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Abstract. We study central simple algebras with involution of the first kind
that become hyperbolic over the function field of the conic associated to a
given quaternion algebra Q. We classify these algebras in degree 4 and give an
example of such a division algebra with orthogonal involution of degree 8 that
does not contain (Q, ), even though it contains Q and is totally decomposable
into a tensor product of quaternion algebras.

Given two central simple algebras with involution (A, σ) and (B, τ) over a field
F , we say that (A, σ) contains (B, τ) if A contains a σ-stable subalgebra isomorphic
to B over which the involution induced by σ is conjugate to τ . By the double cen-
tralizer theorem [11, (1.5)], this is also equivalent to saying that (A, σ) is isomorphic
to a tensor product (A, σ) ≃ (B, τ) ⊗ (C, γ) for some central simple algebra with
involution (C, γ) over F .

Let (Q, ) be a quaternion division algebra over F , endowed with its canonical
involution. We denote by FQ the function field of the associated conic, which is the
Severi–Brauer variety of Q. Since is of symplectic type, it becomes hyperbolic
over any field that splits Q, hence in particular over FQ. From this, one may easily
deduce that any (A, σ) that contains (Q, ) becomes hyperbolic over FQ. The main
theme of this paper is to investigate the reverse implication. In the case where A is
split and σ is anisotropic, it is an easy consequence of the Cassels–Pfister subform
theorem in the algebraic theory of quadratic forms that the converse holds, see
Proposition 2.1. When A is not split, the problem is much more delicate, and
comparable to the characterization of quadratic forms that become isotropic over
FQ, which was studied by Hoffmann, Lewis, and Van Geel [8], [9], [10]. Using an
example from [10] of a 7-dimensional quadratic form over a suitable field F that
becomes isotropic over FQ, we construct in §5 a division algebra A of degree 8 with
an orthogonal involution σ such that (A, σ) becomes hyperbolic over FQ but does
not contain (Q, ), even though A contains Q and (A, σ) decomposes into a tensor
product of quaternion algebras with involution. This situation does not occur in
lower degrees.

Algebras with involution that become split hyperbolic over FQ are considered
in §2. It is shown in Proposition 2.3 that their anisotropic kernel contains (Q, )
(if it is not trivial). This applies in particular to algebras of degree 2m with m
odd, see Corollary 2.4. The case of algebras of degree 4 is completely elucidated in
§3, using Clifford algebras for orthogonal involutions and a relative cohomological
invariant of degree 3 due to Knus–Lam–Shapiro–Tignol for symplectic involutions.
In the symplectic case, we classify the algebras of degree 4 that become hyperbolic
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of the work leading to this paper was carried out. He was supported in part by the F.R.S.–FNRS.

1
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over FQ but do not contain (Q, ), see Theorem 3.6. We show in §4 that our result
is equivalent to the Hoffmann–Lewis–Van Geel classification of 5-dimensional qua-
dratic forms that become isotropic over FQ without containing a Pfister neighbour
of the norm form of Q, see Corollary 4.2. Orthogonal involutions on algebras of
degree 8 are considered in §§5 and 6, using triality. In §5 we relate tensor products
of quaternion algebras to quadratic forms of dimension 8 with trivial discriminant.
The algebras with involution that do not decompose into tensor products of quater-
nion algebras with involution and become hyperbolic over FQ are determined in §6,
see Theorem 6.3. They are isotropic, and their anisotropic kernel contains (Q, ).
Finally, we use Laurent power series in §7 to construct algebras with involution of
large degree that do not contain (Q, ).

1. Notations and preliminary observations

We work over a base field F of characteristic different from 2, and only consider
algebras with involution of the first kind. We refer the reader to [11] and to [12] for
background information on central simple algebras with involution and on quadratic
forms. However, we depart from the notation in [12] by using 〈〈a1, . . . , an〉〉 to denote
the n-fold Pfister form ⊗n

i=1〈1,−ai〉.
If h : V × V → D is a regular hermitian or skew-hermitian form on a finite-

dimensional vector space V over a division algebra D, we denote by adh the invo-
lution on EndD(V ) that is adjoint to h. In the particular case where D is split and
h is the polar form of a quadratic form q, we also denote adq for adh. Following
Becher [4], for any n-dimensional quadratic form q over F , we denote by Adq the
split orthogonal algebra with involution (Mn(F ), adq).

Recall that a central simple F -algebra with involution (A, σ) is hyperbolic if and
only if it is isomorphic to (EndD V, adh) for some hyperbolic hermitian or skew-
hermitian form h on a vector space V over a division algebra D. In particular, A
admits a hyperbolic involution if and only if the index of A divides 1

2 deg(A). If so,
then A admits up to conjugation a unique orthogonal hyperbolic involution, and a
unique symplectic one; see [2] or [11, 6.B].

For any central simple F -algebra with involution (A, σ) and any field extension
K/F , we let (A, σ)K = (A ⊗F K,σ ⊗ Id). As pointed out in the introduction, we
shall be mostly interested in the special case where K = FQ is the function field
of the conic associated to a quaternion algebra Q, i.e. its Severi–Brauer variety.
Throughout the paper, we fix the notation

Q = (a, b)F

with a, b ∈ F×, and we assume Q is not split. We may then identify FQ with

the quadratic extension F (
√
at2 + b) of F (t), where t is an indeterminate. For any

central simple F -algebra A, we let A(t) = A⊗F F (t) and A[t] = A⊗F F [t].

Proposition 1.1. Let (A, σ) be a central simple F -algebra with involution. Assume
σ is anisotropic. The following conditions are equivalent:

(a) (A, σ)FQ
is hyperbolic;

(b) A(t) contains an element y satisfying

σ(y) = −y and y2 = at2 + b. (1)

If conditions (a) and (b) hold, then A[t] contains an element y0 such that

σ(y0)y0 = −(at2 + b). (2)
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Moreover, the following conditions are equivalent:

(a’) (A, σ) contains (Q, );
(b’) A[t] contains an element y satisfying (1).

Proof. The equivalence of (a) and (b) readily follows from the description of aniso-
tropic involutions that become hyperbolic over a quadratic extension in [2, 3.3]. If
y ∈ A(t) satisfies (1), then the version of the Cassels–Pfister theorem for algebras
with involution in [19] yields an element u ∈ A(t) such that σ(u)u = 1 and uy ∈ A[t].
Then y0 = uy satisfies (2).

