V = 0 and
V=Vt

Proof. If M is hyperbolic and ey, f1,...,e., fr is a basis, consisting of pairwise
orthogonal hyperbolic vector pairs, then the module V: = oe; +o0es+. ..+ o€,
clearly has the properties q|V = 0 and V = V1. Suppose now that M is
strictly regular and that V is a submodule satisfying these properties. Since
M/V+ = M/V is torsion free and finitely generated, it is free. Therefore V' is
a direct summand of the o-module M. V is torsion free and finitely generated
as well, and so also free. The form B, gives rise to an exact sequence

OHVLHMHKV/HO

(cf. the proof of §5, Lemma 2), from which we deduce that dim M = dim V +
dimV+ =2dim V.

According to the theorem at the end of §5, there is an orthogonal decom-
position M = N 1L Nt with V. .C N and N hyperbolic. Using V to form
VL in N, we see that V = V1. We conclude that dim N = 2dim V as well,
so that N = M. O

Theorem 4. Let M be a strictly reqular quadratic 0-module with K ®, M
hyperbolic. Then M itself is hyperbolic.

Proof. We apply the criterion, given by Lemma 5, two times. As before we
interpret M as an o-submodule of F:= K ®, M, ie. M C E, E = KM.
Now E contains a subspace W with q|W = 0, W+ = W. The intersection
V:=W N M is an o-submodule of M with q|V =0 and V+ = V. (Here V+
is considered in M) O

Definition 12. The valuation ring o is called quadratically henselian if for
every v € m, there exists a A € o such that A\ — \ = .
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Remark. One can convince oneself that this means that “Hensel’s Lemma” is
satisfied by monic polynomials of degree 2. Every henselian valuation ring is
of course quadratically henselian (cf. [Ri, Chap. F], [E, §16]). In Definition 12
we isolated that part of the property “henselian”, which is important for the
theory of quadratic forms. Note that, if o is quadratically henselian, then
every € € 1 +4m is a square in o, since € = 1 +4v and v = A% — X imply that
e=(1-2v)%

Lemma 6. Let o be quadratically henselian. Let o, 8 € K and a8 € m. Then
we have that over K :

a 1 ~ 0 1

1 Bl |1 o]

Proof. According to Lemma 2, formula (3), we have

H H - <°‘>®E alﬁ]'

There exists a A € o with A2 + A+ a8 = 0. If e, f is a basis of the module

[1 alﬁ} , having the indicated value matrix, then g(Ae + f) = A2+ A+ a3 = 0.

~

Therefore h‘ H is isotropic. Applying Lemma 4, with 0 = K, gives [i‘ H =
01

[V ol

Theorem 5. Let o be quadratically henselian. Let (M, q) be a nondegenerate

anisotropic quadratic module over o. Then q(e) is a unit for every vector
e € M which is primitive in M.

Proof. We choose a decomposition M =N L M*. Let e € M be primitive.
Suppose for the sake of contradiction that ¢(e) € m. We write e = x+ y with
r €N,y € M+, and have q(e) = q(z) + q(y).

Case 1: x is primitive in M, hence also in N. Then there exists an f € N
with By(z, f) = 1, since By is nondegenerate on N. We have By(e, f) = 1.

Therefore
- |« 1
oe+of =

with o = g(e) € m, 5 = ¢q(f) € 0. According to Lemma 6, oe+ o f is isotropic.
This is a contradiction, since M is anisotropic.

Case 2: x is not primitive in M. Now x = Axg with x¢ primitive in M, A € m.
The vector y has to be primitive in M. Since ¢ is nondegenerate, it follows
that ¢(y) € o*. We have

g(e) = Mq(wo) +q(y) € 0",
contradicting the assumption that g(e) € m.

We conclude that g(e) € o*. O
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Later on, we will use Lemma 6 and Theorem 5 for a nondegenerate
quadratic module M over an arbitrary valuation ring o, by going from M
to the quadratic module M": = o" ®, M over the henselisation 0" of o (see
[Ri, Chap.F], [E, §17]). {Remark: One can also form a “quadratic henselisa-
tion” 0" in the obvious way. It would suffice to take 0" instead of o”.} In
order to do so, the following lemma is important.

Lemma 7. Let M be a nondegenerate quadratic module over o. Then the
quadratic module M" over o is also nondegenerate.

Proof. The properties (Q0) and (Q1) from Definition 3 stay valid for every
basis extension. Hence we suppose that M satisfies (Q0) and (Q1), so that
we only have to consider (Q2). We have (M")+ = (0" ®, M)! = 0" @, M+ =
(M)

The property (Q2) for M says that the quasilinear space k ®, M+ =
k ®0 QL(M) is anisotropic over k. To start with, we can identify k ®, M
with the quadratic module M/mM over k = o/m, whose quadratic form
q: M/mM — k is induced by the quadratic form ¢: M — o in the obvious
way. In the same way we then have k®, M+ = M+ /mM=*. A vector x € M+
is primitive if and only if its image € M+ /mM is nonzero. (Q2) implies
then that g(z) # 0.

Let m” denote the maximal ideal of o”. It is well-known that m” No =m
and that the residue class field o /m" is canonically isomorphic to o/m = k.
We identify o /m" with k. Then k®,n M" = k®, M and also k®@,, QL(M") =
k®, QL(M). Therefore (Q2) is satisfied for M if and only if (Q2) is satisfied
for M". O
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§7 Weak Specialization

In this section A: K — LUoc is a place, 0 = o) is the valuation ring associated
to A, with maximal ideal m and residue class field k = o/m. Given a quadratic
module E = (F,q) over K, we want to associate a quadratic module \.(E)
over L to it, insofar this is possible in a meaningful way.

In order to do this, we limit ourselves to the case where F is nondegenerate
(see §6, Definition 3, but with K instead of 0). This is not a real limitation,
however. Since K is a field, every quadratic module E = (F,q) of finite
dimension over K has the form F = F 1 [0,...,0] = F L s x [0] with F/
nondegenerate (see §6). So, when we have associated a specialization A.(F')
to F in a satisfactory way, it is natural to put A (E) = A (F) L s x [0]. We
stay with nondegenerate quadratic K-modules, however, and now call them
quadratic spaces over K, as agreed in §6, Definition 9.

Definition 1. Let E be a quadratic space over K. We say that F has good
reduction with respect to A when E = K ®, M, where M is a nondegenerate
quadratic o-module.

This is the “good case”. We would like to put \.(E):= L @y M, where
the tensor product is formed by means of the homomorphism Ajo: 0 — M, see
85, Definition 4. This tensor product can more easily be described as follows:
First we go from the quadratic o-module M = (M, q) to the quadratic space
M/mM = (M/mM,q) over k = o/m, where ¢ is obtained from ¢:M — o
in the obvious way. Next we extend scalars by means of the field extension
Ak < L, determined by ), thus obtaining M\, (E) = L ®;, (M/mM).

Is this meaningful? With a similar argument as towards the end of §3
(second proof of Theorem 2), we now show that the answer is affirmative
when E is strictly reqular (which means that E+ = 0, cf. §6, Definition 3).

Theorem 1. Let E be strictly reqular and let M, M’ be nondegenerate
quadratic o-modules with E =~ K @, M = K ®, M'. Then M = M’, and
hence M/mM = M'/mM’'.

Proof. Clearly M+ = 0 and (M’)* = 0. Hence M and M’ are also strictly
regular. By the theorem at the end of §5, the space K ®, [M' L (—M)] =
E 1 (—E) is hyperbolic. So M’ L (—M) is itself hyperbolic, by §6, The-
orem 4. M 1 (—M) is also hyperbolic, again by the theorem at the end of
§5. The modules M’ L (—M) and M L (—M) have the same rank. Hence
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M L (-M) 2 M 1 (-=M), and so M’' = M by the Cancellation
Theorem (§6, Theorem 2). O

The problem remains to see that A.(E) does not depend on the choice of
the module M, when E has good reduction with respect to A, but only is non-
degenerate. Furthermore, in case of bad reduction (i.e. not good reduction),
we would nevertheless like to associate a Witt class Aw ({E}) over L to E
in a meaningful way, just as for bilinear forms in §3 (“weak specialization”).
Neither problem can be dealt with as in §3, in the first place because the
Witt classes do not constitute an additive group this time. Thus we have to
seek out a new path.

Lemma 1. Let o be quadratically henselian (see §6, Definition 12) and let
V = (V,q) be an anisotropic quadratic module over K.

(a) The sets
p(V):={xeVigx)cop and pi(V):={zeV]|q(z)em}

are o-submodules of V.

(b) For any x € w(V) and y € py(V), we have q(z +y) — q(x) € m and
By(z,y) € m.

Proof. (a) Let x € p(V) (resp. z € pu4(V)) and A € o, then clearly Az € u(V)
(resp. p4(V)). So we only have to show that for any z,y € u(V) (resp.
pu+(V)), we have z +y € u(V) (resp. u4(V)). Let B:= B,

Let € u(V), y € (V). Suppose for the sake of contradiction that
r+y & pV), ie gz +y) = q(@) + qly) + Blz,y) € o. Since g(z) € o,
q(y) € o, we must have that B(z,y) € o. Hence \:= B(z,y)~! € m. The
vectors z, \y give rise to the value matrix {q(f) ,\2(11(1;)] According to §6,

Lemma 6, the space Kz + Ky = Kz + K Ay is isotropic. Contradiction, since
V is anisotropic. Therefore x +y € p(V).

Next, let * € u(V), y € py (V). Suppose again for the sake of con-
tradiction that z + y & u4 (V). We just showed that ¢g(x + y) € 0. By our
assumption ¢(z + y) € m, so that ¢(x + y) € o*. Since ¢(z) € m, ¢(y) € m,
we have B(z,y) € o*. Write B(x,y) = A\~! with A\ € o*. Again, the vectors

x, \y give rise to the value matrix [’J(lm) )\Qé(y)}. Just as before, the space

Kx+ Ky is isotropic, according to §6, Lemma 6. Contradiction! We conclude
that z +y € py (V).

(b) Suppose for the sake of contradiction that there exist vectors z € u(V),
y € py (V) with g(z+y)—q(x) & m. We showed above that g(z+y) € 0. Hence
q(z +y) — q(z) = q(y) + B(z,y) € 0. By assumption, this element doesn’t
live in m and is thus a unit. Since ¢(y) € m, we also have B(z,y) € o*. As
before, we write A = B(z,y) ! and observe that Kx + Ky is isotropic, giving
a contradiction. Therefore ¢(z+y) —q(z) € m and B(z,y) = q(x+y) —q(x)—
q(y) € m as well. O
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We remain in the situation of Lemma 1. For = € pu(V), A € m, we have
Az € py (V). Therefore

p(V):=p(V)/pt (V)
is a k-vector space in a natural sense (kK = o/m). We define a function
g: p(V) — k as follows:

1@):=q@)  (z€nl)),

where Z denotes the image of z € u(V) in p(V) and @ denotes the image of
a € 0 in k. Lemma 1 tells us that the map g is well-defined.

For z € u(V), a € o, we have g(az) = q(az) = qax) = aq(z) =
@*q(T). According to Lemma 1, the bilinear form B: = B, has values in o on
w(V) x u(V) and values in m on p(V') X py (V). Therefore, it induces on p(V)
a symmetric bilinear form B over k with B(Z,y) = B(x,y) for z,y € u(V).
A very simple calculation now shows that

(T +7) —7(@) - 9(%) = B(x.7)
for z,y € u(V'). This furnishes the proof that g is a quadratic form on the k-

vector space p(V) with By = B. The quadratic k-module (p(V),q) is clearly
anisotropic.

Definition 2. (0 quadratically henselian.) We call the quadratic k-module
p(V) = (p(V),q) the reduction of the anisotropic quadratic K-module V with
respect to the valuation ring o.

In order to associate to a quadratic space E over K, by means of the
place A: K — LUoo, a Witt class Ay {E} over L, the following path presents
itself now: Let o be the henselization of the valuation ring o = oy, m” the
maximal ideal of 0" and K" the quotient field of o". The residue class field
o /m" is canonically isomorphic to k¥ = o/m and will be identified with k.
Let

A} = {L &5 p(Ker (K" @ E))},

where, as before, A\:k < L is the field embedding, determined by A. The
space over L on the righthand side can then be considered to be a “weak
specialization” of F with respect to .

All good and well, if only we knew whether the vector space

p(Ker (K" @ E))

has finite dimension! To guarantee this, we have to confine the class of allowed
quadratic modules F.

In the following, v: K — I' U oo is a surjective valuation, associated to
the valuation ring o, thus with I" the value group of v, I' &2 K*/o*. We use
additive notation for I" (so v(xy) = v(z) + v(y) for z,y € K).
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Already in §3, we agreed to view the square class group (o) as a subgroup
of Q(K), and also to regard the elements of Q(K) as one-dimensional bilinear
spaces'? over K.

Now we choose a complement X of Q(o) in Q(K), in other words, a
subgroup X of Q(K) with Q(K) = Q(0) x X. This is possible, since Q(K)
is elementary abelian of exponent 2, i.e. a vector space over the field with 2
elements. Further, we choose, for every square class o € X, an element s € o
with o = (s). For 0 = 1 we choose the representative s = 1. Let S be the
set of all elements s. For every a € K* there exists exactly one s € S and
elements € € 0*, b € K* with a = seb?. Since K*/o* = I, it is clear that S
(resp. X) is a system of representatives of I'/2I" in K* (resp. Q(K)) for the
homomorphism from K* to I'/2I" (resp. from Q(K) to I'/2I"), determined
by v: K* — I'.

Definition 3. A quadratic space E over K is called obedient with respect to
A (or obedient with respect to o) if there exists a decomposition

(%) E = | (s)@ (Ko, M),

ses
where M is a nondegenerate quadratic o-module. (Of course M, # 0 for
finitely many s only.)

Clearly this property does not depend on the choice of system of repre-
sentatives S.

Remarks.

(1) Obedience is much weaker than the property “good reduction” (Defini-
tion 1).

(2) Let E and F be quadratic spaces over K, obedient with respect to o. If
at least one of them is strictly regular, then E 1 F is obedient.

(3) If char K # 2, then every quadratic space over K is strictly regular.
Hence the orthogonal sum of two obedient quadratic spaces over K is
again obedient.

(4) If 2 € o*, i.e. char L # 2, then every quadratic space E over K is obedient
with respect to A, since K also has characteristic # 2 in this case. E has
a decomposition in one-dimensional spaces, which are clearly obedient.

(5) If char K = 0, but char L = 2, then every quadratic space of odd dimen-
sion over K is disobedient (= not obedient) with respect to A. To see
this, let £ be an obedient quadratic space with orthogonal decomposi-
tion (%), as in Definition 3. Then the space K ®, M; has quasilinear part
(K ®, M;)*+ =0 for every i € {1,...,r}. Therefore M; also has quasilin-
ear part M;- = 0, and is thus strictly regular. Hence the space M;/mM;
over k = o/m is strictly regular, and so must have even dimension. We
conclude that £ must have even dimension.

08¢rictly speaking, square classes are isomorphism classes of one-dimensional
spaces.
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Let us now give an example of a two-dimensional disobedient space over
a field K of characteristic 2.

First, recall the definition of the Arf-invariant Arf(y) of a strictly regular
form ¢ over a field k of characteristic 2. For o € k, let p(z) := 22 +x. Further,
let (k) denote the set of all p(x), z € k. This is a subgroup of k¥, i.e. k
regarded as an additive group. We choose a decomposition

ai

(+) ¢~{1 bll]J_...J_[a{” b}n]

and set
Arf(p) := arby + -+ + ambm + p(k) € kT /p(k).

It is well-known that Arf(y) is independent of the choice of the decomposi-
tion (x) ([A], [S, Chap.IX. §4]).

Ezample. Let k be a field of characteristic 2 and K = k(t) the rational
function field in one variable ¢ over k. Further, let o be the discrete valuation
ring of K with respect to the prime polynomial ¢ in k[t], i.e. 0 = k[t](4).

Claim. The quadratic space H til} over K is disobedient with respect to o.

Proof. Suppose for the sake of contradiction that this space is obedient. Then
there exist a strictly regular space M over o and an element v € K* with

[} 5] 2 (W) ® (K ®, M). By §6, Theorem 1, we have M = [‘i‘ H with

a, f € 0. Hence, by §6, Lemma 2, (3), the following holds over K:

1 1 1 1
1 = .
(1) {1 t—l} {ou) [1 aﬁ]
Comparing Arf-invariants of both sides, shows that there exists an element
a € K with

(2) tt=aB+a®+a.

Hence there exists an element a € K with t=! + a? +a € o.
If we now move to the formal power series field k((t)) D K, we easily see

that such an element a does not exist: For if a = > ¢,t" with d € Z and
r>d
coefficients ¢, € k, cq # 0, then

S+ Y et" + 7 e K[[]],
r>d r>d

and so d < 0. The term of lowest degree, in the first sum on the left, is
03t2d. It cannot be compensated by other summands on the left. Therefore
t~' 4+ a? + a & o, and the space H til} is disobedient. O

In this proof we used the Arf-invariant. We remark that we can use easier
aids: Anisotropic quadratic forms like H H are norm forms of separable
quadratic field extensions, and are as such “multiplicative”. Therefore, we
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can deduce immediately from (1) that H til} = [} alﬁ} and then, that

there exists a relation (2).

Remark. Hitherto the quasilinear parts of free quadratic modules played a
predominantly negative role. This will continue to be the case. Rather often
they cause a lot of complications, compared to the theory of nondegenerate
bilinear modules. But sometimes quasilinear quadratic modules can do good
things. Suppose again that K = k(t), o = k[t](;) as in the example above. The

space H til} is disobedient with respect to 0. However, H tfl] 1 [t_l] is
obedient, since this space over K is isometric to H é} 1L [t’l}, and hence
to [V 0] L [t.

In connection with the definition of obedience (Definition 3), we agree
upon some more terminology. If £ = (E,q) is a quadratic space, obedient
with respect to o, then we have an (internal) orthogonal decomposition

E:J_Es

ses

of the following kind: Every vector space Es contains a free o-submodule M
with E; = KMs, such that q|Es = sgs for a quadratic form ¢: By — K,
which takes values in 0 on M and for which (Mj, ¢s| M) is a nondegenerate
quadratic module. (Of course E; # 0 for finitely many s € S only.)