If (a’) holds, then A contains two skew-symmetric elements i, j such that i2 = a,
j2 = b, and ji = −ij. Then y = it+ j ∈ A[t] satisfies (1), so (b’) holds. Conversely,
suppose (b’) holds and let y ∈ A[t] satisfy (1). We then have σ(y)y = −(at2 + b),
hence the degree of y is 1 since σ is anisotropic. Thus, y = λt+µ for some λ, µ ∈ A.
It follows from (1) that λ and µ are skew-symmetric and satisfy λ2 = a, µ2 = b,
and µλ = −λµ, hence they generate a σ-stable subalgebra of (A, σ) isomorphic to
(Q, ). �

Proposition 1.2. Let (A, σ) be a central simple F -algebra with involution. Assume
A is division. If (A, σ)FQ

is hyperbolic, then A contains Q and A[t] contains an

element y1 such that y2
1 = at2 + b.

Proof. Since (A, σ)FQ
is hyperbolic, the algebra AFQ

is not division, hence Merkur-
jev’s index reduction theorem [13, Th. 1] shows that A contains Q, hence also two
elements i, j such that i2 = a, j2 = b, and ji = −ij. Then y1 = it + b satisfies
y2
1 = at2 + b. �

Thus, the algebra with involution (A, σ) in Theorem 5.2 below is such that A(t)
contains an element y satisfying (1), and A[t] contains elements y0, y1 satisfying

σ(y0)y0 = −(at2 + b), y2
1 = at2 + b,

but no element satisfying both equations.

For the rest of this section, we focus on the case where σ is orthogonal. We
then have a discriminant discσ ∈ F×/F×2 and a Clifford algebra C(A, σ), see [11,
§§7, 8]. Recall from [11, (8.25)] that the center of C(A, σ) is the quadratic étale
F -algebra obtained by adjoining a square root of discσ. Therefore, if discσ = 1
the algebra C(A, σ) decomposes into a direct product of two components, which
are central simple F -algebras,

C(A, σ) ≃ C+(A, σ) × C−(A, σ).

If degA ≡ 0 mod 4, then the canonical involution σ on C(A, σ) restricts to in-
volutions σ+ and σ− on C+(A, σ) and C−(A, σ). Moreover, the tensor product
C+(A, σ) ⊗F C−(A, σ) is Brauer-equivalent to A, see [11, (8.12), (9.14)].

Proposition 1.3. Let (A, σ) be a central simple F -algebra with orthogonal involu-
tion and degA ≡ 0 mod 4. If (A, σ)FQ

is hyperbolic, then discσ = 1 and at least
one of (C+(A, σ), σ+), (C−(A, σ), σ−) is split and isotropic.

Proof. Since σFQ
is hyperbolic, discσ is a square in FQ, hence also in F since F is

quadratically closed in FQ. By [11, (8.31)], the Clifford algebra of any hyperbolic
involution has a split component; therefore C+(A, σ)FQ

or C−(A, σ) is split. The
corresponding involution σ± is isotropic over FQ by the main theorem in [6]. �
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Since the Brauer group kernel of the scalar extension map from F to FQ is
{0, [Q]}, the description of algebras (A, σ) with σ orthogonal and degA ≡ 0 mod 4
such that (A, σ)FQ

is hyperbolic falls into two cases:

Case 1:
{
[C+(A, σ)], [C−(A, σ)]

}
=

{
0, [A]

}
;

Case 2:
{
[C+(A, σ)], [C−(A, σ)]

}
=

{
[Q], [A⊗F Q]

}
.

Following Garibaldi’s definition in [7], case 1 is when (A, σ) ∈ I3. Note that these
two cases are not exclusive: they intersect if and only if A is Brauer-equivalent to
Q; then (A, σ) becomes split hyperbolic over FQ. This case is easily dealt with in
§2. If degA = 4, the first case arises if and only if (A, σ) is hyperbolic, and the
second case if and only if (A, σ) contains (Q, ), see §3.1. For algebras of degree 8,
case 1 is when (A, σ) is totally decomposable, see §5; case 2 is considered in §6.

2. Algebras with involution that become split hyperbolic over FQ

Since FQ is the function field of the Severi–Brauer variety of Q, the Brauer
group kernel of the scalar extension from F to FQ is {0, [Q]}. Therefore, if (A, σ)
is a central simple F -algebra with involution that becomes split hyperbolic over
FQ, then either A is split or A is Brauer-equivalent to Q. We consider each case
separately.

Proposition 2.1. Let (A, σ) be a split central simple F -algebra with involution.

(1) If σ is symplectic, then it is hyperbolic. In this case, (A, σ) contains (Q, )
if and only if degA ≡ 0 mod 4.

(2) If σ is orthogonal, then (A, σ) ≃ Adq for some quadratic form q. We have
(Adq)FQ

hyperbolic if and only if the anisotropic kernel of q is a multiple
of the norm form nQ. Assuming this condition holds, Adq contains (Q, )
if and only if the Witt index of q is a multiple of 4.

Proof. (1) Since every alternating form on an F -vector space is hyperbolic, it fol-
lows that every split algebra with hyperbolic involution is hyperbolic. If ρ is an
orthogonal involution on Q, then (Q, )⊗ (Q, ρ) is a split algebra of degree 4 with
symplectic involution. If degA = 4m, we have

(A, σ) ≃ (Q, ) ⊗ (Q, ρ) ⊗ Adq

for any quadratic form q of dimension m since all the hyperbolic involutions on
A are conjugate. Conversely, if A contains Q, then the centralizer of Q in A is
Brauer-equivalent to Q, hence of even degree. Therefore, degA ≡ 0 mod 4.

(2) By definition, (Adq)FQ
is hyperbolic if and only if qFQ

is hyperbolic, hence
the first statement follows from [12, X(4.11)]. Let nQ ⊗ q0 be the anisotropic kernel
of q. If the Witt index of q is 4m, then denoting by H the hyperbolic plane over F
we have

q ≃ nQ ⊗ (q0 ⊥ mH).