Definition 4. We call such a decomposition £ = J_ E,, together with a
ses
choice of modules My C E,, a A-modular, or also, an o-modular representation

of the obedient quadratic space F.

Lemma 2. Suppose again that o is quadratically henselian and E = (E,q)

is a quadratic space over K, obedient with respect to o. Let E = J_ b,
ses
E, = KM; be an o-modular representation of E. Suppose furthermore that

E is anisotropic. Then we have, with the notation of Lemma 1,1
WE) =M L J#_1 p (),

py(E) =mM; L J;ﬁ fi4 (Es).

Proof. As above, we set q|Es = sqs. Let « be a vector of E with z # 0. Then
there exist finitely many pairwise distinct elements s1,...,s, in S, as well as
primitive vectors x; € M;:= M, and scalars a; € K* (1 < i < r), such

T
that z = > a;xz;. We have
i=1

HIn accordance with our earlier agreement, every E, is considered as a quadratic
subspace of E, Es = (Es, q|Es).
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T
q(z) = Z a?SiQi(zi)a
i=1

where we used the abbreviation ¢;:= g¢s,. According to §6, Theorem 5,
we have ¢;(z;) € o* for every ¢ € {1,...,r}. Hence, for i # j, the
values v(a7siqi(z;)) = v(ais;) and v(ais;q;(x;)) = v(ajs;) are different.

Let v(aisy) be the smallest value among the v(a?s;), 1 < i < r. Then
v(g(z)) = v(aisk) = v(g(agzy)). This shows that

wE) = L wEy), ne(B)=_L uyp(By).
seS sES
For s # 1, a € K* and primitive y € Es, we have q(ay) = sa’qs(y) & o*.
Therefore, u(Es) = py(Es) for every s € S\ {1}. We still have to determine
the modules p(E4) and py(E1). So, let « € By, x # 0. We write z = ay with
a € K* and primitive y € M;. Then ¢(z) = a?q(y) and q(y) € o*. Hence
q(z) € o exactly when a € o, and ¢(z) € m exactly when a € m. Therefore
we conclude that p(E1) = M7 and py (Er) = mM;. O

An immediate consequence of the lemma, is

Theorem 2. Let o be quadratically henselian, and let E = (E,q) be an
anisotropic quadratic space over K, obedient with respect to o. Let E =

J_ Es, E; = KM, be an o-modular representation of E. Then we have
ses
for the reduction p(E) = (p(F),q) of E with respect to o:

(p(E),q) = (Mi/mM,q,),

where qy: My/mM; — k is the quadratic form over k, determined by
q|Mi: M1 — o in the obvious way. O

Furthermore, the lemma tells us that My = p(E;) and mM; = py (Er).
In particular we have

Theorem 3. Let o be quadratically henselian and let E = (E,q) be an
anisotropic quadratic space over K, having good reduction with respect to
0. Then p(E) = (u(E),q|u(E)) is a nondegenerate quadratic o-module with
E=K®,u(E), and u+(E) = mu(E). Note that u(E) is the only nondegen-
erate quadratic o-module M in E, with E = KM. O

We tone down Definition 4 as follows:

Definition 5. Let E = (F,q) be a quadratic space over K, obedient with

respect to A. A A\-modular (or o-modular) decomposition of E is an orthogonal

decomposition E = | E,, in which every space (s) ® Ey = (Es, s - (¢|Es))
seS

has good reduction with respect to .
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If o is quadratically henselian and E is anisotropic then, according to
Theorem 3, every A-modular decomposition corresponds to ezactly one -
modular representation of F.

Lemma 3. Let o be quadratically henselian. Let s1,...,s, be different el-
ements of S and My, ..., M, anisotropic nondegenerate quadratic modules
over 0. Then

r
E:= | (si) ® (K ®, M;)
i=1
s an anisotropic quadratic space over K.

Proof. Let a primitive vector x; € M; be given for every i € {1,...,7}. Also,
let ay,...,a, € K be scalars with

T

(t) Zsia?qi(zi) =0,

=1

where ¢; denotes the quadratic form on M;. We must show that all a; = 0.
Suppose for the sake of contradiction that this is not so. After renumbering
the M;, we can assume without loss of generality that for a certain ¢ €
{1,...;r},a; #0 for 1 <i < tand a; =0 for t < i < r. By §6, Theorem 5,
q(x;) € o* for every i € {1,...,t}. The values v(s;a?q;(x)) = v(s;a?) with
1 <4 < t are pairwise different. Since this contradicts equation (), all a; = 0.
O

We arrive at the main theorem of this chapter.

Theorem 4. Let E be a quadratic space over K, obedient with respect to o.

Let
E=_] B,= | F,

seS sES

be two o-modular decompositions of E, and also let My, N1 be nondegenerate
quadratic modules with Fh =2 K ®, My, 1 2 K ®, N1. Then the quadratic
spaces My /mM; and Ni/mNy over k = o/m are Witt equivalent.

Proof. (a) For every s € S\ {1} we choose nondegenerate quadratic o-modules
Ms, Ny with By = (s) @ (K ®, M), Fs = (s) ® (K ®, Ny). Suppose first
that o is quadratically henselian. In accordance with §6, Theorem 3, we choose
Witt decompositions

Mo=M Ligx [ o], Ne=Ng Ljox [} o],

with M2, N? anisotropic nondegenerate quadratic o-modules. By Lemma 3
above, the nondegenerate quadratic K-modules

U:= J@(s) ® (K ®, M?), V:= Jgs<5> ® (K ®, NY)

are anisotropic. Now,
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~ . 01 ~ ; 01
E~U.L (%’) C [0 vy (;SJ) < [0 1],
Hence U = V. According to Theorem 2, we have p(U) = M7/ mMy,
p(V) = N7 /mNy. Therefore, My /mM; = N7 /mNy. Furthermore,

My/mM; = My /mM; L iy x [ 5], Ny/mNp = NY/mNy L jix [{ 4]

We conclude that M7 /mM; ~ Ny /mNj.

(b) Suppose next that o is arbitrary. We go from (K, 0) to the henselization
(K", 0"). (By definition, K" is the quotient field of the henselian valuation
ring 0".) As is well-known, the valuation v: K — I' U co extends uniquely to
a valuation v": K* — I' U 0o, which therefore again has I" as value group.
Also, o is the valuation ring of v". Consequently, S is also a system of
representatives of Q(K")/Q(o") = I'J2I.

Given a free quadratic module M over o, we set — as before — M": =
0" ®, M and for a free quadratic module U over K, we set Uri= KM@k U.
By §6, Lemma 7, the quadratic o"-modules M, N are nondegenerate. Fur-
thermore, E" = | El = | FPand E' =~ K'®, MP F' =~ K'o,. NP

ses ses
for every s € S.

By above, the quadratic spaces MJ'/m"M}* and N}'/m"NJ' over k are
equivalent. However, these spaces can be canonically identified with M7 /mM;
and Np/mN; (cf. the end of the proof of §6, Lemma 7). We conclude that
Ml/liNNl/le. O

Definition 6. Let E be a quadratic space over K, obedient with respect

to A If £ = J_ FE is a A-modular decomposition of E and M7 a nondegen-
seS
erate quadratic o-module with £; & K ®, M, then we call the quadratic

space L @) M; a weak specialization of E with respect to A. (As before, ®y
denotes a base extension with respect to the homomorphism Ajo: 0 — L.) By
Theorem 4, the space L ®) M; is uniquely determined by F and A, up to
Witt equivalence. We denote its Witt class by Ay (E), i.e.

(“VV77 as in “Witt” or “weak”.)

If char K = 2, then M;/mM; is a quadratic space over k, to be sure.
Nevertheless L @\ M1 = L ®x (M;/mM;) can be degenerate. In this case, we

only have Ay (F) € /V[7q(L) (see §6, from Definition 10 onwards). If char K #
2, this cannot happen since M;/mMj is strictly regular in this case. So now,
Aw(E) S Wq(L)

Theorem 5. If E and E’' are quadratic spaces over K, obedient with respect
to A, and if E ~ E’, then A\w (E) = Aw (E').

Proof. Suppose without loss of generality that dim £ < dim E’. Then F/ =

E 1 rx [? (1)] for a certain r € Ny. If we choose a nondegenerate o-module
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M, for E, as in Definition 6, then M{:= M; L1 r x [? (1)] is a possibe
choice for E'. (Here we consider [? (1)] over o instead of over K.) Therefore,

L ®\ M{ ~ L®yM,. O

Ezample. Let K = k(t1,...,t,) be the rational function field in n variables
t1,...,t, over an arbitrary field k. For every multi-index oo = (v1,...,a5) €
Np, let t* denote the monomial ¢J*...t%". We order the abelian group Z"
lexicographically and then have exactly one valuation v: K — Z"™ U co with
v(t*) = « for every o € Nj. Its valuation ring contains the field k, and the
residue class field o/m coincides with k. Let A\: K — k U oo be the canonical
place corresponding to 0. Furthermore, let A be the set of all multi-indices
(a1,...,p) with a; € {0,1} for every i, in other words A = {0,1}" C N.
As system of representatives .S, in the above sense, we take the set of t¢ with
ae A

Suppose now that we are given a family (F,, | « € A) = F of 2" quadratic
spaces over k. We construct the space

E:= J_A t*) @ (K ®4 Fy)

over K. For every a € A, (t*) ® E is obedient with respect to A and
A ((t%) @ E) = {Fy}.

Hence the family F can be recovered from the space E, up to Witt equiv-
alence. If all F,, are anisotropic, we even get the F, back from E as kernel
spaces of the Witt classes A\ ((t*) ® E). In this case, F is anisotropic as well.
This can easily be seen, using an argument similar to the one used in the
proof of Lemma 3. One could say that the family F is “stored” in the space
E over k((t1,...,tn))-

This simple example reminisces of Springer’s Theorem in §1. Without our
theory of weak specialization, we can use Springer’s Theorem and induction
on n to show that the F, are uniquely determined by E (at least when
char k # 2). This is so, because the valuation v is “n-fold discrete”. For more
complicated value groups, we cannot fall back on Springer’s Theorem for
specialization arguments.

We return to the situation of arbitrary places A\: K — k U co.

Definition 7. (a) We denote the sets of Witt classes {E} of obedient

quadratic spaces (with respect to o) and obedient strictly regular quadratic
spaces (with respect to o) by Wq(K, 0) and Wq(K, o) respectively. These are
thus subsets of the sets Wq(K ) and Wq(K), introduced in §6, Definition 7b.

(b) We define a map )\W:WQ(K,U) — Wq(L) by setting Aw ({E}): =
Aw (E). This map is well-defined by Theorem 5.

Clearly Wq(K, o) is a subgroup of the abelian group Wgq(K). The group
Wq(K,o0) acts on the set Wq(K, 0) by restriction of the action of Wq(K) on
Wq(K), explained in §6. If char K # 2, then naturally Wq(K, 0) = Wy(K,o),
and Ay maps Wq(K,0) to Wy(L).
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Remark. Let E and F' be quadratic spaces over K, obedient with respect to
A and suppose that F is strictly regular. Obviously we then have

v (E L F) = A\ (E) + M (F).

Therefore, restricting the map Ay : Wq(K, 0) — Wq(L) gives rise to a ho-
momorphism from Wq(K,0) to Wq(L), which we also denote by Apy. The
map Aw: Wq(K ,0) — Wq(L) is equivariant with respect to the homomor-
phism Ay Wq(K,0) — Wq(L).

In §3, we got a homomorphism Ay : W(K) — W(L), using a different
method. Given a bilinear space E = (E, B) over K, does there exist a de-
scription of the Witt class Aw ({E'}), analogous to our current Definition 57

First of all, when 2 € 0%, i.e. charL # 2, we find complete harmony
between §3 and §6. In this case, bilinear spaces over K and L are the same
objects as quadratic spaces, and every such space over K is obedient with
respect to A.

Theorem 6. If char L # 2, the homomorphism Aw: W (K) — W (L) from §3
coincides with the homomorphism Aw: Wq(K) — Wq(L), defined just now.

Proof. Tt suffices to show that for a one-dimensional space [a] = (2a), the
element Ay ({(2a)}) from §3 coincides with the currently defined Witt class
Aw ([a]). If a € o*, then Aw ({(2a)}) = {(2A\(a))} = {[X(a)]}, according to §3.
However, if (a) € Q(o), then (2a) € Q(o) and Ay ({(2a)}) = 0. We obtain
the same values for Ay ([a]), using Definition 6 above. O

And so, when char L # 2, the work performed hitherto gives us a new —
more conceptual — proof of §3, Theorem 1.

What is the situation when char L = 2?7 First, we encounter in all gener-
ality definitions for bilinear spaces, analogous to Definitions 1 and 5.

Definition 8. Let E = (F, B) be a bilinear space over K.

(a) E has good reduction with respect to A (or with respect to o) when E
K ®, M for a bilinear space M over o. {Note: this is just a translation
of the original definition of “good reduction” of §1 (= §3, Definition 1)
in geometric language. }

o~

(b) A A-modular (or o-modular) decomposition of E is an orthogonal decom-

position E = | FE,, in which every space (s) ® Es has good reduction
ses
with respect to .

In contrast to the quadratic case, every bilinear space E over K has A-
modular decompositions. This is obvious, since F is the orthogonal sum of
one-dimensional bilinear spaces and copies of the space ((f (1)), see §2.

Let Aw:W(K) — W(L) be the map, introduced in §3. When E is a
bilinear space over K, we set Aw (E):= Aw ({E}) € W(L).
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Theorem 7. Let E be a bilinear space over K and let E = J_ FEs be a
ses
A-modular decomposition of E. Also, let My be a bilinear space over o with

E1 = K®0 Ml. Then

Aw(E) = {L R Ml}.

Proof. We have A\w (E) = Y. Aw(FEs). By §3, Theorem 2, we know that
seS
Aw (E1) = {L ®x M;}. Tt remains to show that Ay (Es) = 0 for every s € S
with s # 1. Hence we have to show that if (s) € Q(K) is a square class, not
in Q(0), and if N is a bilinear space over o, then Ay ({s) ® (K ®, N)) = 0.
By a lemma from §3, N has an orthogonal basis when the bilinear space
N/mN over k is not hyperbolic. In this case we have

(s)® (K ®s N) = (se1,...,8€r)

with units e; € o*. By definition of Ay, we have Ay ((se;)) = 0 for all
i€ {1,...,r}, hence A\w((s) ® (K ®, N)) = 0. If N/mN is hyperbolic, we
construct the space N': = N L (1) over 0. Since N’ has an orthogonal basis,
we get Ay ((8) ® (K ®, N')) = 0. Since Ay ({s) ® (1)) = 0 as well, we conclude
that Ay ((s) ® (K ® N)) = 0. O

Theorem 7 allows us to speak of “weak specialization” of bilinear spaces,
in analogy with Definition 6 for quadratic spaces.

Definition 9. Let F be a bilinear space over K. Also, let £ = J_ FEs
seS
be a A-modular decomposition of E and M; a bilinear space over o with

Ey 2 K ®, M;. Then we call the space L ®) My a weak specialization of
the space F with respect to A.

According to Theorem 7, a weak specialization of ¥ with respect to A is
completely determined by E and A up to Witt equivalence. One could ask
if this can be shown in a direct — geometric — way, comparable to how we
have done this for obedient quadratic spaces above. Reversing direction, this
would give a new proof of §3, Theorem 1, also when char L = 2.

We leave this question open. After all, we have a proof of §3, Theorem 1,
and with it a weak specialization theory for bilinear spaces. This theory is
more satisfying than the corresponding theory for quadratic spaces, in that
we do not have to demand obedience of the spaces.

We can now also make a statement about Problem 3b of §1. Let char L = 2
and let char K = 0. Let (E, q) be a quadratic space, obedient with respect to
A. Associated to it, we have the bilinear space (E, By). It may be that (E, q)
and (E, By) are in principle the same object, but it does make a difference
wether we weakly specialize E' as a quadratic or a bilinear space. What is
better?

Let (M, q) be a regular (= strictly regular) quadratic o-module. According
to §6, Theorem 1, we have a decomposition
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(M,q) = [all bll} Lo 1 [“{ ,}J.
(Note: (M/mM,7q) is strictly regular, and thus has even dimension.) Then

2 1 2a, 1
(‘1’1 le) 1.1 (‘; Qbr).

1%

(M, By)
Hence,

L®@x(M,q) = {A(lfl) A(il)] 4.1 {A(?T) )\(}JT):|'

However, L ®x (M, B,) = rx (] }).
Therefore, a weak specialization of the space (E, By) is always hyperbolic
and so gives hardly any information about (F,q). However, a weak special-

ization of (E, q) with respect to A\ can give an interesting result.

Final Consideration. A last word about the central Definition 3 of an obedi-
ent quadratic space. It seems obvious to formally weaken it, by considering
quadratic modules E instead of spaces E over K, subject only to the re-
quirements that, as a K-vector space, FE should have finite dimension and a
decomposition (x) as presented there. But then E is already nondegenerate.
We namely have

QL(E) = | (s)® (K ®, QL(M,)),

ses

and as in the proof of Lemma 3, we see that QL(F) is anisotropic (with-
out the requirement that o is quadratically henselian). Thus these “obedient
quadratic modules” are the same objects as those given by Definition 3.
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§8 Good Reduction

As before, we let \: K — L U oo be a place, 0 = 0y the valuation ring of K,
m its maximal ideal, k = o/m its residue class field and v a valuation on K,
associated to o, with value group I'. Also, let X' C Q(K) be a complement
of Q(0) in Q(K) and S a system of representatives of X' in K* (with 1 € S),
as introduced in §7.

From now on, we call a nondegenerate quadratic o-module a quadratic
space over 0. In case 0 = K, we already used this terminology in §7. Recall
further the concept of a bilinear space over o (§3, Definition 4).

If E is a quadratic (resp. bilinear) space over K then, according to Def-
initions 1 and 8 in §7, E has good reduction with respect to A\ (or: with
respect to o) if there exists a quadratic (resp. bilinear) space M over o with
E = L®,M.

Theorem 1. Let E be a quadratic or bilinear space over K, which has good
reduction with respect to \, and let M, M’ be quadratic (resp. bilinear) spaces
over o with B 2 K®, M = K ®, M'. Then the k-spaces M/mM and
M'/mM’ are isometric in the quadratic case and stably isometric'? in the
bilinear case. Therefore we also have, L @\ M = L ®x M’ resp. L @\ M ~
Ly M.

Proof. By the theory of §7 (Theorems 4 and 7), M/mM and M'/mM’ are
Witt equivalent. Since these spaces have the same dimension, namely dim F,
they are isometric resp. stably isometric. O

In the following, the words “good reduction” are used so often, that it is
appropriate to introduce an abbreviation. From now on, we mostly write GR
instead of “good reduction”.

Definition 1. Let E be a quadratic or bilinear space over K, which has GR
with respect to A, and let M be a quadratic, resp. bilinear, space over o with
F =2 K®, M. Then we denote the quadratic, resp. bilinear, module L ®\ M
by A«(E) and call it “the” specialization of E with respect to A.

In the bilinear case, A.(F) is nondegenerate, and thus a space. This is
true in the quadratic case as well, as long as char K # 2. If char K = 2

12Gee §2 for the term “stably isometric”.
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however, \.(F) can be degenerate (cf. our discussion about Aw (E) in §7
after Definition 6).

This terminology is convenient, but sloppy. According to Theorem 1,
A«(E) is only determined by E up to isometry in the quadratic case, and
in the bilinear case even only up to stable isometry. Anyway, in what follows,
we are interested in quadratic spaces (or modules) only up to isometry, and
in bilinear spaces almost always only up to stable isometry.

Note that in the bilinear case, Definition 1 is only a translation of §3,
Definition 3 in geometric language.

Remark. Let F and G be bilinear spaces over K, which have GR with respect
to A. Then F' 1 G clearly also has GR with respect to A, and

M(F L G~ A(F) L \(G).

For quadratic spaces, we have to realize that (when char K = 2) the orthog-
onal sum of two spaces over o can possibly be degenerate and thus need not
again be a space. However, if F' and G are quadratic spaces, which have GR
with respect to A\, and if F' is strictly reqular, then F' 1 G has GR with
respect to A and

M(F L Q) 2 M\(F) L \(G). O

For further applications, the following theorem is of the utmost impor-
tance.

Theorem 2. (a) Let F' and G be bilinear spaces over K. If the spaces F and
F 1 G have GR with respect to A, then G also has GR with respect to \.

(b) Let F and G be quadratic spaces over K. Suppose that F is strictly
reqular. If F and F 1L G have GR with respect to A, then G also has GR
with respect to .

Proof. Part (a) has already been proved in §3, Theorem 4. Upon replacing
every occurrence of “metabolic” by “hyperbolic”, the argument there also
yields a proof of part (b). (Use Theorem 3 and Lemma 3 in §6.) O

Corollary. Let E and F be bilinear (resp. quadratic) spaces with E ~ F. If
E has GR with respect to A, then so has F, and \.(E) ~ A\ (F). Besides, if
ExF (resp. E 2 F), then M\(E) = M\(F) (resp. M(E) = M(F)).

This was already established in §3 for the bilinear case. The quadratic
case can be proved similarly.
In part (b) of Theorem 2, the assumed strict regularity of F' is essential.

Ezxample. Let char K = 2 and let E be a 3-dimensional quadratic space over

K with basis e, f, g and corresponding value matrix H i] 1 [e], where a € o

and e € 0*. Let F:= B+ = Kgand G:= Ke+ K(f +¢g) = |} ! }for

1 a+c2e

some ¢ € K. We have E = F' L (. The quadratic spaces E and F' have good
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reduction, but G can have bad reduction because the possibility exists that
the Arf-invariant a + c?c + pK, pK:= {2? + | x € K} does not contain an
element of o.

For instance, let K = k(t) where k is an imperfect field of characteristic
2 and t is an indeterminate. As in the example of a disobedient space, §7, let
0 = k[t]). We choose ¢ € k* such that ¢ is not a square in k. Furthermore,
we choose a = 0, ¢ = t~2. We have et=2 + 22 + 2 & o for every x € K. This
is immediately clear when we look at the power series expansions in k((t)):

Let © = > c,t" for some d € Z, all ¢, € k and ¢g4 # 0. If it was true that
n>d

et™2 4+ 22 + z € o0, then we would have

et D AT ent™ € K[[t]].

n>d n>d

But then d < 0, and so d = —1. It would follow that € = ¢3, an impossibility.

Theorem 3. Let E be a quadratic space over K. E has GR with respect to A if
and only if QL(E) has GR with respect to A and there exists a decomposition
E=F 1 QL(E) such that F' has GR with respect to \. In this case A\ (E) =

A(F) LA (QL(E)).

Proof. Suppose first that we have a decomposition £ = F 1 QL(E), in
which both F' and QL(E) have GR with respect to A\. Then, by the remark
preceding Theorem 2, E has GR with respect to A and \.(E) = A (F) L
A(QL(E)), because F is strictly regular.

Next, suppose that F has GR. We choose a quadratic space M over
o with £ 2 K ®, M and a decomposition M = N L QL(M). From
the definition of spaces over o, in other words of nondegenerate quadratic o-
modules (§6, Definition 3), follows immediately that Q L(M) is nondegenerate
and even that N is strictly regular. Now £ =2 K ®, N L K ®, QL(M),
so that QL(E) = K ®, QL(M). Therefore QL(E) has GR. Furthermore
F:= K ®, N has GR and is strictly regular. O

If F and G are bilinear spaces over K, which have GR with respect to A,
then we know from §3 that F' ® G also has GR with respect to A and that

Me(F @ G) = M\ (F) @ M(G),

see §3, Theorem 6. As explained in §5, given a bilinear space F' and a quadratic
space G over K (or o), we can also construct a quadratic module F ® G over
K (resp. o), which can however be degenerate when char K = 2. For FQ G
to be again a space, we must require that G is strictly regular. Analogous to
the above statement, we have

Theorem 4. Let F be a bilinear space over K, which has GR with respect
to A and let G be a quadratic space, having GR with respect to X. In case
char K = 2, suppose furthermore that G is strictly regular. Then F' @ G als
has GR with respect to A\ and
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M(F @ G) 2 A(F) @ M(G).

Proof. We choose spaces M and N over o with F' =2 KR, M,G =2 K®,N.
Then N is strictly regular. Therefore M ®, N is a strictly regular quadratic
space over 0. Furthermore, F® G = K ®, (M ®, N). Hence, F ® G has GR
and

MEFRG) = LOx(M®,N) = (LxM)®r (LOyN) = M(F)® M\(G).

O

Remark. A\.(F) is only determined up to stable isometry and A\ (F ® G) only
up to isometry. The theorem is valid — as the proof shows — for every choice
of A\.(F). More generally we have: if £ and E’ are bilinear space over K
with £ ~ E’, and if F is a strictly regular quadratic space over K, then
E®F = E'®F. This follows from the fact that there exists a bilinear space
Uover Kwith E L U =2 FE' 1 U, implying that (F®F) L (U®F)
(FF®F) L (U®F),andso EQF = E’'® F by the Cancellation Theorem.

The currently developed notion of the specialization A.(FE) of a space E
which has GR, allows us to complete our understanding of the results from
§7 about obedience and weak specialization.

Theorem 5. Let E be a quadratic module over K. E is nondegenerate and
obedient with respect to X if and only if

(%) E= | (s0F,

seS
where the Fs are spaces over K , which have GR with respect to X, only finitely
many of them being nonzero. For every decomposition of the form (x), we have

Aw (E) = {A(F1)}-

Proof. If E is a space and is obedient with respect to A, we clearly have a
decomposition as above. The equality Aw (E) = {\.(F1)} follows from the
definition of Ay (E) in §7 and the definition of A\, (Fy).

Now let (Fs | s € S) be a family of spaces, having GR with respect to A

and F, = 0 for almost all s € S. Let B:= | (s) ® Fs. Then, the quadratic
ses

module E over K has finite dimension and E+ = | (s)® F;-. According to
seS

the Final Consideration of §7, E+ is anisotropic and therefore nondegenerate.
It follows immediately from §7, Definition 3 that E is obedient with respect
to A. O

We call every decomposition of the form (x), having the properties of

Theorem 5, a A-modular decomposition of E. This terminology is a bit sloppier
than in §7, in the sense that we no longer discriminate between internal
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and external orthogonal sums. We talk about A-modular decompositions of
bilinear spaces in a similar fashion.

Theorem 6. Let F' be a bilinear space over K, which has GR with respect
to \.

(i) If G is a bilinear space over K, then

(1) Aw (F @ G) = Aw (F)Aw (G) = { A\ (F) }aw (G).

(ii) If G is a strictly regular quadratic space over K, obedient with respect to
A, then F ® G is also obedient with respect to A, and (1) holds again.

Proof. (ii) Let G = | (s)® G, be a A-modular decomposition of G. Every
ses
G5 has GR with respect to A and is strictly regular. By Theorem 4, F ® G4

has GR with respect to A and M\ (F ® G5) = A\ (F) ® A(Gs). Hence,

FoG = J_S<s>®(F®Gs)
is a A-modular decomposition of F' ® G and Aw (F @ G) = {\(F ® G1)} =
{A(F) @ A (G1)} = {A(F)HA(G)} = Aw (F)Aw ().

The proof of (i) is analogous. Less care is needed here than for (ii). O
Similarly we can show,

Theorem 7. Let F be a bilinear space and G a strictly regular quadratic
space over K. Suppose that the space G has GR with respect to A\. Then
F ® G is obedient with respect to \, and

Aw (F @ G) = Aw (F)Aw (G) = Aw (F){ A (G)}. O

To conclude this section, we have a look at the reduction behaviour of
quadratic spaces under basis extensions. The following — almost banal — the-
orem, together with Theorem 2(b) above, lays the foundations upon which
we will build the generic splitting theory of regular quadratic spaces in the
next section.

Theorem 8. Let K’ D K be a field extension and p: K' — LUoco an extension
of the place \: K — LUoco. Let E be a reqular quadratic space over K, which
has GR with respect to X\. The space K' @ x E has GR with respect to u and
(K @ B) = A, (E).

Proof. Let o’ be the valuation ring associated to u. Furthermore, let M be a
regular quadratic space over 0 with £ = K ®, M. Then o’ ®, M is a regular
quadratic space over o’ (sicl), and K'@x E = K' @, M = K' ®4 (0/ @, M).
Therefore, K’ @ x F has GR with respect to pu and
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ps(K' @k E) 2 L®, (0 @ M)=L®yM = \(E).
O

If we only require that F is nondegenerate instead of regular, the state-
ment of Theorem 8 becomes false. Looking for a counterexample, we can
restrict ourselves to quasilinear spaces, by Theorems 3 and 8.

Ezxample. Let k be an imperfect field of characteristic 2 and let a be an
element of k& which is not a square. Consider the power series field K = k((t))
in one indeterminate ¢. Let Ag: K — k U oo be the place with valuation ring
o = k[[t]], which maps every power series f(t) € o to its constant term f(0).
The quasilinear quadratic o-module M = [1,a + t] is nondegenerate. For, if
f(t) = Yo bit* and g(t) = Y ¢;t® are elements of 0, whose constant terms
i>0 i>0

bo, co are not both zero, then f(t)? + (a +t)g(t)? has nonzero constant term
b2 + ac?, and is thus a unit in 0. Therefore, axiom (QM2) of §6, Definition 3
is satisfied.

Hence, the space E: = K®, M has GR with respect to A, and (Ag)«(F) =
[1,a]. Consider now L:= k(y/a) and the place \:= j o \o: K — L U oo,
obtained by composing Ag with the inclusion j: k < L. Then E also has GR
with respect to A, and over L we have,

M(E)=Logk (M)«(E) & [1,a] = [1,1] = [1,0].

Finally, let K':= K(yv/a) = L((t)) and let p: K’ — L U oo be the place
with valuation ring o’: = L[[¢]], which again maps every power series f(t) € o
to its constant term f(0). p extends the place A\. Over K', we have

K o E=[1,Va)* +1] = [1,t].

Therefore, K’/ ® ¢ F is obedient with respect to p and pw (K’ @k E) = {[1]}.
It is now clear that K’ @ ¢ F has bad reduction with respect to pu, since the
Witt class pw (K’ @k E) would contain a two-dimensional module otherwise.

Remark. This argumentation shows nicely that it is profitable to give such

an elaborate definition of Witt equivalence of degenerate quadratic modules
over fields, as done in §6, Definition 10.
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89 Generic Splitting of Regular Quadratic
Forms

From now on we leave the geometric arena behind, and mostly talk of
quadratic and bilinear forms, instead of spaces, over fields. The importance of
the geometric point of view was to bring quadratic and bilinear modules over
valuation rings into the game. For our specialization theory, these modules
were merely an aid however, and their role has now more or less ended.

We should indicate one problem though, which occurs when we make
the transition from quadratic spaces to quadratic forms: If ¢(x1, ..., x,) and
Y(x1,...,2,) are two quadratic forms over a field K, they are isometric,
1 =2 o, if the polynomial ) emerges from ¢ through a linear coordinate
transformation. Now, if ¢ — i.e. the space (E, q) associated to ¢ — is degener-
ate, then it is possible that not all of the coordinates 1, ..., 2z, (n:= dim F)
occur in the polynomial ¢ (and possibly neither in ¢). The dimension of ¢ in
the naive sense, i.e. the number of occurring variables, can be smaller than
the dimension of E. In order to recover the space (F,q) from 1, one would
have to attach a “virtual dimension” n to 1, pretty horrible!

As soon as one allows degenerate forms, the geometric language is more
precise — and thus more preferred — than the “algebraic” language. But now
we only consider regular quadratic forms (= regular quadratic spaces) over
fields, so that the forms are guaranteed to remain nondegenerate under base
field extensions.

Many concept which we introduced for quadratic spaces over fields (§5 —
§8), will now be used for quadratic forms, usually without any further com-
ments. In what follows, a “form” is always a reqular quadratic form over a
field. We recall once more the concepts GR (= good reduction) and special-
ization of forms and try to be as down to earth as possible.

So, let ¢ be a form over a field K. If dimg is even (resp. odd), then
© = [as;] (resp. ¢ = [a;;] L [c]), where (a;;) is a symmetric (2m) x (2m)-
matrix, such that (r: = 2m)

2(111 a2 N alr
a1 2@22 N agy

det } ) ) #0
ari Ay ce 2a7.r

and ¢ # 0. (See the beginning of §5 for the notation used here.)

Let \: K — LUoo be a place and 0 = o0}, its valuation ring. The form ¢ has
GR with respect to A when ¢ = [a;;], resp. ¢ = [a;;] L [c], such that all a;;
are in o and ¢, as well as the determinant above, are units in 0. We then have

Page: 69 job: 389 macro: PMONOO1 date/time: 13-Apr-2008/12:32



70 Chapter II. Generic Splitting Theory

Ac(0) = [AMagj)] resp. Au(p) = [Maij)] L [A(c)]. By §6, Theorem 1(b),

[a;;] is the orthogonal sum of m binary forms {"f bli (1 <i < m) with

a; € 0, b; € 0, 1 —4a;b; € 0*. Thus, after a coordinate transformation, we
have

m
(#) @@, wn) = Y (0 + Toaisr +bixdi ) ( Acwd, ).
i=1
We obtain (A«p)(z1,...,z,) from this form, upon replacing the coefficients

ai, by, ¢ by Aa;), A(bi), Ae).

Let K’ D K be a field extension. If ¢ = ¢(z1,...,2,) is a form over K,
we write ¢ @ K’ or ¢ ® ¢ K’ for this form considered over K'. If (E, q) is
the quadratic space associated to ¢, i.e. ¢ = (E, q), then the basis extension
(K' @k E, qi) of (E,q) is the quadratic space associated to ¢ @ K'.13

Let p: K — L U oo be an extension of the place \: K — L U oo. If
© has GR with respect to A, then ¢ ® K’ has GR with respect to p and
(@ K') =2 A(p). This is clear now and was already established in §8,
Theorem 8 anyway.

We can extend the observation we made, at the start of our treatment of
generic splitting in §4, to regular quadratic forms. Thus let k£ be a field and
¢ a form over k. Furthermore, let K and L be fields, containing k, and let
A K — LUoo be a place over k. Then ¢ ® K has GR with respect to A and
Mlp@K) =2 o® L.

We use H to denote the quadratic form [? (ﬂ, regardless of the field we

are working in. The bilinear form B, associated to ¢ = [(1) (1)], is ((1) (1)) We

denote this bilinear form henceforth by H. (This notation differs from §4!) If
P& K = ©1 1 r X H

is the Witt decomposition of ¢ ® K, then the form ¢; has GR with respect
to A by §8, Theorem 2(b) and we have

L = A\(p1) L x H.

Therefore, ind(¢® L) > ind(p ® K). If K and L are specialization equivalent
over k (see §4, Definition 1), then

indlp® L) =ind(p®@ K) and ker(p®L) =2 A (¢1).

We transfer the definition of generic zero field (§4, Definition 2) literally
to the current situation. Just as in §4 we define, for n: = dim ¢ > 2, a field
extension k(p) of k as follows: If n > 2orn =2 and ¢ ¥ H, let k(p) be
the quotient field of the integral domain k[X7, ..., X,]/(0(X1,..., Xn)). {It
is easy to see that the polynomial p(X1,...,X,,) is irreducible.} If ¢ =
however, i.e. (X1, X2) = X;X5, let k() = k(¢t) for an indeterminate ¢.

13We write ¢ ® K’ instead of K’ ® ¢ in order to be in harmony with the notation
in §3 and in the literature. {Many authors more briefly write ¢/ . Starting with
§16 we occasionally will do this too.}
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We want to show that k() is a generic zero field of . This is very simple
when ¢ is isotropic: Obviously k itself is a generic zero field of ¢ in this case.
We thus have to show that k(¢) is specialization equivalent to k over k, which
now means that there exists a place from k() to k over k.

Lemma 1. If ¢ is an isotropic form over k, then k(y) is a purely transcen-
dental field extension of k.