Since AdnQ
≃ (Q, ) ⊗ (Q, ) (see [11, (11.1)]) it follows that

Adq ≃ (Q, ) ⊗ (Q, ) ⊗ Adq0⊥mH,

so Adq contains (Q, ). Conversely, assume Adq contains (Q, ) and let (A1, σ1)
be the centralizer of (Q, ) in (A, σ). Then

Adq ≃ (Q, ) ⊗ (A1, σ1)
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hence σ1 is symplectic and A1 is Brauer-equivalent to Q. Therefore, there is a
hermitian Q-form h1 such that σ1 ≃ adh1

. The anisotropic kernel of h1 has a
diagonalization 〈a1, . . . , ar〉Q with a1, . . . , ar ∈ F×; letting m be the Witt index of
h1, we have

h1 ≃ 〈a1, . . . , ar〉Q ⊥ mHQ.

Consider the following quadratic form over F :

q1 = 〈a1, . . . , ar〉 ⊥ mH.

Then (A1, σ1) ≃ (Q, )⊗Adq1
, hence Adq ≃ AdnQ⊗q1

, and therefore q is isometric
to nQ ⊗ q1 up to a scalar factor. Now,

nQ ⊗ q1 = nQ ⊗ 〈a1, . . . , ar〉 ⊥ m(nQ ⊗ H) = nQ ⊗ 〈a1, . . . , ar〉 ⊥ 4mH,

and nQ⊗〈a1, . . . , ar〉 is anisotropic since 〈a1, . . . , ar〉Q is anisotropic (see [16, Ch. 10,

Th. 1.1]). Therefore, the Witt index of q is 4m. �

For algebras that are Brauer-equivalent to Q, the result is as follows:

Proposition 2.2. Let (A, σ) be a central simple F -algebra with involution such
that A is Brauer-equivalent to Q.

(1) If σ is symplectic, then (A, σ) contains (Q, ) and (A, σ)FQ
is hyperbolic.

(2) If σ is orthogonal and (A, σ)FQ
is hyperbolic, then (A, σ) is hyperbolic and

contains (Q, ).

Proof. (1) It was already observed in the proof of Proposition 2.1(2) that every
central simple algebra with symplectic involution that is Brauer-equivalent to Q
contains (Q, ). Therefore, every such algebra becomes hyperbolic over FQ.

(2) The first statement follows from the injectivity of the scalar extension map
W−(Q, ) → W (FQ) proved independently in [5] and [14]. If (A, σ) is hyperbolic,
then A = Mr(F ) ⊗ Q for some even integer r, and σ is conjugate to τ ⊗ for
any symplectic (hyperbolic) involution τ on Mr(F ). In particular, (A, σ) contains
(Q, ). �

Focusing on the anisotropic case in the propositions above, we have:

Corollary 2.3. Let (A, σ) be a central simple F -algebra with involution. Assume
σ is anisotropic and (A, σ)FQ

is split hyperbolic. Then either

• A is split, σ is orthogonal, and there is a quadratic form q such that

(A, σ) ≃ AdnQ⊗q ≃ (Q, ) ⊗ (Q, ) ⊗ Adq;

or
• A is Brauer-equivalent to Q, σ is symplectic, and there is a quadratic form
q such that

(A, σ) ≃ (Q, ) ⊗ Adq .

In both cases, (A, σ) contains (Q, ).

Using the results in this section, we may describe the algebras with involution
of degree 2 mod 4 that become hyperbolic over FQ:

Corollary 2.4. Let (A, σ) be a central simple F -algebra with involution. If degA ≡
2 mod 4 and (A, σ)FQ

is hyperbolic, then AFQ
is split. If moreover σ is anisotropic,

then it is symplectic and there is an odd-dimensional quadratic form q over F such
that (A, σ) ≃ (Q, ) ⊗ Adq.
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Proof. Since degA ≡ 2 mod 4, we have A ≃ Mr(H) for some odd integer r and
some quaternion algebra H over F . If H is division, A does not admit a hyperbolic
involution. Therefore, the hypothesis that (A, σ)FQ

is hyperbolic implies that HFQ

is split, hence (A, σ)FQ
is split hyperbolic. The last statement then readily follows

from Corollary 2.3. �

In view of this corollary, we only consider central simple algebras of degree
divisible by 4 in the following sections.

3. Algebras of degree 4

Throughout this section, A is a central simple algebra of degree 4 over an arbi-
trary field F of characteristic different from 2. Involutions on A are classified by
cohomological invariants (see [11, Ch. 4]), which we use to give an explicit descrip-
tion of the involutions on A that become hyperbolic over FQ.

3.1. The orthogonal case. This case is easy to handle using Clifford algebras.

Proposition 3.1. Let σ be an orthogonal involution on A.

(1) (A, σ) is hyperbolic if and only if discσ = 1 and one of the components of
C(A, σ) is split;

(2) (A, σ) contains (Q, ) if and only if discσ = 1 and one of the components
of C(A, σ) is isomorphic to Q;

(3) A contains Q if and only if A ⊗F Q is Brauer-equivalent to a quaternion
algebra.

Proof. (1) This readily follows from [2, 2.5].
(2) If (A, σ) contains (Q, ), then there is a quaternion F -algebra Q′ with canon-

ical involution such that

(A, σ) ≃ (Q, ) ⊗ (Q′, ).

By [11, (15.12)], this relation holds if and only if C(A, σ) ≃ Q×Q′. This proves (2).
(3) If A contains (a copy of) Q, then the centralizer of Q in A is a quaternion

F -algebra Q′, and we have
A ≃ Q⊗F Q′.

This relation holds if and only if A ⊗F Q is Brauer-equivalent to Q′, hence (3)
follows. �

Corollary 3.2. Let σ be an orthogonal involution on A. Then (A, σ)FQ
is hyper-

bolic if and only if (A, σ) is hyperbolic or contains (Q, ).

Proof. As noticed in the introduction, any (A, σ) containing (Q, ) is hyperbolic
over FQ, so we only have to prove the converse. Assume (A, σ)FQ

hyperbolic.
Since F is quadratically closed in FQ, the discriminant of σ is trivial, so C(A, σ)
is a direct product of two quaternion algebras. At least one of these quaternion
algebras splits over FQ by Proposition 3.1(1), hence that component must be either
split or isomorphic to Q. It follows that (A, σ) is either hyperbolic or contains
(Q, ), by Proposition 3.1. �

Note that a central simple algebra of degree 4 with hyperbolic involution does
not necessarily contain (Q, ), even if it contains Q: if Q′ is a quaternion F -algebra
such that Q⊗FQ

′ has index 2, then (A, σ) = (M2(F ), )⊗(Q′, ) is hyperbolic over
F and satisfies C(A, σ) ≃M2(F )×Q′ by [11, (15.12)]. Therefore, Proposition 3.1(2)
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shows that (A, σ) does not contain (Q, ), even though Proposition 3.1(3) shows
that A contains Q. This situation does not occur in the symplectic case, in view of
Proposition 3.3 below.

3.2. The symplectic case. Symplectic involutions on A are classified up to con-
jugation by a relative invariant ∆ with values in the Galois cohomology group
H3(F, µ2), see1 [11, (16.9)]. We denote by [A] the Brauer class of A, viewed as
an element of H2(F, µ2), and for λ ∈ F× we denote by (λ) the square class of λ,
viewed as an element in H1(F, µ2). Using the invariant ∆, we show:

Proposition 3.3. Let σ be a symplectic involution on A. If A contains Q and
(A, σ)FQ

is hyperbolic, then (A, σ) contains (Q, ).

Proof. Since A containsQ, it decomposes asA = Q⊗Q′ for some quaternion algebra
Q′ = (a′, b′)F . Let τ ′ be an orthogonal involution on Q′ of discriminant a′. The
involution τ = ⊗ τ ′ on A = Q⊗Q′ is of symplectic type, and clearly hyperbolic
over FQ since (A, τ) contains (Q, ). Similarly, for every invertible y ∈ Sym(Q′, τ ′),
the involution

τy = Int(1 ⊗ y) ◦ τ = ⊗ (Int(y) ◦ τ)
is such that (A, τy) contains (Q, ). We prove below that σ is conjugate to τy for
a suitable y. By [11, (16.18)], the relative discriminant ∆τ (τ ′) is given by

∆τ (τ ′) = (Nrpτ (1 ⊗ y)) ∪ [A] ∈ H3(F, µ2),

where Nrpτ is the Pfaffian norm, as defined in [11, (2.9)]. Since this relative dis-
criminant classifies symplectic involutions on A up to conjugation, it suffices to
show:

Lemma 3.4. There exists an invertible element y ∈ Sym(Q′, τ ′) such that

∆τ (σ) = (Nrpτ (1 ⊗ y)) ∪ [A].

Proof. The involution σ can be written as σ = Int(x) ◦ τ for some x ∈ Sym(A, σ),
hence we already have

∆τ (σ) = (Nrpτ (x)) ∪ [A], (3)

and we want to prove we can substitute for x some element 1 ⊗ y with y ∈
Sym(Q′, τ ′). Since both σ and τ become hyperbolic over FQ, the relative discrim-
inant ∆τ (σ) is killed by FQ, hence (Nrpτ (x)) ∪ [Q′] = (λ) ∪ [Q] for some λ ∈ F×.
By the common slot lemma [1, Lemma 1.7], we may even assume

(Nrpτ (x)) ∪ [Q′] = (λ) ∪ [Q′] = (λ) ∪ [Q], (4)

from which we deduce

(λ) ∪ ([Q] + [Q′]) = 0, and (λNrpτ (x)) ∪ [Q′] = 0. (5)

Hence the relative discriminant of σ is

∆τ (σ) = (Nrpτ (x)) ∪ ([Q] + [Q′]) = (λNrpτ (x)) ∪ ([Q] + [Q′]) = (λNrpτ (x)) ∪ [Q].

Moreover, the quadratic space (Sym(A, σ),Nrpτ ) is an Albert quadratic space
for the biquaternion algebra A by [11, (16.8)]. Hence, its Clifford invariant is
e2(Nrpτ ) = [A] = [Q]+[Q′]. We deduce from (5) that the quadratic form 〈〈λ〉〉⊗Nrpτ

has trivial Arason invariant e3, and hence is hyperbolic by the Arason–Pfister

1The discussion in [11] is in terms of the 3-fold Pfister form j whose Arason invariant is ∆.
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Hauptsatz. So there exists an element x′ ∈ Sym(A, σ) such that λNrpτ (x) =
Nrpτ (x′), and we have proven

∆τ (σ) = (Nrpτ (x′)) ∪ [Q] and (Nrpτ (x′)) ∪ [Q′] = 0 (6)

for some x′ ∈ Sym(A, σ).
Let us now pick a pure quaternion i′ ∈ Q′ such that i′2 = a′ and τ ′ = Int(i′) ◦ .

Denoting by Q0 the vector space of pure quaternions in Q, we have

Sym(A, τ) = (1 ⊗ Sym(Q′, τ ′)) ⊕ (Q0 ⊗ i′).

Hence x′ can be written as x′ = x0 + 1 ⊗ ξ1 + ξ2 ⊗ i′ for some x0 ∈ F , some pure
quaternion ξ1 ∈ Q′0 ∩ Sym(Q′, τ ′) and some ξ2 ∈ Q0. The pure quaternion ξ1
being τ ′-symmetric, it anticommutes with i′, and changing of quaternionic basis
if necessary, we may assume that ξ21 = b′x2

1 for some x1 ∈ F . Similarly, we may
assume that ξ22 = ax2

2 for some x2 ∈ F . Note that we allow xi = 0 for i = 0, 1, and
2 since some term might be zero in the decomposition of x′. We then have

Nrpτ (x′) = x2
0 − b′x2

1 − aa′x2
2, (7)

and the following lemma finishes the proof:

Lemma 3.5. There exists z0, z1, y0, y1 and y2 such that Nrpτ (x′)(z2
0 − az2

1) =
y2
0 − b′y2

1 + a′b′y2
2 6= 0.