Proof. This is by definition clear when dim ¢ = 2, i.e. when ¢ = H. Now let
n: = dim ¢ > 2. We have a decomposition ¢ = H 1 1 and may suppose with-
out loss of generality that o = H 1 1. So, if X3,..., X, are indeterminates,
we have

(p(Xl, ey Xn) = X1X2 + ’L/)(Xg, ey Xn)

Therefore,

k((p) = Quot(k[Xl, .. ,Xn]/(XlXQ + ’l/)(Xg, Ce ,Xn)) = k(l‘l, .. .,SCn),

where z; of course denotes the image of X; in k(). The elements za, 3, ..., Ty
are algebraically independent over k and 1 = —z5 1w(x3, ..+, Zn). Therefore,
k(¢) = k(xa,...,x,) is purely transcendental over k. O

Since k(¢)/k is purely transcendental, there are many places from k()
to k over k, cf. [Bog, §10, Prop. 1].

We will move on to prove that also for anisotropic ¢ with dimy > 2,
k() is a generic zero field of ¢. De facto we will obtain a stronger result
(Theorem 4 below), and we will need its full strength later on as well. We
require a lemma about the extension of places to quadratic field extensions.

Lemma 2. Let E be a field, K a quadratic extension of E and o a generator
of K over E. Let p(T) = T? — aT + b € E[T] be the minimal polynomial
of a over E. Furthermore, let p: E — L U oo be a place with p(b) # oo and
p(a) # 0o, p(a) #0. Finally, let 8 be an element of L such that

82— p(a)B + p(b) = 0.

Then there exists a unique place : K — L U oo with M«) = 3, which ex-
tends p.

Proof. Let o denote the valuation ring of p, m its maximal ideal and k the
residue class field o/m. Let v: E — k U oo be the canonical place associated
to 0. Then p = po-y, where p: k — L is a field embedding. We may assume
without loss of generality that k is a subfield of L and that p is the inclusion
map k — L. Every place \: K — L U oo which extends p, has as image a
field which is algebraic over k. Therefore we may replace L by the algebraic
closure of k in L and thus assume without loss of generality that L is algebraic
over k. If ¢ is an element of o, then ¢ will denote the image of ¢ in o/m = k,
i.e. ¢ = v(c). We have 32 —aB + b= 0.

141f A is an integral domain, QuotA denotes the quotient field of A.
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By the general extension theorem for places [Bos, §2, Prop. 3|, there exists
a place from K to the algebraic closure k of k, which extends ~. We choose
such a place §: K — kU co. Let O be the valuation ring of K, associated
to §, M its maximal ideal and F:= O/M its residue class field. Finally,
let 0: K — F U oo be the canonical place of 9. Then ¢ extends the place
~v: E — kUco. By general valuation theory [Bog, §8, Th. 1], we have [F: k] < 2.
We may envisage F' and L as subfields of l~€, which both contain k. One of
the things we will show, is that F' is equal to the subfield L': = k() of L.

The field extension K/ L is separable since the coefficient @ in the minimal
polynomial p(T') is different from zero. Let j be the involution of K over E,
i.e. the automorphism of K with fixed field F.

Case 1: L' # k. So B ¢ k and T? —@T + b is the minimal polynomial of /3
over k. Now o — aa + b = 0 implies o(a)? — o(a)a + b = 0. Thus o(a) = f3
or o(a) = @ — B. In particular, L’ = k(o(«)) C F. Since [L’:k] = 2 and
[F:k] <2, wehave L' = F and F C L.

We have j(a) = a—a, and thus oj(«) = a—o (). Since @ # 0 this implies
oj(a) # o(a). Therefore the places o and o o j from K to L are different.
They both extend the place p. By general valuation theory [Bos, §8, Th. 1],
there can be no other places from K to k which extend p. Now take A = o
in case o(a) = 3, and A =0 oj in case o(a) =a— 8. Then :: K — LU oo is
the only place which extends p and maps « to S.

Case 2: L' = k. This time (3 € k. Since 3 is a root of T? —@T + b, we have
T2 —al +b= (T — B)(T —a+ ) and o® — a@ + b = 0 implies again that
o(a)? — o(a)a + b = 0. Therefore,

(0(a) = B)(o(a) —a+ ) = 0.

Hence o(a) = 3 or o(a) = @ — (. In particular we have o(a) € k.

Again the places o and o o j are different. By general valuation theory,
they are exactly all the places from K to k which extend p and [F:k] =1,
ie. F = k. As in Case 1, we take A = ¢ in case o(a) = 3, and A = g o
in case o(a) =@ — . Again A is the only place from K to L (even the only
place from K to l;:) which extends p and maps «a to (. O

Theorem 3. Let \: K — LU oo be a place and ¢ a form over K with GR
with respect to A and dim ¢ > 2. Let §:= A\.(p). Then A can be extended to
a place p: K(¢) — L() U 0.

Proof. If ¢ is isotropic, then K(¢)/K is purely transcendental by Theorem 1.
In this case A can be extended in many ways to a place from K (p) to L. So
suppose that ¢ is anisotropic.

Let n:= dim ¢ and let o be the valuation ring of A. If n = 2 we assume
in addition that ® 22 H, deferring the case = H to the end of the proof.
After a linear transformation of K™ we may assume without loss of generality
that ¢ is of the form (%) as in the beginning of this section (thus with a;,
b; € 0, ¢ € 0" etc.). We denote by ¥ the form over L, obtained from ¢ by
replacing the coefficients a;, b; and — if n is odd — ¢ by @;: = A(a;), bi: = A(b;),
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¢.= Ac). Let Xy,...,X,, resp. Uy,...,U, be indeterminates, then we also
write

(X1, X)) = a1 X2+ X1 Xo + b1 X2 +9(X3,..., X,),
and accordingly
B(Uy,...,Up) = U + U Us + 01Uz +9(Us, ..., Uy).

Furthermore we write

= out KX Xa] N
K(p)=Q t—(sﬁ(Xl,---,Xn)) K(xy,...,2p),
%) = Quot LWL Un)
B ) B

where x; denotes of course the image of X; in K(¢) and u; the image of U;
in L(®). We then have the relations

ale + z129 + blac% + (a3, ., 2n)
Unp

Elu%+u1u2+51u%+a(u37"'v ) =

{If n = 2, the last summands on the left should be read as zero.} It is easy

’
to see that the space N:= [af bll} over o is isometric to a space [all bl,}
1

with a} € o*. {Lift a suitable basis of N/mN to a basis of N.} Therefore we
additionally assume, without loss of generality, that a; € 0*, i.e. a; # 0.

The elements xo, . . ., x,, are algebraically independent over K and likewise
the elements us, ..., u, are algebraically independent over L. Let

0,
0.

E:= K(zo,...,2,) C K(p)

and
F:= L(ua,...,u,) C L(®).

Our place A has exactly one extension \: E — F U oo with A(z;) = u;
(2 <i < n) (cf. [Bog, §10, Prop. 2]).

Let 6 be the valuation ring of \. We have K (¢) = E(z1), L(%) = F(u;)
with relations

i +ary +b=0, ul+au +b=0,

where a:= aj'zy, b:= a7 (122 + ¢¥(zs,...,2,)) are in 6 and @ = A(a),
b= A(b).

Surely K (p) # E, because ¢ ® K () is isotropic, but ¢ ® E is anisotropic
since the extension FE/K is purely transcendental. Therefore K(y) is a
quadratic field extension of E. Furthermore @ = EfluQ % 0. Hence we
can apply Lemma 2 to the place \: E — F U oo and the field extensions
K(p)/E, L(@)/F. According to this lemma, there exists a (unique) place
p: K (¢) — L(%) which extends A and maps @1 to u;. This proves the theo-
rem in case p ¥ H.
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Finally, let n = 2, ¢ anisotropic, but ¥ isotropic. We can still use the

description of K(¢) given above (this time with ¢ = 0), i.e. ¢ = ["11 bll}

with a1 € 0%, by € 0, K(¢) = K(x1,z2) with x5 transcendental over K and
(1) alx% + zix0 + blac% =0.

We want to extend A to a place u: K(¢) — L U oo. In order to do this,
we choose a nontrivial zero (cq,c2) € L2 of ©. Then we choose an extension
X: K (x3) — LU oo of A with A(z2) = ca, cf. [Bog, §10, Prop. 1]. {Take the
“variable” x9 — co there.} We have

(2) 610% + cico +I_)10§ =0.

If ¢; = 0, then ¢; = 0 by (2). Our zero is nontrivial however, so ¢z # 0.
Equation (1) shows that 234-az;+b = 0 with a: = a] 'z, b: = a] *by23. We
have A(a) = @; 'ca # 0, A(b) = @y 'b1c3. Equation (2) shows that ¢§+\(a)c; +
A(b) = 0. Since ¢ is anisotropic, K (p) # K(x1), thus [K(p): K(z1)] = 2.
Lemma 2 tells us that there exists a (unique) place u: K(¢) — L U oo which
extends \. O

Remark. In the proof we did not need the uniqueness statement of Lemma 2.
Nonetheless, it deserves some attention. For example, one can use it to de-
duce from our proof that, given an anisotropic @, there is exactly one place
w: K () — L(®) U oo which extends A and maps x; to u; (1 < i <n). Now,
this holds for the generators x1,...,2, of K(v) and uq,...,u, of L(®), as-
sociated to the special representation (x) of ¢ above (still with a; € 0*) and
can, by means of a coordinate transformation (with coefficients in o, etc.),
be transferred to the case where ¢ = [a;;] for an arbitrary symmetric matrix
(ai;) over o with
2(111 N A1n
det : : S

[07%% ] ce 2a,m

Theorem 4. Let : K — L U oo be a place. Let ¢ be a form over k with
dim ¢ > 2, which has GR with respect to . Then A.(p) is isotropic if and
only if A can be extended to a place p: K(p) — LU co.

Proof. If A can be extended to a place p from K(p) to L, then A.(¢) has
to be isotropic by the standard argument, which we already used in §4, just
after Theorem 2.
Conversely, suppose that ©: = A.(p) is isotropic. By Theorem 3, there
exists a place
p: K () — L(p) U oo

which extends A\. By Lemma 1, L()/L is a purely transcendental extension.
Therefore there exists a place

p: L(@) = LUoo
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over L. Now po u: K(p) — LU oo is a place which extends A. O

Remark. We could have adapted the proof of Theorem 3 in such a way, that
we would have obtained Theorem 4 immediately (see in particular our argu-
ment there in the case g = H). On the other hand, we can obtain Theorem 3
from Theorem 4 by applying the latter to the place

joXK(p) = L(7) Uoc,

where j is the inclusion L < L(%). For our further investigations (§10, §12,
§13) it is better however, to isolate Theorem 3 and its proof as a stopover to
Theorem 4.

Corollary. Let ¢ be a form over a field k with dimy > 2. Then k(p) is a
generic zero field of .

Proof. Clearly ¢ ® k(i) is isotropic. Now let L D k be a field extension with
¢ ® L isotropic. Applying Theorem 4 to the trivial place k < L, we see that
there exists a place p: k(¢) — L U oo over k. O

Since Theorems 1 and 2 of §4 are subcases of our current Theorem 4,
they are now proved. The definitions and theorems following these two the-
orems remain valid. Later on they will be used without further comments in
renewed generality, namely for arbitrary characteristic instead of character-
istic # 2, regular quadratic forms instead of the nondegenerate symmetric
bilinear forms which occur there. In particular, for every regular quadratic
form ¢ over k, we have a generic splitting tower (K; | 0 < ¢ < h) with higher
indices ¢, and higher kernel forms ¢,

Comments. It should be noted that I. Kersten and U. Rehmann have used a
different route in [Ke R, §6] to construct, for every form ¢ over k and every

r < [d‘—g“‘i , a field extension of k which is generic for the splitting off of r

hyperbolic planes. In particular one can already find a generic splitting tower
of ¢ in their work. In [KR] the generic splitting of regular quadratic forms in
arbitrary characteristic is based on these foundations.

The results about forms of height 1 and 2, cited at the end of our §4, have
so far only been established for characteristic # 2 in the literature.
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§10 Separable Splitting

All fields occurring in this section are supposed to have characteristic 2. If
 is a nondegenerate quadratic form over such a field k, then its quasilinear
part (cf. §6, Definition 1), which we denote by QL(), is anisotropic. Now, if
K D k is a field extension, then it can happen that QL(¢® K) = QL(¢) @ K
is isotropic, and thus that ¢ ® K is degenerate. This possibility prompted us,
when dealing with the theory of generic splitting in the previous sections, to
only allow regular forms, i.e. quadratic forms ¢ with dim QL(p) < 1.

We will now make a course change and allow arbitrary nondegenerate
quadratic forms. We will however only tolerate a restricted class of field ex-
tensions, the so-called separable field extensions. We will see that a reasonably
satisfying theory of generic splitting is still possible in this case.

A field extension K D k is called separable if every finitely generated
subextension E' D k has a separating transcendence basis, i.e. a transcendence
basis t1, . .., t,, such that E is separably algebraic over k(t1,...,t,), cf. [Bos],
[Lg1, X, §6], [J, IV, §5]. If K is already finitely generated over k, then it suffices
to check if K itself contains a separating transcendence basis over k (loc. cit.).

In what follows, a “form” will always be understood to be a quadratic
form. The foundation for the rest of this section is

Theorem 1. Let ¢ be a nondegenerate form over k, and let K D k be a
separable field extension. Then ¢ @ K is also nondegenerate.

Proof. We work in the algebraic closure K of K. We have QL(p) = [ay, . . ., a]
with a; € K. This form is anisotropic. We have to show that QL(¢) ® K is
also anisotropic. Each a; has exactly one square root /a; € K , which is al-
ready in the radical closure k27 ¢ K27 c K of k. Now, since QL(p)
is anisotropic, the elements a1, ..., a, are linearly independent over the sub-
field k* = {2? | z € k} of k, or equivalently, the elements \/a1,...,/an
are linearly independent over k. By an important theorem about separable
field extensions (“MacLane’s Criterion”, loc. cit.), the fields K and k'/2™
are linearly disjoint over k. Therefore, the elements /a1, ..., /a, are linearly
independent over K. This shows that QL(¢) ® K is anisotropic. O

If 0 is a valuation ring with maximal ideal m, we denote the residue class
field o/m from now on by x(0).
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Theorem 2. Let : K — L U oo be a place and ¢ a form which has GR
with respect to \.*> Suppose that the form \.(p) is nondegenerate. Suppose
further that K' D K is a field extension and that p: K' — L U oo is an
extension of the place A\. Then the form o @ K’ has GR with respect to p and
pa(p @ K') 2 A(p).

Proof. Let 0:= o0y, 0':= 0,,. The field extension X: k(o) < L is a combination
of the extensions k(o) — k(0’) and fi: k(0’) — L, where the first extension is
induced by the inclusion o < o’.

Let F be a quadratic space for ¢ and M a nondegenerate quadratic o-
module with £ =~ K ®, M. Then K/’  E = K' ®, M’ with M':= o’ ®, M.
The quasilinear quadratic x(0)-module G: = k(o) ®, QL(M) is anisotropic.
By assumption, L ®y G' = QL(L ®x M) is also anisotropic. Therefore

’i(ol) ®f‘i(0) G = H(ol) Qo QL(M/)

is anisotropic. This proves that M’ is a nondegenerate quadratic o’-module.
Hence ¢ ® K’ is nondegenerate and has GR with respect to p. Furthermore,
1+ (p ® K') corresponds to the quadratic space

Lo, M =L®, (0 ®@ M)=Lx\M.

Hence p.(p @ K') 22 A(p). O

Now we can faithfully repeat the observation, made at start of our treat-
ment of the theory of generic splitting in §4.

So, let ¢ be a nondegenerate form over a field k (of characteristic 2), and
let K D k and L D k be field extensions of k with L D k separable. Let
A K — L Uoo be a place over k. On the basis of Theorem 1, we can apply
Theorem 2 to the trivial place k — L and its extension A. We see that o ® K
is nondegenerate and has GR with respect to A, and that A, (¢®K) = ¢®L.

Let p@ K = ¢1 L 71 x H be the Witt decomposition of ¢. By an
established argument (§8, Theorem 2(b)), ¢1 has GR with respect to A, and
@@L = A(p1) L r x H. Hence, ind(p ® L) > ind(p ® K). If K is also
separable over k and if K and L are specialization equivalent over k, it follows
again that ind(p ® L) = ind(¢ ® K) and ker(¢ ® L) = Ay (¢1)-

Definition. A generic separable zero field of o is a separable field extension
K D k which has the following properties:

(a) ¢ ® K is isotropic.

(b) If L D k is a separable field extension with ¢ ® L isotropic, then there

exists a place \: K — L U oo over k.

According to Theorem 1, ¢ can become isotropic over a separable field
extension L of k only if ¢ # QL(p), i.e. if dimp — dim QL(p) > 2. If ¢

15This assumption presupposes that ¢ is nondegenerate (cf. §7, Definition 1).
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is such a form with dim ¢ # 2, then the polynomial ¢(X7,...,X,) is irre-
ducible over the algebraic closure k of k. This _can easily be seen by writing
o(X1,...,Xn) = X1 Xo + ¥(X3,...,X,) over k, after a coordinate transfor-
mation. Here 9 is a quadratic polynomial which is not the zero polynomial.
Therefore, we can again construct the field

E[X1,. .., X,]
((P(Xl, cee aXn))

This extends our definition of k() in §9 from regular forms ¢ to nondegener-
ate forms . {Obviously k(y) will have its original meaning when dim ¢ = 2,
QL(¢) = 0.}

It is now easy to see that k() is separable over k: Let x1,...,z, be the
images of X1,..., X, in k(p), i.e. k(p) = k(z1,...,2,). After a coordinate
transformation we may suppose, without loss of generality, that

k() = Quot

Oo(X1,..., Xp) = a1 X2+ X1 Xo + 01 X5 +9(X3, ..., X,).

The elements s, ..., x, form a transcendence basis of k(p) over k. If z; ¢
k(xa,...,2,), then k(p) is a separable quadratic extension of k(xa,...,zy).
If the form ¢ is isotropic, we can make it so that a; = 0. Then k(p) =
k(xa,...,x,) is purely transcendental over k.

Theorem 3. Let ¢ be a nondegenerate form over a field K with ¢ # QL(p)
and let X K — LU oo be a place such that ¢ has GR with respect to .
Suppose that also the form A\.(p) is nondegenerate. Then A.(p) is isotropic
if and only if X can be extended to a place p: K(p) — L U oo.

Proof. If there exists such a place u, then A, (i) is isotropic by an established
argument, using Theorem 2 above.

Suppose now that @: = A.(y) is isotropic. By the theory in §9, we may
suppose that dim QL(¢) > 2, thus dim¢ > 4. Just as in the proof of Theo-
rem 3 in §9, we see that A can be extended to a place p: K(¢) — L(p) U oc.
{Note that this is also true in case P is anisotropic.} Since P is isotropic,
L(®) is a purely transcendental extension of L, as established above. Hence
there exists a place p from L(®) to L over L. The place po pu: K(p) — LUoo
extends A. O

Corollary. Let ¢ be a nondegenerate form over a field k with ¢ # QL(p).
Then k(o) is a generic separable zero field of . O

Since we have secured the existence of a generic separable zero field, we
obtain for every form ¢ over k a generic separable splitting tower

(K, |0<r<h)

with higher indices i, and higher kernel forms ¢, (0 < r < h), in com-
plete analogy with the construction of generic splitting towers in §4 (just
before §4, Definition 5). Thus Ky /k is a separable inessential field extension,
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or = ker(p ® K,.), and K,11 is a generic separable zero field of ¢, for r < h.
The height h satisfies b < 1(dim ¢ — dim QL()).

In analogy with §4, Theorem 3, we have the following theorem, with mu-
tatis mutandis the same proof.

Theorem 4. Let ¢ be a nondegenerate form over k. Let (K, |0 <7 <h) be
a generic separable splitting tower of ¢ with associated higher kernel forms
©r and indices i,. Let v:k — L U oo be a place such that p has GR with
respect to 7. Suppose that the form v.(p) is nondegenerate. Finally, for an
m with 0 < m < h, let a place \: K;,, — LU oo be given, which extends y
and which cannot be extended to K,,+1 in case m < h. Then ¢, has GR
with respect to A. The form ~v.(p) has kernel form A(pm) and Witt index
Go+ ..o+ im- O

Now we can faithfully repeat Scholium 1 to 4 from §4, but this time with
generic separable splitting towers and separable field extensions. We leave this
to the reader. {In Scholium 3, on should of course assume — as in Theorem 4
above — that v.(y) is nondegenerate. }

In particular, the generic separable splitting tower (K, | 0 < r < h)
regulates the splitting behaviour of ¢ with respect to separable field extensions
L Dk, as described in §4, Scholium 1.
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Our specialization theory of quadratic forms, developed in §6 — §8, gave a
satisfying basis for understanding the splitting behaviour of quadratic forms
under field extensions (if the forms were not regular, we had to limit ourselves
to separable field extensions). There is one important point however, where
the specialization theory is disappointing.

For instance, let A\: K — LUoco be a place from a field K of characteristic 0
to a field L of characteristic 2. If ¢ is a quadratic form over K which has good
reduction with respect to A, then A.(p) is automatically a strictly regular
form. Conversely, given a strictly regular form i over L, one can easily find a
strictly regular (= nondegenerate) form ¢ over K which has good reduction
with respect to A and such that A.(¢) = ¢. One could then try to deduce
properties of ¢ from properties of the “lifting” ¢ of v, in the hope that ¢
is easier to deal with than v because char K = 0. Good examples can be
obtained from the generalization of §4, Scholium 3, at the end of §9, but we
will not carry this out.

It is furthermore desirable to lift a nondegenerate form 1 over L, with
quasilinear part QL(v) # 0, to a form ¢ over K. This is not possible with
our specialization theory as it stands.

Let us review the foundations of the current theory! We return to the use
of geometric language. Let A: K — LUoo be a place with associated valuation
ring 0. Let m be the maximal ideal of 0 and k = o/m its residue class field.
Finally, let A: k < L be the field extension determined by \.

Given a suitable quadratic space E over K, the idea was to attach a
space F' over k to E and then to define the specialization \.(E) of E with
respect to A as the space L @3 F. We required E to have good reduction,
ie. E =2 K ®, M for a nondegenerate quadratic module M over o. Then we
could choose our space F over k to be F' = M/mM.

The preceding is analogous to the specialization theory for varieties in
algebraic and arithmetic geometry (and related areas, such as rigid analysis):
One defines a class of “nondegenerate” objects X' over the valuation ring o
and associates to it, by means of a base extension, the objects K ®, X and
k ®, X over K and k. Finally one decrees that L ® (k®, X)=L®\Xis
the specialization of K ®, X with respect to .

Without any doubt, we have found in the nondegenerate quadratic spaces,
as defined in §6, Definition 3, a respectable class X of such objects which
easily comes to mind. Nevertheless we are a bit unfair to all the quadratic
spaces over K, waiting to be specialized. It would be fairer to only require
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that £ = K ®, M with M a free quadratic o-module such that M/mM is
nondegenerate, and then to define M\.(E):= L ®\ M = L ®x (M/mM). But
then one should show, that up to isometry, A, (F) only depends on A and F
and not on the choice of M.

This is possible, as we shall show now. In the following a quadratic module
over a valuation ring (in particular a field) will always be understood to be
a free quadratic module of finite rank.

Let o be a valuation ring with maximal ideal m, quotient field K and
residue class field k = o/m. If 2 ¢ m, then we already know all what follows.

On formal grounds, we allow nevertheless the uninteresting case that char k #
2.

Definition 1.

(a) A quadratic module M over o is called reduced nondegenerate if the
quadratic module M/mM over k is nondegenerate. (Note: If char k # 2,
this implies that M itself is nondegenerate.)

(b) A quadratic module F over K has fair reduction (or: FR for short) with
respect to A (or: with respect to o), if there exists a reduced nondegenerate
quadratic module M over o such that £ = K ®, M.'6

It is our task to prove that in the situation of Definition 1(b), the space
M/mM is independent of the choice of reduced nondegenerate module M
up to isometry. We will however proceed in a more general direction than
necessary, in order to develop at the same time the equipment necessary to
obtain a generalization of the important Theorem 2(b) (§8) for fair reduction
instead of good reduction. First a very general definition.

Definition 2. Let M = (M,q) and M’ = (M’,q') be quadratic modules
over a ring A. We say that M represents the module M’, and write M’ < M,
if the A-module M has a direct sum decomposition M = M; & My with
(Mla q|M1) = (M/a q/)'

Now, if M is a quadratic o-module, we always regard M as an o-submodule
of the K-vector space K ®, M. So we have K ®, M = K M. In the following,
we will almost always denote the quadratic form on M by ¢, and its associated
bilinear form B, by B. We will also use ¢ to denote the quadratic form on
K ®, M with values in K, obtained from ¢q. We will often denote the module
M /mM over k by M, and the image of a vector z € M in M with Z. Likewise
we denote the image of a scalar a € 0 in k by @. Finally, we denote by g the
quadratic form on M with values in k, induced by ¢, i.e. G(T) = q(z) for
x € M. Furthermore, B will stand for the associated bilinear form By, ie.

B(z,7) = B(x,y) for z,y € M.

1In [K4] the words “nearly good reduction” are used instead of “fair reduction”.
We avoid this terminology here, because we will talk about a different concept,
“almost good reduction” later (Chapter IV).
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As before, we call a nondegenerate quadratic module over a field or valu-
ation ring a quadratic space, or just a space. If M is a reduced nondegenerate
quadratic o-module, then M = M/mM is a space over k. It is easy to show
that K ® M is a space over K too (see the Remark below, after Definition 3),
but that is not so important at the moment.

Lemma 1. Let M be a reduced nondegenerate quadratic module over o.
There exists a decomposition M = My 1 My with My strictly reqular and
B(Ms x M) C m. If such a decomposition is given and x is a primitive vector
of M, then q(x) € o*.

Proof. We have a decomposition M = U 1 QL(M) with U strictly regular.'”
Let x1,...,, be vectors of M, such that the images T,,...,Z; in M form
a basis of the k-vector space U. Then the determinant of the value matrix
(B(zi,xj)) with 1 <4, j < r is a unit of o. Therefore, Mi:= " oz; is a
i=1
strictly regular space. Let Ms be the orthogonal complement M- of M in M.
Then M = M; L My and My/mMy = QL(M). Since QL(M) is quasilinear,
we have B(Ma x My) C m. Conversely, if such a decomposition M = My L M,
is given, with M; strictly regular and B(My x My) C m, then My = QL(M).
Since QL(M) is anisotropic, every primitive vector x in M, has a value
q(z) € o*. O

Lemma 2. Suppose again that M is a reduced nondegenerate quadratic o-
module. Then M is mazimal among all finitely generated (thus free) o-modules
N C K ®, M with ¢(N) C o.

Proof. We work in the quadratic K-module E:= K ®, M. According to
Lemma 1, there is a decomposition M = M; | M, with M; strictly regular
and B(Msy, M2) C m. Let € E and ¢(M + ox) C 0. We have to show that
ze M.

We write x = 1 + 22 with 1 € K ® M1, x90 € K® M. For every y € My,
we have B(z1,y) = B(x,y) = ¢(x +y) — q(z) — q(y) € o. Since the bilinear
form B = B, is nondegenerate on M, it follows that z; € M;. Therefore,
M + ox = M + oxo and so ¢g(z2) € 0. Now, 29 = az for a primitive vector
z € My and a € K. Since ¢(z) € 0*, we get a € 0, and so zo € M. We
conclude that x € M. O

Lemma 3. (Extension of §6, Lemma 4.) Let M be a reduced nondegenerate
quadratic o-module and let e be a primitive isotropic vector in M. Then e can
be completed to a hyperbolic vector pair e, f in M.

Proof. We work again in E = K ® M. The ideal B(e, M) of o is finitely
generated. Therefore we have B(e, M) = ao for an element a of o. If a were
equal to zero, then the vector € € M would lie in the quasilinear part QL (M)
of M. However, € # 0 and g(€) = 0, so that € ¢ QL(M) due to the anisotropy

"Recall that QL(M) denotes the quasilinear part of M, see the beginning of §6.
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of QL(M). Therefore, a # 0. Since B(e, M) = ao and q(M) C o, we have
q(M + o(a=te)) C 0. Thus, by Lemma 2, a~'e € M. Since e is primitive, we
conclude that a=! € o, i.e. a € 0*. Hence, B(e, M) = 0. As in the proof of §6,
Lemma 4, we choose z € M with B(e, z) = 1 and complete e to a hyperbolic
pair with the vector f:=z — q(z)e. O

Theorem 1. Let M be strictly regular, N a reduced nondegenerate quadratic
o-module and K ® M < K ® N. Then M < N. Furthermore, N =2 M | P
where P 1s a reduced nondegenerate quadratic o-module.

Proof. If @ is a strictly regular quadratic submodule of N, then N =@ L P
with P:= Q1+ = {z € N | B(z,Q) = 0}, since Q is nondegenerate with
respect to the bilinear form B = B, (§5, Lemma 1). We have N = Q L P
and conclude that P is nondegenerate, i.e. P is reduced nondegenerate.

Because of this preliminary remark, it suffices to show that M < N.
Suppose first of all that M is hyperbolic, i.e. M = r x H for some r > 0,
where H denotes the quadratic module [? (1)] over 0. We proceed by induction
on 7.

Since K ® M < K ® N, K ® N contains isotropic vectors. We can then
choose a primitive isotropic vector e in N. This vector can be completed to a
hyperbolic vector pair in N, by Lemma 3. Hence, H < N andso N 2 H | N’
where N is a reduced nondegenerate quadratic o-module. From rx (K@ H) <
K®N,weget KQN 2rx (K®H) L G for some space G over K. On the
other hand, K ® N = (K ® H) 1 (K ® N’). By the decomposition theorem
over K (§6, Theorem 2), we get (r—1) x (K ® H) L G =2 K ® N'. Therefore,
(r—1)x(K®H) < K®N'. The induction hypothesis gives us (r—1)x H < N’
and sor x H < N.

In the general case, K ® M < K ® N implies that K ® (M L (-M)) <
K® (N L (—M)). Since M L (—M) is hyperbolic, it follows from above
that M L (-M) < N L (-M),andso, N L (-M)= M 1L (-M) L P
by the remark at the beginning of the proof, where P is another reduced
nondegenerate quadratic o-module. By the decomposition theorem over o
(86, Theorem 2), we may conclude that N = M L P, and so M < N. O

Theorem 2 [K4, Lemma 2.8]. Suppose that M and N are reduced nondegen-
erate_quadratic o-modules with K @ M < K @ N. The spaces M = M /mM
and N = N/mN over k have the following properties:

(a) M < N.
(b) More precisely: there exist quadratic subspaces S and T of N with M < S,

N =S8 L T, T strictly regular, dim S < dimQL(M) + dim QL(N) +
dim M.

(¢) If N is anisotropic, then M < N.

Remark. We will not need properties (b) and (c) later on. They can however
be obtained in the following proof at no extra cost.
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Proof of Theorem 2. (i) By Lemma 1, we can choose an orthogonal decom-
position M = My L My with M; strictly regular and B(Ma x Ms) C m. We
have K ® M7 < K ® N. By Theorem 1, we have N =2 M; | Ns, where Ny
is a reduced nondegenerate quadratic o-module. Then K ® M7 1L K ® My <
K®M; L K® Ns implies K @ My < K ® No by the decomposition theorem
over K (86, Theorem 2) as usual. If we could prove the claims of the theorem
for My and N instead of M and N, then they would follow immediately
for M and N as well. Hence we assume now, without loss of generality, that
B(M x M) C m.

(ii) If M = {0}, nothing has to be done. So suppose that M # {0}.
Surely k has characteristic 2. We suppose, without loss of generality that
F:= K®M is asubspace of E:= K ® N (instead of only: F' is isomorphic to
a subspace of E). Since M is anisotropic, we have M = {x € F | ¢(z) € o} (as
already ascertained before). Therefore, Ny:= N N F C M. Moreover, N; is
a direct summand of the o-module N, since N/N; is torsion free and finitely
generated, and thus free. Hence Nj itself is also free.

Let m: = dim M. By the Elementary Divisor Theorem for valuation rings,
there exist bases x1,...,2y and y1,..., Yy, of the free o-modules M and N
with y; = ¢z, ¢; € 0 (1 < i < m). We suppose without loss of generality
that ¢; =1 for 1 <i < s and ¢; € m for s < i < m. {It is allowed that s =0
or s =m.}

If N is anisotropic, then g(x) € o* for every primitive vector x of N,
and thus for every vector in Ny which is primitive in N;. Hence s = m, i.e.
Ny = M and M < N. This establishes property (c).

(iii) Let V be the image of N; in N = N/mN. Since N; is a direct
summand of N, we may make the identification V' = Nj. Since B(M x M) C
m, we have B(N; x Ni) C m, thus B(V x V) = 0. Hence V is quasilinear.
We have

(1) M=k, @ kT Zay,...,an], with a;:=7gq(T;) € k*.

(2) V=ky, & ®ky,, =[a1,...,as] L (m—s) x[0].

Let R:= QL(N) be the quasilinear part of N and Vp:= V N R. Since R is
anisotropic, Vj is also isotropic. From (2) it follows that V5 < [aq,...,as],
and so

(3) [al,...,as]%VOL[bl,...,bs_t]

for elements b; € k* and ¢: = dim Vj. {If ¢ = s, the righthand side of (3) should
be read as Vp.} From (2) and (3) we get a decomposition V =V, L U, with

(4) U2 by,... bs_s] L (m—s)x[0].

Since VN R = V, we have U N R = {0}. We choose a submodule W of N
such that N = (R+U)@ W = R@ U @& W. Since R is the quasilinear part
of N, P:= U @ W is strictly regular and N = R L P. Let uy,...,Un_; be
a basis of U, associated with the representation (4). P is a symplectic vector
space with respect to the bilinear form B = Bg. Hence we can complete
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ULy.ooy Upp—t TO & basis 41, ..., Um—t, 21, .., 2m_¢ Of a subspace P; of P with
B(u,zj) = 60;; (1 <4i,j<m—t). As a quadratic space, P; is of the form

Py =(kuy +kz1) L ... L (Ktum—t + kzm—t)

and P = P; L T for a strictly regular space T

For s —t < i < m —t, we have ku; + kz; = [(1) (1)] Therefore, [ai4i] <
ku; + kz; for this i. Furthermore we have Vj < R and [b;] < ku; + kz; for
1 <i<s—t,since b; = q(u;). Putting everything together, (1) and (3) yield

MgVOL[bl,...,bs_t]L [as+1,...,am] <RLP1,

and R L P = R 1 P, L T=N.Let S:= R L P, then M < S and

N =S 1T.Since M = QL(M) and R = QL(N), we have furthermore
dim S = dim QL(N) + 2(m — t)
=dim QL(N) + dim QL(M) + dim M — 2t
< dim QL(N) + dim QL(M) + dim M.

As a special case of Theorem 2, we obtain

Corollary 1. Let M and M' be two reduced mondegenerate quadratic o-
modules with K @ M = K @ M'. Then M/mM = M'/mM’. O

Now let A: K — L U oo again be a place and o its associated valuation
ring. As before, we denote by A the field embedding k& < L determined by
A. By Corollary 1 it makes sense to make the following definition:

Definition 3. Let E be a space over K which has FR with respect to \. Let
M be a reduced nondegenerate quadratic o-module with £ = K ® M. We
call the quadratic L-module L ®\ M = L ®x (M/mM) (which is uniquely
determined by E up to isometry) the specialization of E with respect to A,
and denote it by . (E).

Note. If E has good reduction with respect to A, then \.(F) has the old
meaning.

Look out! If char L = 2, then A\, (E) can be a degenerate quadratic L-module,
even if E is strictly regular. However, this does not happen when the field
embedding A is separable, see §10.

Remark. If M is a reduced nondegenerate quadratic o-module, then the
quadratic K-module K ® M is definitely not degenerate, for we know that
QLK®M)=K®QL(M), and if QL(K ® M) were isotropic, then QL(M),
and thus QL(M/mM), would also be isotropic. Therefore our assumption in
Definition 3, that the quadratic K-module F is nondegenerate, is a natural
one and does not cause a loss of generality.
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We illustrate the concept of fair reduction with a few examples.