Indeed, if we let y = y0 + y1j
′ + y2i

′j′, where j′ is a pure quaternion in Q′ such
that j′2 = b′ and i′j′ = −j′i′, we have Nrpτ (1⊗ y) = NrdQ′ (y) = y2

0 − b′y2
1 + a′b′y2

2

(see [11, (2.11)]). Hence,

∆τ (σ) = (Nrpτ (x′)) ∪ [(a, b)F ] = (Nrpτ (x′)(z2
0 − az2

1)) ∪ [(a, b)F ]

= (NrdQ′(y)) ∪ [A] = (Nrpτ (1 ⊗ y)) ∪ [A], with y ∈ Sym(Q′, τ ′).

Proof of Lemma 3.5. If 〈1,−b′, a′b′〉 is isotropic, then it is universal, hence repre-
sents Nrpτ (x′) and we are done. Otherwise, denote µ = Nrpτ (x′); by (7), we have
(µ)∪ [(aa′, b′)F ] = 0, and combining with (6), we get (µ)∪ [(a, b′)] = 0. In terms of
quadratic forms, this means that the 3-fold Pfister form

〈〈µ, a, b′〉〉 = 〈1,−µ,−a, µb′〉 ⊥ 〈µa, ab′,−µab′〉 ⊥ 〈−b′〉 (8)

is hyperbolic. On the other hand, by (7), the quadratic form 〈1,−b′,−aa′,−µ〉 is
isotropic. Multiplying by (−ab′µ), we get that −a′b′µ is represented by the form
〈µa, ab′,−µab′〉. Hence, in view of (8), the quadratic form 〈1,−µ,−a, µb′,−a′b′µ〉,
which is a 5-dimensional subform of 〈〈µ, a, b′〉〉, is necessarily isotropic. Since the
quadratic forms 〈1,−a〉 and 〈1,−b′, a′b′〉 are anisotropic, this completes the proof.

�

Using Proposition 3.3, we may characterize the symplectic involutions on A that
become hyperbolic over FQ:

Theorem 3.6. Let σ be a symplectic involution on A. If (A, σ)FQ
is hyperbolic,

then either

(a) (A, σ) ≃ (Q, ) ⊗ (Q′, ρ) for some quaternion F -algebra with orthogonal
involution (Q′, ρ), or

(b) (A, σ) ≃ Ad〈〈λ〉〉⊗(Q′, ) for some quaternion F -algebra Q′ and some λ ∈
F× with the following properties: Q ⊗F Q′ is a division algebra and the
norm forms nQ, nQ′ satisfy 〈〈λ〉〉 · nQ ≃ 〈〈λ〉〉 · nQ′ .
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Conversely, if (A, σ) is of either type above, then (A, σ)FQ
is hyperbolic.

Note that (a) and (b) are mutually exclusive since in the first case A⊗F Q has
Schur index 1 or 2, whereas it has index 4 in case (b).

Proof. Suppose (A, σ) is not as in case (a) and (A, σ)FQ
is hyperbolic. Then Propo-

sition 3.3 shows that A does not contain Q. In particular, A is not division, by
Proposition 1.2, so A ≃ M2(Q

′) for some quaternion F -algebra Q′, and Q ⊗F Q′

is a division algebra by Proposition 3.1(3). As observed in the proof of Proposi-
tion 2.1(2), (A, σ) contains (Q′, ), hence

(A, σ) ≃ Ad〈〈λ〉〉⊗(Q′, ) for some λ ∈ F×.

The algebra A carries a hyperbolic symplectic involution τ , and we have by [11,
(16.21)]

∆τ (σ) = (λ) ∪ [Q′].

Since (A, σ)FQ
is hyperbolic, this invariant vanishes over FQ. Hence, by [12,

X(4.11)] and Arason’s common slot lemma we may assume as in the proof of
Lemma 3.4 that (λ) ∪ [Q′] = (λ) ∪ [Q]. Therefore, 〈〈λ〉〉 · nQ′ ≃ 〈〈λ〉〉 · nQ, which
shows that (A, σ) is as in case (b).

It is clear that (A, σ)FQ
is hyperbolic in case (a). In case (b) the algebra A

carries a hyperbolic symplectic involution τ and ∆τ (σ) = (λ) ∪ [Q′] vanishes over
FQ. Therefore, (A, σ)FQ

is hyperbolic. �

4. FQ-minimal quadratic forms of dimension 5

A quadratic form ϕ over F is called FQ-minimal if ϕFQ
is isotropic and ψFQ

is anisotropic for every proper subform ψ ⊂ ϕ. In this section, we show that
Theorem 3.6 can be used to recover (and is in fact equivalent to) the description
of FQ-minimal forms of dimension 5 due to Hoffmann, Lewis, and Van Geel [9,
Prop. 4.1].

A general procedure to construct central simple algebras with involution that
become hyperbolic over FQ uses Clifford algebras. Recall from [12, V(1.9), V(2.4)]
that for any quadratic form ϕ of odd dimension 2m + 1 over F the even Clifford
algebra C0(ϕ) is central simple over F of degree 2m. It carries a canonical involution
τ0, which is the restriction of the involution on the full Clifford algebra that leaves
invariant every vector in the underlying vector space of ϕ. The involution τ0 is
orthogonal if m ≡ 0 or 3 mod 4 and symplectic otherwise, see [11, (8.4)].

Proposition 4.1. Let ϕ be a quadratic form of odd dimension over F .

(1) If ϕFQ
is isotropic, then (C0(ϕ), τ0)FQ

is hyperbolic. The converse holds if
dimϕ = 5.

(2) If ϕ contains a subform similar to 〈1,−a,−b〉, then (C0(ϕ), τ0) contains
(Q, ). The converse holds if dimϕ = 5.

Proof. (1) The first statement readily follows from [11, (8.5)] and the second from
[11, (15.21)].

(2) Suppose the underlying vector space of ϕ contains orthogonal vectors e0, e1,
e2 satisfying for some λ ∈ F×

ϕ(e0) = λ, ϕ(e1) = −λa, ϕ(e2) = −λb.
Then the products e0e1 and e0e2 generate a τ0-stable subalgebra of C0(ϕ) isomor-
phic to (Q, ).
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For the rest of the proof, suppose dimϕ = 5 and (C0(ϕ), τ0) contains (Q, ).
The centralizer of (Q, ) is a quaternion algebra with orthogonal involution (Q′, ρ)
such that

(C0(ϕ), τ0) = (Q, ) ⊗ (Q′, ρ).