Ezxample 1. Let o be a valuation ring with char K = 0, chark = 2, and let
A: K — kUoo be the canonical place of 0. We want to lift an arbitrary space
S over k to a space over K by means of \. We choose a decomposition

g [011 511] T [0‘1’” ﬁl } L[]

with «;, B;, 7; € k. {Since the quasilinear part of S is anisotropic, the ele-
ments 71, . . . , ¥, are linearly independent over k?.} Next we choose pre-images
ai, b;, ¢; of the elements oy, B;, v; in 0. Suppose that r = 2s is even. We
choose elements t1,...,ts € m. Then the K-space

1 Lt
P K I K I K B I e T
1 bl 1 bm tl Co ts C2s

clearly has FR with respect to A and A\ (F) = S. If r = 25+ 1 is odd, we

again choose elements t1,...,ts € m. This time the K-space
1 1 t 1t
E= " L |t L2 (]
1 bl 1 bm tl C2 ts Cos

has FR with respect to A and A\.(E) 2 S. In the special case that all ¢; = 0,
we obtain a K-space

a; 1 am 1
= L1 et e
[1 bl] [1 bm} 1y v

for every r. Since char K = 0, we can interpret F' (and more generally F) as
a bilinear space,

201 1 20m 1
F = L.l L (2c1,...,2¢,).
< 1 2b1> < 1 2bm> 2er,-- 2er)

The elements aq, ..., a, can always be chosen to be # 0 and we obtain the
diagonalization

F = (2a1,d1,...,2am,dm,2c1,...,2¢)

with

Ezxample 2. Let k be an imperfect field of characteristic 2, o the power series
ring k[[t]] in one variable ¢, and so K = k((t)). Choose ¢ € k\ k% and let £
be the space H ! } over K.

ct—2

Claim. E has FR, but does not have GR with respect to o.
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Proof. We have E =2 K ® M, where M is the quadratic o-module [1 z] Its
reduction M = M /mM is the space [(1) 2] = [1, c] over k, which is anisotropic.
Therefore M is reduced nondegenerate and E has FR.

Suppose for the sake of contradiction that £ =2 K ® N where N is a
quadratic space over 0. Since FE does not have a quasilinear part, the same is

true for N. Hence, N = [‘f H with a, 8 € 0. We then have H Ctl,ﬂ = {’i‘ H

over K. An inspection of the Arf-invariants shows that ct=2 = o + 22 + 2

for some z € k((t)). We must have z # 0. We write z = > a;t for some
i>d

d € Z and aq # 0. Since aff € o, we have d = —1 and ¢ = a?,. This is a

contradiction since c is not a square in k. We conclude that F does not have

GR. O

Ezample 3. Again let o = k[[t]] and k a field of characteristic 2. In §7 we
determined that the space E: = H tll] does not have GR with respect to o.
Could it be that E has at least FR with respect to o7

Let us assume that this is so. Then there exists a reduced nondegenerate
quadratic o-module M with £ =2 K ® M. We choose a decomposition M =
M, L My with M; strictly regular and B(My x Ms) C m. We already know
that M is degenerate, so dim My > 0. Since dim M = 2 and dim M is even,
we must have M; = 0. Hence M is quasilinear. But M is not quasilinear,
since F is not quasilinear. Therefore we have a representation

a the
M =
[t”c b }

with n € N and units a,b, ¢ € 0*. The space M = [a, 5] is anisotropic and so
the element ab is not a square in k. Over K we have

n,.,—1
[1 til] =ReoM={)e [t”cit—l tbcc;il } =loe [1 abc‘it—%} '
Comparing Arf-invariants shows
(%) abc ™7 =t 2?4
with z € K. Let v: = K — Z U oo be the valuation associated to 0. From (x)
we get v(zr) < 0 and thus v(z) = —n. Therefore z = ¢t~ i z;t" with z; € k,
xo # 0. Comparing the coefficients of t=2" on the left aligorighthand side of
(x) gives
abe ? = x3.

So @b is a square in k after all, a contradiction. Therefore E does not have FR.

We continue with the general theory. So \: K — L U oo is again an ar-

bitrary place. We immediately obtain a consequence of Theorem 2 which is
not contained in the results of §8 in the case of good reduction.
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Corollary 2. Let E and F be spaces over K which have FR with respect to
A and with F' < E. Then A\ F < \.E. O

This corollary engenders a substitution principle for quadratic forms,
modeled on §3, Theorem 5.

Theorem 3. Let (gri(t))i1<k,i<m and (fij(t))1<; j<n be symmetric matrices
whose coefficients are polynomials in variables t = (t1,...,t.) over a field
k. Let L D k be a field extension of k and ¢ = (c1,...,¢.) an r-tuple with
coefficients in L. Suppose that the quadratic forms [gii(t)] and [fi;(t)] over
k(t) satisfy [gri(t)] < [fij(t)]. Suppose also that the quadratic forms [gri(c)]
and [fij(c)] over L are nondegenerate. Then [gri(c)] < [fij(c)] (over L). O

We return to an arbitrary place \: K — L U oo.

Theorem 4. (Extension of §8, Lemma 2(b).) Let G be a space and F a
strictly reqular space over K. Suppose that F' has GR with respect to \. Fi-
nally, let E:=F 1 G.

Claim: E has FR with respect to A if and only if G has FR with respect
to . In this case we have \,E = A\ F 1 \G.

Proof. We have F' = K® M where M is a strictly regular quadratic o-module.
If G has FR with respect to A, then G = K ® P where P is a reduced
nondegenerate quadratic o-module. The quadratic o-module N:= M 1 P is
then also reduced nondegenerate and

L&yN=(LexM)L(Lo\P)=F 1G=E.

Hence E has FR with respect to A and A\, E = A\ F 1 \.G.

Suppose now that E has FR with respect to \. We have £ =% K ® N
where N is a reduced nondegenerate quadratic o-module. By Theorem 1,
K®M < K®N implies that N = M | P where P is areduced nondegenerate
quadratic o-module. Hence

Fl(K®@P)~E=F 1G.

Now G =2 K ® P by the cancellation theorem over K (§6, Theorem 2).
Therefore G has FR with respect to . O

To the currently developed theory of fair reduction, we can associate a
variation of the weak specialization theory of §7, which we will briefly present
in the following.

Theorem 5. (Extension of §6, Theorem 5.) Let o be quadratically henselian.
Let (M, q) be a reduced nondegenerate and anisotropic quadratic o-module.

Furthermore, let e be a primitive vector in M. Then q(e) € o*.

Proof. We choose a decomposition M = N | M’ with N strictly regular and
B(M' x M') C m. Traversing the proof of §6, Theorem 5 and replacing M+
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by M’ everywhere will give proof since all arguments will faithfully remain
valid. O

As before, o denotes the henselization of the valuation ring o.

Lemma 4. Let M be a quadratic o-module. Then M": = o" @, M is reduced
nondegenerate if and only if M is reduced nondegenerate.

Proof. This is evident since o /m" = k, so that M"/m"M" is canonically
isomorphic to the quadratic k-module M/mM. O

Now the road is clear to extend, in an appropriate way, the main result
of 87 (Theorem 4), wusing fair reduction. As before, let
A: K — LUoo be a place with associated valuation ring 0. Let S be a system
of representatives of Q(K)/Q(0) in o, as introduced in §7.

Definition 4. Let E = (F, q) be a quadratic K-module (always free of finite
rank). We say that E is weakly obedient with respect to \ (or: with respect to
0) when F has a decomposition

(*) E= _L.E&

ses

such that the quadratic K-module (Es, s !(¢|FEs)) has FR with respect to
A for every s € S. Every decomposition of the form (x) is called a weakly
A-modular (or: weakly o-modular) decomposition of E.

Remark. Let E be weakly obedient with respect to A. Then

Ex J_S<s>®(K®Ms)

with reduced nondegenerate quadratic o-modules M. For every s € S we
may choose a decomposition My = N, L M. with strictly regular N, and
Bs(M] x M) C m, where B, is the bilinear form associated to M,. Just as
indicated in §7, we see that

G:.= JE_S(S>®(K®M§)

is anisotropic. Furthermore,

F:= J_S<s>®(K®Ns)

is strictly regular. We have £ = F' 1 G. Therefore E is definitely not degen-
erate and is thus a space over K. O

Theorem 6. (Extension of §7, Theorem 4.) Let E be a space over K which
s weakly obedient with respect to A and let

E= | BE,= | F

ses ses
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be two weakly A-modular decompositions of E. Then'® \.(E1) ~ \(F).

Proof. The arguments in the proof of §7, Theorem 4, remain valid in the
current more general situation. One should use Theorem 5 and Lemma 4
above. O

Now the following definition makes sense:

Definition 5. Let E be a quadratic space, weakly obedient with respect to

Mandlet E= | E,bea weakly A-modular decomposition of . Then we
seS
call M\ (E1) a weak specialization of E with respect to A. We denote the Witt

class of A\, (E1) by Aw (E). In other words, Ay (E): = {\(E1)} € Wq(L). By
Theorem 6, Ay (F) is uniquely determined by E and A.

Remark. Our proof of Theorem 6 is independent of the main result Theorem 2
of the specialization theory developed above. We could also have deduced the
important Corollary 1 of Theorem 2 (specialization by FR is well-defined)
from Theorem 6, analogous to the proof of §8, Theorem 1 in the quadratic
case. In other words, we could have established the weak specialization the-
ory first and then develop from this the basic idea of specialization by FR
(Definition 3 above), just as before in §7 and §8.

In the theorems of §8 about the weak specialization of tensor products
(Theorem 6(ii), Theorem 7) we may not simply replace the word GR by FR
and the word “obedient” by “weakly obedient”. This already shows us that
in our theory, good reduction does not become superfluous in any way after
the introduction of fair reduction.

More important even is the observation that in the theory of generic
splitting in §9 and §10 good reduction appears center stage, and not fair
reduction: For example, let ¢ be a regular quadratic form over a field £ and
let L D k be a field extension. Let (K, | 0 < r < h) be a generic splitting
tower of ¢. If \: K, — L U oo is a place over k for some r € {1,...,h}, then
the kernel form ¢, of ¢ ® K, automatically has good reduction with respect
to A.

18See §6, Definition 10, for the definition of Witt equivalence ~.
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§12 Unified Theory of Generic Splitting

Just as in §9 and §10 we will not use geometric language and talk of quadratic
forms instead of quadratic spaces in this section. The definitions concerning
quadratic spaces over fields, encountered in §11, will be faithfully adopted in
the language of forms. In what follows, a “form” will always be understood
to be a quadratic form.

If v:k — LU is a place and ¢ a regular form over k£ which has GR with
respect to v, then the splitting behaviour of 7,(p) under extensions of the
field L is controlled by a given generic splitting tower (K, | 0 < r < h) of ¢,
as seen in §4 and §9 (§9, Theorem 4 and generalization of §4, Scholium 3).
According to §10, something similar happens for a place v and a form ¢ over
k having GR with respect to 7 for which ~.(¢) is nondegenerate, provided
some care is exercised. Now we want to extend these results to the case where
© has just FR with respect to .

At the same time we want to unite the results of §9 and §10 under one
roof, starting with the following definition.

Definition 1. Let ¢ be a nondegenerate form over a field K. We call a
field extension K <— L p-conservative (or: conservative for o) if the form
» ® L is again nondegenerate, i.e. if the quasilinear part QL(y) of ¢ remains
anisotropic under a field extension from K to L.

If ¢ is regular, then dim QL(¢) < 1 and so every field extension of K is ¢-
conservative. This is true in particular when char K # 2. If char K = 2, then
every separable field extension K — L is ¢-conservative by §10, Theorem 1.

Theorem 1. Let : K — LU oo be a place, K' D K a field extension and
w: K" — LUoo an extension of X. Let ¢ be a (nondegenerate) form over K,
having FR (resp. GR) with respect to A\, and let A.(p) be nondegenerate.

Claim: the extension K — K' is p-conservative. The form ¢ @ K' has
FR (resp. GR) with respect to u and p. (¢ @ K') = \(¢).

Proof. In the case of good reduction, this is Theorem 2 from §10. The proof
in the case of fair reduction is similar and goes as follows.

Let 0:= 0y and o’:= 0,. Let E = (E, ¢q) be a space corresponding to ¢
and M a reduced nondegenerate quadratic o-module with ¥ = K ®, M. Then
A« () corresponds to the space A\, (E) = L ®5 M, where X:x(0) — L is the
field extension associated to A\. We have the factorization X = Ji o j, featur-
ing the inclusion j: k(0) — x(0’) and the field homomorphism f: x(0’) — L,
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determined by p. Let @ be the form over #(0), associated to M, i.e. \.(p) =
? ®x L. Since A, (¢p) is nondegenerate by assumption, X: (o) < L is conser-
vative for @. Therefore j: k(0) — x(0’) is conservative for g and @: x(0’) — L
is conservative for ¥ ® k(0’). Now @ ® k(0’) belongs to the quadratic x(o’)-
module M’ with M’:= o’ ®, M. Therefore M’ is nondegenerate, in other
words M’ is reduced nondegenerate. We have M’ = £(0’) ®,,,) M. Further-
more, K' ® E > K' ®, M’'. Thus ¢ ® K’ has FR with respect to p and

pe(p @ K') = (@@ k(0") @ L =7 @5 L = A(p).

In particular, ¢ ® K’ is nondegenerate (cf. §11, the Remark following Defini-
tion 3). We conclude that K — K’ is p-conservative. O

In the following let p be a nondegenerate form over a field k. Over every
field K we denote the form [(1) (ﬂ by H.

Theorem 2. Let K and L be extensions of the field k and let \: K — LU oo
be a place over k. Suppose further that L is p-conservative and let p @ K =
rx H L 1 be the Witt decomposition of .

Claim: K 1is also a p-conservative extension of k. The form 1 has GR
with respect to A, and 9@ L 2 rx H L A\ (). Thus ind(¢®L) > ind(¢® K).

Proof. We apply Theorem 1 to the trivial place v: k — L and its extension
A. Now ¢ has GR with respect to v and v.(¢) = ¢ ® L. By Theorem 1, K
is conservative for ¢, in other words ¢ ® K is nondegenerate. Again by this
theorem, ¢ ® K has GR with respect to A and A\ (¢ ® K) = ¢ ® L. Since
r x H also has GR with respect to A, it follows that ¢ has GR with respect
to A (§8, Theorem 2), and we have ¢ ® L 2 r x H L A (). O

Corollary. Let K and L be specialization equivalent extensions of the field k.
Then K is p-conservative if and only if L is p-conservative. In this case we
have ind(¢ ® K) = ind(p ® L). Furthermore, if \: K — LUoo is a place over
k, then ker(p® K) has GR with respect to X and A (ker(p®K)) = ker(p®L).

O

Next we define a generic splitting tower (K, | 0 < r < h) associated to
@ just as in §4 for char k # 2 and in §9 for regular forms, with higher kernel
forms @, and higher indices i, (0 < r < h): K is an inessential extension
of k, v,:= ker(p ® K,.), Kry1 ~ K (o), irt1:= ind(p, @ K,41), in case
r < h. The construction stops with step A if dim ¢, — dim QL(¢p) < 1.

All this makes sense, since an inductive argument shows that QL(p,) =
QL(¢) ® K, is anisotropic for every r € {0, ...h}. Indeed, the field extension
K, (pr)/K, is separable for r < h. Hence we can conclude by Theorem 2 that
K, 11/ K, is p,-conservative once we already know that QL(¢;) is anisotropic,
i.e. that ¢, is nondegenerate. The extension K}, /k is therefore ¢-conservative.

Note. If char k # 2, then dim ¢y, < 1. If char k = 2, then ¢, = QL(pn).
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We now have to convince ourselves that the field tower (K, | 0 < r < h)
really accomplishes what we expect from a generic splitting tower. As before
in more special situations, it suffices for this purpose, to prove a theorem of
the following sort.

Theorem 3 (Extension of §9, Theorem 4 and §10, Theorem 3). Let y: k —
L U oo be a place. Suppose that the form ¢ has FR with respect to v and
that v.(¢) is nondegenerate. Then v.(p) is isotropic if and only if v can be
extended to a place \: k(p) — LU oo.

Proof. We have ¢ @ k() =2 H L 1) for a form 1 over k(p). If there exists a
place X: k(¢) — L U oo then, by Theorem 1, ¢ ® k(¢) has FR with respect
to A and A (¢ @ k(p)) = 7.(¢). Then it follows from §11, Theorem 3, that
1 has FR with respect to A and that v.(p) = H L A.(v). Hence ~v.(yp) is
isotropic.

Conversely, suppose that the nondegenerate form @: = ~.(p) is isotropic.
Since H < @ we have dimp — dim QL(p) > 2. Now, by earlier work, we see
that v can be extended to a place 4:k(p) — L() U oo (look again at the
proof of §9, Theorem 3). {Note: here we do not need the assumption that @
is isotropic, but only that dim @ —dim QL(p) > 2.} Since ¥ is isotropic, L(®)
is a purely transcendental extension of L (§9, Lemma 1). Thus there exists
a place p: L(®) — L U oo over L. The place i:= po4: k() — LUoo is an
extension of ~. O

In what follows, let (K, | 0 <7 < h) be a generic splitting tower associ-
ated to ¢ with higher kernel forms ¢, and indices i,.

Theorem 4 (Extension of §4, Theorem 3 and §10, Theorem 4). Let v: k —
LUoo be a place with respect to which ¢ has FR (resp. GR). Suppose that the
form v.(¢) is nondegenerate. Finally, suppose that \: K,,, — LUoo is a place
for some m € {0,...,h}, which extends v and which cannot be extended to
Kiq1 in case m < h. Then ¢, has FR (resp. GR) with respect to A\. The
form v.(p) has kernel form A\ (pm) and Witt index io + ... + .

Proof. We give the proof for FR. The case of GR can be treated in an anal-
ogous way. We have an isometry

(1) 0 Km 2o, L (ig+...+1im) x H.

By Theorem 1, ¢ ® K, has FR with respect to A and A.(p ® Kp,) = 7. (9).
From (1) we get, according to §11, Theorem 4, that ¢,, has FR with respect
to A and that

(2) V() = Alom) L (io + - + i) X H.

In particular, A\i(p.,) is nondegenerate. If Ai () were isotropic, then we
would surely have that dim ¢, > dim QL(p.,) + 2, i.e. m < h. But then
it follows from Theorem 3 that A can be extended to a place u: K11 —
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L U oo, contradiction! Therefore A.(py,) is anisotropic and (2) is the Witt
decomposition of v, (¢m). O

By applying this theorem to the trivial place v, we obtain
Scholium 1 (Extension of §4, Scholium 1). Let L D k be a ¢-conservative

field extension.