Let V ⊂ Sym(C0(ϕ), τ0) be the vector space of τ0-symmetric elements of trace 0.
The map x 7→ x2 defines a quadratic form s : V → F that is similar to ϕ by the
equivalence B2 ≡ C2, see [11, (15.16)]. Let y ∈ Q′ be a ρ-skew-symmetric unit and
let Q0 ⊂ Q be the vector space of pure quaternions. The restriction of s to the
subspace Q0 ⊗ y ⊂ V is similar to 〈1,−a,−b〉, hence the proof is complete. �

Corollary 4.2 (Hoffmann–Lewis–Van Geel [9, Prop. 4.1]). A 5-dimensional qua-
dratic form ϕ over F is FQ-minimal if and only if the following conditions hold:

(a) ϕ is similar to a Pfister neighbour of the 3-fold Pfister form 〈〈a, b, λ〉〉 for
some λ ∈ F×, and

(b) C0(ϕ) ≃M2(Q
′) for some quaternion F -algebra Q′ such that Q⊗F Q

′ is a
division algebra.

Proof. Proposition 4.1 shows that ϕ is FQ-minimal if and only if (C0(ϕ), τ0) is
hyperbolic but (C0(ϕ), τ0) does not contain (Q, ). By Theorem 3.6, this condition
is equivalent to

(C0(ϕ), τ0) ≃ Ad〈〈λ〉〉⊗(Q′, ) (9)

for some quaternion F -algebra Q′ = (a′, b′)F and some λ ∈ F× with Q ⊗ Q′ a
division algebra and 〈〈a, b, λ〉〉 ≃ 〈〈a′, b′, λ〉〉. It follows from the isomorphism (9)
that ϕ is similar to a Pfister neighbour of 〈〈a′, b′, λ〉〉, by [11, p. 271]. Thus, (a) and
(b) hold if ϕ is FQ-minimal. Conversely, if C0(ϕ) ≃ M2(Q

′) for some quaternion
F -algebra Q′ = (a′, b′)F , then as observed in the proof of Proposition 2.1(2) we
have

(C0(ϕ), τ0) ≃ Ad〈〈µ〉〉⊗(Q′, ) for some µ ∈ F×.

It then follows from [11, p. 271] that ϕ is similar to a Pfister neighbour of 〈〈a′, b′, µ〉〉.
If (a) holds, then 〈〈a, b, λ〉〉 ≃ 〈〈a′, b′, µ〉〉 and by the common slot lemma we may
assume λ = µ. Thus, ϕ is FQ-minimal if (a) and (b) hold. �

5. Totally decomposable orthogonal involutions of degree 8

In this section, A denotes a central simple F -algebra of degree 8 and σ is an
orthogonal involution on A. The algebra with involution (A, σ) is called totally
decomposable if there are σ-stable quaternion subalgebras Q1, Q2, Q3 in A such
that A = Q1 ⊗Q2 ⊗Q3. Denoting by σi the restriction of σ to Qi for i = 1, 2, 3,
we then have

(A, σ) = (Q1, σ1) ⊗ (Q2, σ2) ⊗ (Q3, σ3).

The totally decomposable algebras of degree 8 are characterized by the property
that discσ = 1 and one of the components of the Clifford algebra C(A, σ) is split,
see [11, (42.11)]. Proposition 5.1 below shows how to use this criterion to relate
totally decomposable algebras to quadratic forms.

Recall that for any quadratic form ϕ of dimension 8 with discϕ = 1 the even
Clifford algebra decomposes into a direct product of central simple F -algebras of
degree 8,

C0(ϕ) ≃ C+(ϕ) × C−(ϕ).
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The canonical involution τ0 on C0(ϕ) restricts to orthogonal involutions τ+, τ− on
C+(ϕ) and C−(ϕ), and we have

(C+(ϕ), τ+) ≃ (C−(ϕ), τ−).

It is easily checked that (C+(ϕ), τ+) is totally decomposable.

Proposition 5.1. For every central simple algebra of degree 8 with totally decom-
posable orthogonal involution (A, σ), there is a quadratic form ϕ with dimϕ = 8
and discσ = 1 such that

(A, σ) ≃ (C+(ϕ), τ+).

The form ϕ is uniquely determined by (A, σ) up to similarity. Moreover,

– the algebra A is split if and only if ϕ is a multiple of a 3-fold Pfister form;
in that case (A, σ) ≃ Adϕ;

– the algebra (A, σ) contains (Q, ) if and only if ϕ contains a subform similar
to 〈1,−a,−b〉.

Furthermore, the following conditions are equivalent:

(a) (A, σ) is isotropic;
(b) (A, σ) is hyperbolic;
(c) ϕ is isotropic.

Proof. Since (A, σ) is totally decomposable, it follows from [11, (42.11)] that one of
the components C+(A, σ) of the Clifford algebra is split. The canonical involution
σ+ on C+(A, σ) is orthogonal, hence there is a quadratic form ϕ of dimension 8
such that

(C+(A, σ), σ+) ≃ Adϕ .

By triality (see [11, (42.3)]) we have

(C0(ϕ), τ0) ≃ (A, σ) × (A, σ).

Therefore, discϕ = 1 and (A, σ) ≃ (C+(ϕ), τ+). Conversely, triality also shows
that if (A, σ) ≃ (C+(ϕ), τ+), then the canonical involution σ on C(A, σ) satisfies

(C(A, σ), σ) ≃ Adϕ ×(A, σ),

hence the form ϕ is uniquely determined up to similarity.
The Clifford algebra of ϕ splits if and only if ϕ is a multiple of a 3-fold Pfister

form, by [16, Ch. 2, Th. 14.4] and [12, X(5.6)]. When that condition holds we have
(A, σ) ≃ Adϕ by [11, (35.1)].