(1) Let A\: K, — L U oo be a place over k for some m € {0,...,h}, which
cannot be extended to a place from K,,+1 to L in case m < h. Then ¢,
has good reduction with respect to A and A.(@;,) is the kernel form of
p® L.

(2) If N: K, — LUoo is a place over k, then 7 < m and X can be extended
to a place pu: K, — L U oo.

(3) For a given number ¢ with

< dim ¢ — dim QL(yp)

0<t< 5 =i9+...+1p
and m € Ny minimal such that ¢ < g + ... + 4y, K, is a generic
p-conservative field extension of k£ for the splitting off of ¢ hyperbolic
planes of ¢ (cf. the problem posed at the beginning of §4). O

Thus, the field tower (K, | 0 < r < h) rightfully merits the name “generic
splitting tower for ¢” also in the current general situation.

Definition 2. As before we call h the height of the form ¢ and write h =
h(gp). Further, we define the splitting pattern SP(p) as the set of all indices
ind(¢ ® L), where L runs through all ¢-conservative field extensions of k. By
the scholium we have

SP(¢) ={io+...+ir |0 <7 <h}.

Definition 3. We call any field extension £ D k which is specialization
equivalent to k(¢) over k a generic zero field of p. Further, for r € {0,...,h},
we call any field extension F' O k which is specialization equivalent to K, over
k a partially generic splitting field of p or, more precisely, a generic splitting
field of level r. This signifies that F' is generic for the splitting off of as many
hyperbolic planes as the (r + 1)-th number ig + ... + ¢, in SP(y) indicates.
In case r = h, we speak of a totally generic splitting field.

This terminology generalizes notions from §4 and §9, but one has to ex-
ercise some caution; the extensions £ D k and F' D k have the mentioned
generic properties — as far as we know — only within the class of p-conservative
field extensions of k.

Comment on the Theory so far. If the form ¢ over k is degenerate, but
dim ¢ — dim QL(p) > 2, then the function field k(¢) can be constructed just
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812 Unified Theory of Generic Splitting 97

as in the nondegenerate case. Thus we can formally define a “generic splitting
tower” (K, |0 < r < h) as above. We may also inquire about the splitting
behaviour of ¢ under extensions L D k of the field k, in other words about
the possibilities for the index ind(¢ ® L) and the kernel form ker(y @ L)
(see Definition 10 in §6). However, can we also extend the theory so far to
degenerate forms?

We have a decomposition ¢ = @ L §(¢) with §(p) = ¢ x [0] and @ non-
degenerate, cf. §6, Definition 9 ff. Clearly k(¢) is a purely transcendental
extension of k() of transcendence degree t. Therefore k(p) ~, k(p). Conse-
quently, the above tower (K, | 0 < r < h) is a generic splitting tower of .
It is now clear that our theorems so far all remain valid for degenerate ¢, as
long as we complete Definition 1 above as follows: for degenerate p, a field
extension K < L is called conservative for ¢ if it is conservative for @.

This, however, furnishes us with a fairly bland extension of the theory so
far to degenerate forms. The obvious, difficult question seems to be: Let ¢ be
a nondegenerate form over a field k¥ and L D k a field extension with ¢ ® L
degenerate. Is it so that the splitting behaviour of p® L under field extensions
of L is controlled by a given generic splitting tower (K, | 0 < r < h) of
¢ in a similar way as indicated in Scholium 1(1) above? For example, is
SP(p® L) C SP(p)?

Our theory does not give any information here. The main problem seems
to occur in Theorem 1 above. If we do not know there that A\.(y) is nonde-
generate, we can not conclude — as far as I can see — that (o ® K')" has fair
reduction with respect to pu. O

After this digression, we suppose again that ¢ is a nondegenerate form
over k and that (K, | 0 <r < h) is a generic splitting tower of ¢ with higher
kernel forms ¢, and indices 4,.. From Theorem 4 above we immediately obtain
a literal repetition of §4, Scholium 2 in the current, more general situation, if
we bear in mind that for every generic splitting tower (K. | 0 < s < h) of ¢,
all extensions K, of k are conservative for ¢. Furthermore, we obtain from
Theorem 4 an extension of §4, Scholium 3 in the same way as we obtained
84, Scholium 3 from §4, Theorem 3:

Scholium 2. Let v:k — L U oo be a place with respect to which ¢ has FR
(resp. GR). Suppose that 7. (¢) is nondegenerate. Then:

(1) SP(7x()) C SP(¢).

(2) The higher kernel forms of 7. (p) arise from certain higher kernel forms
of ¢ by means of specialization. More precisely: if (Ls | 0 < s < e)
is a generic splitting tower of 7,(¢), then e < h and, for every s with
0 < s <e, we have

ind(v.(p) @ Ls) =ig+ ... +im

with m € {0,...,h}. The number m is the biggest integer such that ~y
can be extended to A\: K, — Ls U oo. The kernel form ¢,, of o ® K,,
has FR (resp. GR) with respect to every extension A of this kind, and
A« (o) is the kernel form of 7, (p) ® Ls.
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3) If p: K, — LsUoo is a place, which extends v:k — L U oo, then r < m
P Y
and p can be further extended to a place from K,, to Ls. O
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§13 Regular Generic Splitting Towers and
Base Extension

Before turning towards generic splitting towers, we will give two general def-
initions which will also serve us well in later sections.

As before, the word form over a field k will always be understood to mean
a nondegenerate quadratic form over k. In the following let ¢ be a form over k.

Definition 1. Let dim ¢ be even, ¢ # 0 and QL(¢) = 0.

(a) The discriminant algebra A(yp) is defined as follows: If chark # 2, we
let A(p):= k[X]/(X? — a), where a is a representative of the signed
determinant d(¢) = ak*? of the bilinear form ¢ = B, associated to ¢
(cf. §2). If chark = 2, we let A(p):= k[X]/(X? + X + ¢), where ¢ is a
representative of the Arf-invariant Arf(y) € k¥ /pk.

(b) We define the discriminant of ¢ to be the isomorphism class of A(p) as
k-algebra. We will denote it sloppily by A(y) as well. The discriminant
is independent of the choice of a resp. ¢ above.

(c) We say that A(p) splits when A(y) is not a field, i.e. when A(p) =k x k.
We will symbolically write A(¢) = 1 when ¢ splits and A(p) # 1 when
o doesn’t split.

Remark 1. This notation is not completely groundless, for the isomorphism
classes of quadratic separable k-algebras form a group in a natural way with
unit element k& x k. In this group the equality A(pLvy) = A(p)A(¢) holds.
We will not discuss the group of quadratic separable k-algebras any deeper
since we will not make any serious use of it.

Remark 2. If K/k is a field extension,'® then A(p ® K) = A(p) @4, K.
Remark 3. If 7 is the norm form of the k-algebra A(p), then A(p) = A(7)

Is further dim ¢ = 2, then ¢ = cr for some ¢ € k*. If we write 7 = ],
then A(p) = k[X]/(X? 4+ X + ), also when char k # 2.

==
SO

Definition 2 (cf. [KR, Def.1.1]). Let dim ¢ > 1. We say that “p is of outer
type” when dim ¢ is even, QL(¢) = 0 and A(yp) # 1. In all other cases (thus
in particular when QL(yp) # 0) we say that “p is of inner type”.

9From now on we will often denote a field extension F — E by E/F, as has been
customary in algebra for a long time.
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Remark 4. For those readers who are at home in the theory of reductive
algebraic groups, we want to remark that Definition 2 leans on the concepts of
inner/outer type in use there: is ¢ regular (i.e. dim QL(p) < 1) and dim ¢ >
3, then the group SO(¢) is almost simple. This group is of inner/outer type
if and only if this is the case for ¢ in the sense of Definition 2.

We want to construct “regular” generic splitting towers of ¢, having par-
ticularly convenient properties with respect to extensions of the ground field
k, which are nonetheless sufficiently general. Starting with such a regular
generic splitting tower of ¢ we will then construct a regular generic splitting
tower of ¢ ® L for every p-conservative field extension L/k.

For every form ¢ with dim ¢ > 24+dim QL(¢) over a field K we introduced
the field extension K (1) of K earlier (§4; §9; §10, following Def.2). K(v) was
defined to be the function field of the affine quadric ¢¥(X) = 0 over K,
except when i = [(1) é}, in which case this quadric degenerates in two lines.
In this situation we defined K (v) = K(t) for some indeterminate ¢ over K.
Sometimes it is more natural to use the projective quadric ¥(X) = 0 over K
instead of the affine quadric (X) = 0. Thus we arrive at the following

Definition 3. Let 1) be a (nondegenerate quadratic) form over K with
dime¢ > 2 + dimQL(¢). We define a field extension K{¢} of K as fol-

lows: If ¢ = [10} we let K{1} = K. Otherwise we let K{¢} be the
subfield K($,....%%) of K(¢) = QuotK[Xy,..., Xpn|/¢(X1,...,X,) =
K(z1,...,z ) or some i € [1,n].2°

In the main case @ % [? (1)] this field is obviously independent of the
choice of i € [1,n]. We have K(z/z) = K{¢}(x;) and z; is transcendental over
K{¢}. Also in the case ¢ & [(1) | we have K () = K{y}(t) where ¢ is an
indeterminate.

K (1) is an inessential extension of K{t}. Thus, all this time we could
have used K{¢} instead of K ().

Back to our form ¢ over k! Let h = h(p) be the height of ¢.

Definition 4. The projective standard tower of ¢ is the field tower (K, | 0 <
r < h) with Ko =k, K,11 = K. {¢r} (0 <r < h—1), where ¢, denotes
the kernel form of ¢ ® K,.. Similarly one obtains the affine standard tower
(K | 0 <r < h) of ¢ by replacing the K, {t¢,} with the function fields
K, (¢r) of the affine quadrics ¢, = 0.

Remark 5. From the definition of generic splitting tower (§12, just after The-
orem 2) it follows immediately that (K, | 0 <r < h) and (K] |0 <7 < h)
are both generic splitting towers of ¢. For every r € {0,...,h} we have that
K] is a purely transcendental field extension of K, of transcendence degree
T,

20Tn [Ks] this field is denoted by K (3)o. [1,n] denotes the set {1,2,...,n}.
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Let us recall that a field extension L/K is called regular when it is sep-
arable and K is algebraically closed in L. This is synonymous with saying
that L and the algebraic closure K of K in L are linearly disjoint, i.e. that
L ®k K is a field, cf. [Lga, Chap. 3]. If L/K is regular, then the K-algebra
L ®k E does not contain zero divisors for any field extension E/K.

Theorem 1. Let (K, |0 < r < h) be the projective standard tower of ¢. Then
the field extensions K,./K,_1 with 0 < r < h are all regular. The same is
true for Kp/Kp—1 in case h > 0 and ¢ is of inner type. Furthermore, the
kernel form op_1 of ¢ @ Kj_1 has dimension > 3 in this situation. If ¢ is of
outer type, then h > 1 and Ky = Kj,_1 Qi A(p). Furthermore, we then have
V-1 = (Tt @ Kp_1), where T is the norm form of the field extension A(p)
of k and c € Kj_, is a constant. In particular we have dim pp_1 = 2.

Proof. 1f 1 is a nondegenerate quadratic form over a field K and if dim >
2, then the extension K{v¢}/K is clearly regular. This established the first
statement of the theorem. If h > 0 and ¢ is of inner type, then ¢ ® Kj_1 is
also of inner type and thus the kernel form 5,1 of ¢ ® Kj_1 is of inner type.
This shows that dim ¢p_; > 3 and so K, = Kp—1{¢n_1} over Kj_; is again
regular. Suppose now that ¢ is of outer type. ¢ does not split, so that h > 0.
The extension Kj_1/Ky is regular and Ky /k is inessential. Therefore k is
algebraically closed in Kp,—1 and A(pp-1) = A(p @ Kj—1) = A(p) @k Kp—1
is a field. If it would be true that dimpp,_1 > 2, then K, = Kp_1{pn-1}
over Kj,_1 would be regular. However, A(pp_1) ®k,_, Kn = Alp @ Kp)
is not a field since ¢ ® Kj ~ 0. Therefore the dimension of ¢, is 2. By
Remarks 2 and 3 above, we have A(pp_1) = A(p®@Kp_1) = Alp) Q@ Kp—1 =
A(T)Qk Kp—1 = A(T®@ Kp—1) (and 7® Kj,—1 is the norm form of Ky /Kp_1).
We conclude that ¢p,_1 = ¢(7 ® K},—1) for some element ¢ of Kj,_1. O

Theorem 2. Let r € [0,h] and let E/k be a partially generic splitting field
of level r of .
(a) If r < h, then k is algebraically closed in E.

() If r = h and ¢ is of inner type, then k is likewise algebraically closed in
E.

(¢) If r = h and ¢ is of outer type, then k has algebraic closure A(p) in E.
Proof. By Theorem 1 these statements hold when E is the r-field K, in the

projective standard tower (K; | 0 < ¢ < h) of ¢. The theorem now follows in
all generality from the following simple lemma.

Lemma 1. Let K and L be extensions of the field k which are specialization
equivalent, K ~y L. Then every place \: K — LUoco over k maps the algebraic

closure of k in K isomorphically to the algebraic closure of k in L.

Proof of the lemma. Let K° be the algebraic closure of k£ in K and L° the
algebraic closure of k in L. Let A: K — LU oo and u: L — K U oo be places
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over k. Since K° and L° are algebraic over k, the places A and p are finite on
K° resp. L°. Their restrictions to K° and L° are thus field homomorphisms
N:K° — L°, i/: L° — K°, which are both the identity on k. Now p/ o) is an
endomorphism of K°/k and thus automatically an automorphism of K°/k.
Likewise, A’ o ¢/ is an automorphism of L°/k. The statement of the lemma is
now clear. O

Now we can precisely formulate a desirable property of generic splitting
towers.

Definition 5. We call a generic splitting tower (K, | 0 < r < h) of ¢ regular
when the following holds:

(1) For every r with 0 < r < h — 1 the extension K,;1/K, is regular.

(2) If ¢ is of inner type and h > 0, then Kj/K}_1 is also regular. On the
other hand, if ¢ is of outer type, then K}, is regular over the composite
Kp-1-A(p) = Kn—1 @k A(p).

Examples. The projective standard tower of ¢ is regular by Theorem 1. The
affine standard tower of ¢ is likewise regular. O

Now let (K, | 0 <r < h) be a regular generic splitting tower of ¢ and let
L/E be a p-conservative field extension of k. Using (K, | 0 < r < h) and L
we want to construct a generic splitting tower of ¢ ® L.

Definition 6. For every r € {0,1,...,h} we construct a field composite
K, - L of K, and L over k as follows: if r < h, or if r = h and ¢ is of inner
type, then K, ®j L is free of zero divisors and we let K, - L be the quotient
field of this ring, i.e. the uniquely determined free composite of K and L over
k. If r = h and ¢ is of outer type, we distinguish the cases where ¢ ® L is of
outer/inner type.

First, let ¢ ® L be of outer type. Then A(p) ®j L is a field. Let K, - L be
the free composite of Kp with A(p) ® L over A(yp), i.e. again the quotient
field of K, @ a(p) (A(p) ®k L) = K @y, L. Finally, let ¢ ® L be of inner type.
Now A(y) can be embedded over k in L in two ways. We choose one such
embedding and set K}, - L = Quot(Kp, ® () L). O

If necessary, we write more precisely K, - L (0 < r < h) for the field
composite K, - L. Later on we will call K, - L sloppily “the” free composite
of K, and L over k, also in the case r = h, ¢ of outer type, ¢ ® L of inner
type. It will never matter which of the two embeddings A(p) < L we have
chosen.

We use @, to denote — as before — the kernel form of ¢ ® K, (r-th higher
kernel form) and ¢, to denote the Witt index of ¢ ® K, (r-th higher index,
0<r<h).

Theorem 3. Let J be the set of all r € [0,h] such that ¢, @ K, - L is
anisotropic, i.e. such that ind(p®K,) = ind(p@K,-L). Letrg < ry < -+ < re
be the elements of J.
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Claim:

(a) (Ky,-L|0<i<e)isaregular generic splitting tower of ¢ ® L.

(b) Kr41-L/K, - L is a regular inessential extension for every r € [0,h]\ J.

For the proof of this technically very important theorem, we need a general
lemma about places.

Lemma 2. Let K D k and L D k be arbitrary extensions of a field k and let
A K — LUoo be a place over k. Furthermore, let E D k be a field extension
which is linearly disjoint from K and L over k. Consider the free composites
K-FE and L-F of K resp. L with E over k.

Claim: X\ has a unique extension N K-E—L-EUco toa place over E.

Proof. K - E is the quotient field of K ®; E and L - F is the quotient field of
L ®, E. Let 0:= 0y and let a: 0 ®; F — L ®; E be the homomorphism of
E-algebras induced by A|o: o — L. Following the general extension theorem
for places [Bog, §2, Prop.3], we choose a place y: K- E — (LA/E) U oo in the
algebraic closure of L - E which extends the homomorphism «. We will now
show that p is the only such extension of o and that u(K - E) C (L - E)Uoo.

For this purpose we choose a basis (w; | ¢ € I) of E over k (as k-vector
space). Let z # 0 be an element in K - E. We write z = %, where z,y € 0 Q F
are both non-zero. We then have equations

x:u-ZaiQ@wi, y:U-Zbi(X)wi
iel i€l

with u,v € K and families (a; | ¢ € I) and (b; | ¢ € I) in 0, both of them not
fully contained in the maximal ideal m of 0. Then

4 <Z a; @ Wi) = Z Mag)w; #0, p <Z b; ® Wi) = Z A(bi)w; # 0,
iel iel icl icl

since (w; | ¢ € I) is also a family of elements of L - E, linearly independent
over L. We thus obtain

p(z) = A (%) . <Z )\(ai)wi> . (Z )\(bi)wi> €(L-FE)Uo.

iel el

O

Proof of Theorem 3. We assume without loss of generality that ¢ is anisotropic
and use induction on the height h. Remark that Ky ~j k implies that
Ky - L ~p L by the lemma. Therefore the extension Ky - L/L is inessen-
tial.