If ϕ contains a multiple of 〈1,−a,−b〉, then the same argument as in the proof of
Proposition 4.1(2) shows that (C0(ϕ), τ0) contains (Q, ). Projecting on each com-
ponent, it follows that (C+(ϕ), τ+) contains (Q, ). Conversely, if (A, σ) contains
(Q, ), then we have

(A, σ) = (Q, ) ⊗ (A1, σ1) (10)

for some central simple algebra with symplectic involution (A1, σ1) of degree 4. By
[11, (15.19)] there is a 5-dimensional quadratic form ψ such that discψ = 1 and
(A1, σ1) ≃ (C0(ψ), τ0). Letting τ ′0 be the canonical involution on C0(〈ab,−a,−b〉),
we may rewrite (10) as

(A, σ) ≃ (C0(〈ab,−a,−b〉), τ ′0) ⊗ (C0(ψ), τ0). (11)

In view of the canonical embedding

C0(〈ab,−a,−b〉) ⊗F C0(ψ) →֒ C0(〈ab,−a,−b〉 ⊥ ψ),
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which is compatible with the canonical involutions, (11) yields

(A, σ) ≃ (C+(〈ab,−a,−b〉 ⊥ ψ), τ+).

Uniqueness of ϕ shows that ϕ is similar to 〈ab,−a,−b〉 ⊥ ψ, hence it contains a
subform similar to 〈1,−a,−b〉.

The equivalence of (a), (b), (c) is clear if A is split, since then (A, σ) ≃ Adϕ and
ϕ is a 3-fold Pfister form, hence it is isotropic if and only if it is hyperbolic. For the
rest of the proof, we may thus assume A is not split. If (A, σ) is hyperbolic, then it
follows from [6] that the split component of (C(A, σ), σ) is isotropic, hence (b)⇒(c).
Conversely, if (c) holds, then [11, (8.5)] shows that (C0(ϕ), τ0) is hyperbolic, hence
(C+(ϕ), τ+) also is hyperbolic, proving (c)⇒(b). The equivalence of (a) and (b)
readily follows from [3, Prop. 2.10]. �

To give an example of a division F -algebra of degree 8 with a totally decompos-
able orthogonal involution that is hyperbolic over FQ but does not contain (Q, ),
we use an example of FQ-minimal quadratic form of dimension 7 due to Hoffmann
and Van Geel [10]. For the rest of this section, we fix the following notation:
F1 = F0(t, u) is the function field in two independent indeterminates over an arbi-
trary field F0 of characteristic different from 2, and F = F1((a))((b)) is the iterated
Laurent series field in two indeterminates a, b. In accordance with our running
notation, Q denotes the quaternion algebra (a, b)F . Let

ϕ0 = 〈1 + t, u〉 ⊥ 〈−a〉〈1, u〉 ⊥ 〈−b〉〈1, t+ u〉 ⊥ 〈ab〉〈t〉
(see [10, p. 43]) and

ϕ = ϕ0 ⊥ 〈ab〉〈t(1 + t)(t+ u)〉,
so dimϕ = 8 and discϕ = 1. Let also

(A, σ) = (C+(ϕ), τ+) (= (C0(ϕ0), τ0)),

a central simple F -algebra of degree 8 with a totally decomposable involution.

Theorem 5.2. The algebra with involution (A, σ) does not contain (Q, ), yet
(A, σ)FQ

is hyperbolic. Moreover, A is a division algebra.

Proof. Since 〈1, t〉 ≃ 〈1 + t, t(1 + t)〉 and 〈t, u〉 ≃ 〈t+ u, tu(t+ u)〉, we have

ϕ0 ⊥ 〈t(1 + t),−at,−btu(t+ u), ab, abu〉 ≃ 〈1, t, u〉〈〈a, b〉〉. (12)

Since the right side is hyperbolic over FQ, it follows that (ϕ0)FQ
is isotropic, and

therefore (A, σ)FQ
is hyperbolic by Proposition 4.1(1) or 5.1.

To show (A, σ) does not contain (Q, ), we prove ϕ does not contain any subform
similar to 〈1,−a,−b〉. As in [10, p. 43], we decompose ϕ as

ϕ = α ⊥ 〈−a〉β ⊥ 〈−b〉γ ⊥ 〈ab〉δ, (13)

where α = 〈1 + t, u〉, β = 〈1, u〉, γ = 〈1, t+ u〉, and δ = 〈t, t(1 + t)(t+ u)〉. By
Springer’s theorem, the isometry classes of α, β, γ, and δ over F1 are uniquely
determined by ϕ. If three of those quadratic forms represent a common value λ,
then ϕ contains a 3-dimensional subform of 〈λ〉〈〈a, b〉〉, hence a subform similar to
〈1,−a,−b〉. We claim that the converse also holds. Indeed, assume first that ϕ
contains 〈λ〉〈1,−a,−b〉 for some λ ∈ F×

1 . Writing ϕ = 〈λ〉〈1,−a,−b〉 ⊥ ϕ′ as
in (13), we get, by uniqueness of the forms α, β and γ up to isometry, that all three
represent λ. Consider now the general situation, where λ ∈ F× need not be in F1;
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modifying it by a square if necessary, we may write it as λ0, −aλ0, −bλ0 or abλ0

for some λ0 ∈ F×
1 . The same argument as above then proves the claim.

Thus, to prove that ϕ does not contain any subform similar to 〈1,−a,−b〉, we
have to show that no three of the quadratic forms α, β, γ, and δ have any common
value over F1. This can be checked after some scalar extension. For instance, by [10,
Lemma(4.4)(iii)], the only common value of α and β over F0(t)((u)) is the square
class of u. On the other hand, applying [12, VI(1.3)], one may check that γ and
δ are both isomorphic over F0((t))((u)) to 〈1, t〉, which does not represent u. On
the other hand, over F0(t)((t+ u)) the form γ only represents the square classes of
1 and t + u, whereas δ only represents the square classes of t and t(1 + t)(t + u).
Therefore, γ and δ have no common value in F1.

To complete the proof, we show A is a division algebra. Taking the Clifford
invariant of each side of (12) and applying [12, V(3.13)], we obtain the following
equality in the Brauer group of F :

[A] + [C0(〈t(1 + t),−at,−btu(t+ u), ab, abu〉)] = [Q].

The even Clifford algebra of the 5-dimensional form is easily computed:

C0(〈t(1 + t),−at,−btu(t+ u), ab, abu〉) ≃ (−u, bt)F ⊗ (ab(t+ u),−au(1 + t))F ,

hence

A ≃ (a, b)F ⊗ (−u, bt)F ⊗ (ab(t+ u),−au(1 + t))F

≃ (−u, t)F ⊗ (a(t+ u), u(1 + t)(t+ u))F ⊗ (b, 1 + t)F .