For h = 0 nothing more has to be done, so suppose that h > 0. First we
assume that dim ¢ > 2. We will deal with the (easier) case dim ¢ = 2 at the
end.
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The form @1 = ker(¢ ® K1) has height h — 1 and regular generic splitting
tower (K,|1 <r < h). We want to apply the induction hypothesis to 1, this
tower and the field extension K; - L/Kj.

Clearly the extension K;-L/Ky-L is regular (cf. e.g. [Lgo, p.58]). Further-
more, K- L/L is inessential and L/k ¢-conservative. It follows that K1 - L/k
is @-conservative and then that K; - L/K; is ¢1-conservative. For every r
with 1 <r < h —1 we have

KT ‘k L = QU.Ot(KT ®k L) = QU.Ot(KT ®K1 (K1 ®k L)) = KT ‘K4 (K1 ‘k L)

Also, Kp, -, L = K, -k, (K11 L). This can be seen using the same calculation
in case ¢ is of inner type, and also when ¢ is of outer type and A(y) cannot
be embedded in L. If ¢ is of outer type and A(y) C L, we perform the
following calculation (bearing Definition 6 in mind).

Ky L:= K, "A(p) L= QU.Ot(Kh QD A(p) L)
= Quot(Kp ®k,.a(p) (K1 Alp) ®a(p) L))
We have K7 - A(p) = K1 ®k A(p) = A(p1) and do indeed obtain again
Kp -k L = Quot(K) ®@a(py) (K1 ®k L)) = Ky -k, (K1, L).

Thus we can apply the induction hypothesis, which tells us among other
things that K, 11 - L/K, - L is regular and inessential for every r € [1,h]\ J.
We now distinguish the cases rg > 1 and ry = 0.

Suppose that rg > 1. By the induction hypothesis, (K, - L|0 < i < e)
is a regular generic splitting tower of ¢ ® Ky - L. Let Fy:= Ky - L. The
form o ® Fy = ¢ ® Fy is isotropic. Therefore the extension Fy(po ® Fp) =
Ko(po) ‘k, Fo of Fy is purely transcendental, and thus inessential. By the
lemma, K1 -k, Fo ~r, Ko(po) -k, Fo. Hence K; -k, Fo/Fp is also inessential.
In analogy with the first calculation above, we find that

K1k, Fo =K1k, (Kox L) =Ky -« L,

so that K7, L/Ky- L is inessential. This proves statement (b) for the current
case.

We saw that Ko - L/L is inessential. Thus K; - L/L is inessential. The
generic splitting tower (K,,-L|0 < i <e) of ¢ ® K;-L is thus also a generic
splitting tower of p ® L.

We come to the case dim¢ > 2, 1o = 0. Statement (b) is covered by
the induction hypothesis. ¢ ® L is anisotropic. By the induction hypothesis,
©® K7 - L has regular generic splitting tower (K., -L|1 < i < e). The extension
K,, - L/Ky - L is regular. For the proof of statement (a), it remains to be
shown that K, - L is the generic zero field of ¢ ® Ky - L. We already know
that K, -L/K;-L is inessential. Thus it suffices to show that K; - L is the
generic zero field of ¢ ® (Ko - L).

Let Fp:= Ko - L. We have ¢y ® Fy = ¢ ® Fp, and thus Fy(p ® Fp) =
Ko(po) K, Fo.- Also K1 ~g, Ko(po). By the lemma, this shows that

K1 iy Fo ~ry Ko(wo) "k, Fo-
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Furthermore, K7 i, Fo = K1 - L. Thus, K1 -« L ~p, Fo(po ® Fo), what we
wanted to show.

Finally, assume that dim ¢ = 2. Now we have h = 1. The field A(pg) =
A(p) ® Ko is a quadratic extension of Ky and K; is a regular extension of
A(pg). We have a place \: K1 — A(pg) U oo over Ky. After composing A
with the non-trivial automorphism of A(ypg)/Ky (if necessary), we obtain a
place p: K1 — A(po) U oo over A(pg). Therefore K3 /A(pg) is an inessential
extension and regular.

Let Fo:= Ky - L, Fy:= K1 - L. We again make a distinction between the
cases ¢ ® L isotropic, resp. anisotropic.

Suppose first that ¢ ® L is isotropic. Now J = {1}, and A(p) @i L splits.
We choose an embedding A(p) — L and obtain from this an embedding
Ko - A(p) = A(pg) — Ko - L = Fy. By Definition 6, we now have

Ki-L:=K; “A(p) L= Quot(K1 ®A(‘P)L> = Quot(K1 @ A(po) (A(QOO>®A(<,D) L)),
and furthermore A(wo) ® a(p) L = Ko ®4 L. It follows that
Fi =KL =K agp) (KoL) = K1 a0 Fo.

It is now clear that the extension F/Fp is regular. Since K;/A(ypp) is
inessential, it follows furthermore from the lemma that Fy/Fj is inessential.
Fy/L is also inessential. Thus Fj/L is inessential. This establishes state-
ments (a) and (b) in this case.

Finally, let dim ¢ = 2 and assume that ¢ ® L is anisotropic. Now J =
{0,1}. Statement (b) is vacuous. We already know that Fy/L is inessential.
Furthermore, K1/A(pg) is regular and inessential. Therefore

Fi = Ky - a(ge) (Alpo) ko Fo)

is regular and inessential over A(yg) 'k, Fo = A(po ® Fp). Furthermore,
Apg @ Fy) = Fo{po ® Fo}. Hence F; is the generic zero field of the form
©o ® Fy. Therefore (Fy, F1) is a regular generic splitting tower of p @ L. O

Corollary. In the situation of Theorem 3, ¢ ® L has height e and generic
splitting pattern

SP(p® L) = {ig+...+ip, | 0<j <e}.

For every j € [0, €] is o, @ (K, - L) furthermore the j-th higher kernel form
of o ® L with respect to the generic splitting tower constructed here. O
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§14 Generic Splitting Towers of a Specialized
Form

In the following, let v:k — L U oo be a place and ¢ a quadratic form over
k having FR with respect to . Assume that the form @:= ~.(p) over L is
nondegenerate. Finally, let (K, | 0 < r < h) be a generic splitting tower of
®.

We have seen in §12 that the splitting behaviour of @ with respect to
p-conservative extensions of the field L is controlled by the tower (K, | 0 <
r < h), cf. §12, Theorem 4 and Scholium 2. Hence we may hope that it is
actually possible to construct a generic splitting tower of  in a natural way
from (K, | 0 < r < h). We will devote ourselves to the task of constructing
such a tower.

In the special case where the place « is trivial and the tower (K, | 0 <
r < h) is regular, we already dealt with this task in the previous section (§13,
Theorem 3). In general we cannot expect to find a solution as nice as the
solution in §13.

Let us continue by fixing some notation. Let i, be the higher indices and
@, the higher kernel forms of ¢ with respect to the given splitting tower
(K, |0 <7 <h)of . Thus we have SP(¢) = {iop + ...+ i | 0 <7 < h}.
Further, let J be the subset of {0, 1, ..., h} with SP(%) = {io+...+i, | r € J}.
The set J contains e: = h(®) elements. Let us list them as

0<t0)<t(l) <...<t(e) =h.

We formally set ¢(—1) = —1.

Let (Ls | 0 < s < e) be a generic splitting tower of p. Following §12,
Scholium 2 we choose places ps: Ky5) — Ls Uoo (0 < s < e) such that
o extends the place v and such that every us, with 1 < s < e extends
the place ps—1. For every r € {0,...,h} we have an s € {0,...,e} with
t(s—1) <r <t(s). Let A\,: K, — LsUoo be the restriction of the place ps to
K. {In particular, j1s = Ay(5).} Let 15 = ker(p® L) be the s-th higher kernel
form of . By §12 ¢;5) has FR with respect to ps and (ps)«(@is)) = 9s.
Furthermore, for t(s — 1) < r < t(s), ¢, also has FR with respect to A, and

()\T)*(SDT) = 1/)5 J— (ir+1 —+ ... +7’t(5)) X H

Given a place a: F — F'U oo and a subfield K of E, we denote the image
of K under « in general sloppily with a(K), in other words,

a(K): = a(o, N K).
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In the important case that the place v is surjective, i.e. y(k) = L, we
would like to choose the places ps in such a way that (us(Ky,)) |0 < s <e)
is a generic splitting tower of @. For not necessarily surjective 7, one could
try to achieve that (L - pus(Ky)) | 0 < s < e) is a generic splitting tower of @,
where L - ps(Ky(s)) denotes the subfield of L, generated by L and ps(Ky(s))
in L,.2! In any case, for arbitrary choice of p, — as above — the following
theorem holds.

Theorem 1. Fort(s—1) <r < t(s) the subfield us(K,)- L of Ls, generated
by us(K,) and L, is a generic splitting field of © of level s.

Proof. Let F,.:= \.(K,) - L. By restricting the range, we obtain from A, a
place from K, to F, which extends . Hence

ind(@® F,) >ind(p ® K,) =i9 + ...+ ir.
Since ind(p ® F.) is a number of SP(g), we get
ind(@® Fr) >ig + ...+ iys)-
Thus there is a place from Lg to F,. over L. Since F,. C Ly, we get F. ~p L.

Thus F). is a generic splitting field of i of level s. O

This theorem does not imply that (K - L | 0 < s < e) is a generic
splitting tower of . However, in the following we will produce more special
situations for which this ¢s the case.

Theorem 2. There exists a reqular®® generic splitting tower (Ls | 0 < s < e)
of @ and a place \: K, — L. U oo having the following properties:
(1) X extends .

(i1) For every s € {0,1,...,e} and every r with t(s — 1) < r < t(s) we have
Ly = \K,) L.

(iii) Lo = L.

Proof. We inductively construct fields Ls O L and places ps: Ky(5) — LsUoo
as follows.

s = 0: We let Lo := L. We choose for uo any place from Ky to L which
extends ~y. This is possible by §12, Scholium 2. Obviously we have po (K, )-L =
L for every r with 0 < r < ¢(0).

s — s + 1: By the induction hypothesis, (L; | 0 < j < s) is the beginning of
a generic splitting tower of @. In particular, L is a generic splitting field of
i of level s. Furthermore there is a place us: K5y — Ls U oo. According to
§12 the form () has FR with respect to ps and (ps)«(¢r(s)) = ¥s-

2INow we are not using the notation established in §13, Definition 6.
22¢f. §13, Definition 5.
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Now we extend ps to a place fis from Ky(g)(@y(s)) to Ls(ts) (cf. §9, the
proof of Theorem 3). Let u: = t(s) + 1 and let a: Ko, — Ky(4)(y(s)) U 00 be
a place over Ky (,), which does indeed exist since K, is a generic zero field of
©1(s)- Then we have a place fis o o from K, to Ly (1s) and define Lg11 to be
the composite of the fields Ly and (fis 0 «)(Ky) in Lg(vs),

Loy1:=L- (jis)(Ky).

Let vs: Ky — Lsy1 U oo be the place obtained from fis o a by restricting
the range. We have

ind(® ® Lsy1) > ind(p ® Ky) =do+ ... + iy > G0+ ...+ ig(s)s
and thus ind(® ® Lsy1) > @0 + ... 4 d¢(s41). This implies
ind(ws ® Ls-‘,—l) Z 'Lu + . + it(5+1) > 0

Thus ¢s ® Lsy1 is isotropic. Since Lgy1 C Lg(1)s), we conclude that Lgyq is
a generic zero field of 1. By §12, Scholium 2(3) we now have that vs can be
extended to a place from Ky,11) to Lsi1. We choose pisi1: Ky(s41) — Lst1U
oo to be such a place. Since Lgy1 = vs(Ky) - L, we have Loy = psy1(K,) - L
for every r with u <r < t(s).

Eventually our construction yields a generic splitting tower

(Ls |0<s<e)

of ¥ and a place \: = p, from K}, to L. which satisfy properties (i) and (i7)
of the theorem.

Let us check that the tower (Ls | 0 < s <e) is regular! For 0 < s <e—1
our construction gives Ly C Lgy1 C Ls(vbs). If dimes > 2, then L(1)) is
regular over Ly, and thus Ls4q is regular over Lg. If dimys = 2, then we
must have s = e — 1 and #(s) = h — 1. Next, we modify the last step of the
construction above in the sense that we replace Kj,—1(pn—1) by the algebraic
closure E of K}_1 in this field and also K._1(%.—1) by the algebraic closure
F of Ke—l in Ke—l(we—l)-

Let p:= pp—1. We have pp_1 = {(a) ® H }7] with a € o}, b € o}, and
Yee1 = (@) ® H %] with @ = p(a), b:= u(b). We obtain E = Kj;_1(£)
and F' = L._1(n) with generators £, n which satisfy the minimal equations
E24+€+b=0,n%+n+0b=0. The extension K, /F is inessential. This can
be verified as in the proof of §13, Theorem 3 towards the end. (There for the
case dim ¢ = 2.)

The place ¢ = pe—1 from Kj_; to L._; has exactly one extension
fle—1: B — F Uoo with fic—1(§) = n (cf. §9, Lemma 2). If we prepend a
place from K} to E over E to fi.—1, we obtain a place p.: K — F'Uoco which
extends pre—1. The field L.: = p.(Kp) - L differs from L._; since it splits the
form p totally. Hence we must have L. = F. Our generic splitting tower
(Ls | 0 < s <e) is regular. O

What we have obtained by now can perhaps best be understood in the
important special case where the place v: k — LUoo is surjective (i.e. vy(k) =
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L). For the given generic splitting tower (K, | 0 < r < h) of ¢ we have
constructed a place A\: K, — L, U co which extends v and for which the
tower (A(K,) | 0 < r < h) is an almost regular generic splitting tower of
© “with repetitions”, i.e. a generic splitting tower in which the storeys are
listed possibly more than once: A(K ) = A(Ky(s)) for t(s —1) < r < t(s). The
place A furnishes a connection between the tower (K,|0 < r < h) and the
generic splitting tower (Ls[0 < s <e) of @, Ly = A(Ky(5)) which reflects in
an obvious way how the splitting behaviour of @ over L is a coarsening of the
splitting behaviour of ¢ over K.

In many situations it is more natural or, for some given problem, more
useful (see e.g. [KR]) to associate to the tower (K, | 0 < r < h) a different
generic splitting tower of @. Such a situation (with v trivial) was depicted in
§13. Next we give a further construction which applies to an arbitrary place
~ with respect to which ¢ has FR and with @ = 7.(¢) nondegenerate, as
above.

Specifically, let (K, | 0 < r < h) be the projective standard tower of ¢
(see §13, Definition 4). We define a field tower (L, | 0 < r < h) and a sequence
of places (\: K, — L, Uoco |0 <r < h)with L, D Land L, = \.(K,)- L
for all 7, 0 < r < h, as follows.?3

We start with Lo:= L, A\g:= ~. If A\ K, — L, U o is already defined
and r < h, then ¢, has FR with respect to A, by §12. Let ©,: = (A )« (7).
We set L,y 1:= L{®,}. Let A\,: K,.(¢,) — L,(%,) Uoo be an extension of the
place A, obtained using the procedure in the proof of §9, Theorem 3.

Next, let p, 2 H. The place A maps Kpyq = K. {¢r} into Ly4q U
co. From the construction in §9 it is clear that L,1; = A(K41) - L. We
define Apy1: K41 — Ly41 U oo by restricting the place S\T. We have L, 4, =
)\rJrl(KrJrl) - L.

Finally, let @, 2 H (and so r = h — 1). Now we have L,41 = L,. From
the construction in §9, we have A (K, (¢r)) - L = L. Again we define A\,41,
i.e. A\p, to be the restriction of S\T to a place from K, 41 to L,41 = L,. Then,
clearly, A\ry1(Kry1) - L = Lyq.

Definition. We call the tower (L, | 0 < r < h) the transfer of the projective
standard tower by the place v and we call A\: = A\: K, — LpUoco a transferring
place.

Remark. By the remark in §9, following the proof of Theorem 3, the places
A K. — L.Uoo for 0 <r < h—1 in the construction above are uniquely
determined by ~v. If g,,_; 2 H this is also the case for A\, = \. If p;,_; =
H, then there are at most two possibilities for A, since K}, is a quadratic
extension of Kj_1 in this situation. The fields L, = A,.(K,)- L are all uniquely
determined by ¢ and 7.

Theorem 3. Let (L. | 0 < r < h) be the transfer of the projective standard
tower (K, | 0 <r < h) of ¢ by the place v: k — LUoo and let \: Kj, — LpUoco

23The equation L,

= A (Ky) - L only signifies that L, is generated as a field by
both subfields A, (K;)

and L.

Page: 110 job: 389 macro: PMONOO1 date/time: 13-Apr-2008/12:32
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be a transferring place. Let ©,:= (M)« () be the specialization of o, with
respect to the restriction Ap: K, — L, Uoo of A (0 <r <h).

Claim: (L, | r € J) is a generic splitting tower of @ and for every r € J
we have @, = ker(p ® L,.). For r € J, Lyy1/L. is purely transcendental. In
particular, the extension Lyqy/L is purely transcendental.

Proof. Let r € {0,...,h} be given. From the Witt decomposition
PRQK,2(ig+...+14) X H L ¢,

we obtain
PQL, 2 (ip+...+i,)xH L @,

since (\)«(p @ K;) 2P ® L.

If r ¢ J, then ind(@ ® L) > ig+ ...+ i,. Now @, is isotropic and hence
L.41 = L.{p,} is purely transcendental over L,.

Let a number s be given with 0 < s < e. Then Lys)11 = Li(s){(Pys))}
and Ly(s41)/Li(s)41 is purely transcendental. Hence Ly(,11)/Ly(s) is a generic
zero field of Pi(s)- Furthermore, Ly o) /L is purely transcendental. Thus

ind(g ® Lt(O)) =ind(@) =ip+...+ it(O)'

This shows that Pr(0) 18 the kernel form of ¥ ® Ly (). Suppose now that for
some s € {1,...,e} we already showed that P,y is the kernel form of P& Ly
for 0 < k <'s. Then (Lyp) | 0 < k < s) is the beginning of a generic splitting
tower of p. Hence P ® Ly(4) has index 4o + . .. +iy(s), and it follows that Pu(s)
is the kernel form of % ® Ly(5). Thus, this holds for all s € {0,...,e}. Now it
is clear that (L) | 0 < s < e) is a generic splitting tower of . O
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