Since b is a uniformizing parameter for the b-adic valuation on F , it follows from
[15, §19.6, Prop.] that the right side is a division algebra if (and only if) the algebra

B = (−u, t)F1((a)) ⊗ (a(t+ u), u(1 + t)(t+ u))F1((a)) ⊗ F1

(√
1 + t

)
((a))

is division. (Alternatively, one may view A as a ring of twisted Laurent series over
B in an indeterminate whose square is b.) Now, a(t+u) is a uniformizing parameter
for the a-adic valuation on F1

(√
1 + t

)
((a)), hence the same argument shows that

B is a division algebra if (and only if) the algebra

C = (−u, t)F1
⊗ F1

(√
1 + t,

√
u(1 + t)(t+ u)

)

is division. Since 1 + t and u(t+ u) are squares in F0(u)((t)), we may embed C in
the quaternion algebra (−u, t)F0(u)((t)), which is clearly division. Therefore, A is a
division algebra. �

6. Non-totally decomposable orthogonal involutions of degree 8

In this section, we consider the case of central simple algebras with orthogonal
involution (A, σ) of degree 8 that are not totally decomposable. These algebras
do not contain any quaternion algebra with canonical involution (H, ), since the
centralizer of H would be an algebra of degree 4 with symplectic involution, hence
decomposable by [11, (16.16)]; the algebra (A, σ) would then be totally decompos-
able.

We start with a couple of lemmas of independent interest related to triality. Let
Q1, Q2, Q3 be quaternion F -algebras such that Q1 ⊗F Q2 ⊗F Q3 is split. By a
well-known result due to Albert and to Pfister, this condition implies that Q1, Q2,
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and Q3 have a common maximal subfield, see [11, (16.30)]. Therefore, we may
write

Q1 = (c, d1)F , Q2 = (c, d2)F , Q3 = (c, d3)F

for some c, d1, d2, d3 ∈ F× such that the quaternion algebra (c, d1d2d3)F is split.
For α = 1, 2, 3, let ρα be the orthogonal involution on Qα with disc ρα = c. The
involution ρα is uniquely determined up to conjugation by [11, (7.4)].

Lemma 6.1. For {α, β, γ} = {1, 2, 3} we have

(Qα, ) ⊗ (Qβ, ) ≃ Ad〈〈dα〉〉⊗(Qγ , ργ) ≃ Ad〈〈dβ〉〉⊗(Qγ , ργ).

Proof. By Tao’s computation of the Clifford algebra of a decomposable involution
[17] we have

C
(
(Qα, ) ⊗ (Qβ , )

)
≃ Qα ×Qβ ≃ (c, dα)F × (c, dβ)F ,

C
(
Ad〈〈dα〉〉⊗(Qγ , ργ)

)
≃ (c, dα)F × (c, dαdγ)F ≃ (c, dα)F × (c, dβ)F ,

C
(
Ad〈〈dβ〉〉⊗(Qγ , ργ)

)
≃ (c, dβ)F × (c, dβdγ)F ≃ (c, dβ)F × (c, dα)F .

Since central simple algebras with orthogonal involutions of degree 4 are classified
by their Clifford algebra (see [11, (15.7)]), the lemma follows. �

Now, for α = 1, 2, 3, let (Aα, σα) be a central simple F -algebra with orthogonal
involution of degree 8 such that for β, γ with {α, β, γ} = {1, 2, 3},

(Aα, σα) ≃ Ad〈1,−1,1,−dβ〉 ⊗(Qα, ρα) ≃ Ad〈1,−1,1,−dγ〉 ⊗(Qα, ρα).

Thus, (Aα, σα) is Witt-equivalent to (Qβ , ) ⊗ (Qγ , ) by Lemma 6.1.

Lemma 6.2. The triple
(
(A1, σ1), (A2, σ2), (A3, σ3)

)
is trialitarian, in the sense

that for {α, β, γ} = {1, 2, 3} we have

C(Aα, σα) ≃ (Aβ , σβ) ⊗ (Aγ , σγ).

(See [11, p. 548].)

Proof. By triality, it suffices to prove the isomorphism for α = 1, β = 2, and
γ = 3. By definition, (A1, σ1) is an orthogonal sum of the algebra M2(Q1) with a
hyperbolic involution and of Ad〈〈d2〉〉 ⊗(Q1, ρ1), so by Lemma 6.1

(A1, σ1) ≃
(
(M2(F ), ) ⊗ (Q1, )

)
⊞

(
(Q2, ) ⊗ (Q3, )

)
.

By [11, (15.12)] we have

C
(
(M2(F ), ) ⊗ (Q1, )

)
≃ (M2(F ), ) × (Q1, )

and
C

(
(Q2, ) ⊗ (Q3, )

)
≃ (Q2, ) × (Q3, ).

Arguing as in Garibaldi’s “Orthogonal Sum Lemma” [6, Lemma 3.2], we get

(C(A1, σ1), σ1) ≃ (C+(A1, σ1), σ+) × (C−(A1, σ1), σ−)

with

(C+(A1, σ1), σ+) ≃
(
(M2(F ), ) ⊗ (Q2, )

)
⊞

(
(Q1, ) ⊗ (Q3, )

)

and

(C−(A1, σ1), σ−) ≃
(
(M2(F ), ) ⊗ (Q3, )

)
⊞

(
(Q1, ) ⊗ (Q2, )

)
.

Thus, (C+(A1, σ1), σ+) is Witt-equivalent to (Q1, ) ⊗ (Q3, ), hence it is isomor-
phic to (A2, σ2). Likewise, (C−(A1, σ1), σ−) is isomorphic to (A3, σ3). �
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Theorem 6.3. Let (A, σ) be a central simple F -algebra with orthogonal involution
of degree 8. Assume (A, σ) is not totally decomposable. Then (A, σ)FQ

is hyperbolic
if and only if there is a quaternion F -algebra Q′ with the following properties:

– ind(Q⊗F Q′) ≤ 2, and
– (A, σ) is Witt-equivalent to (Q, ) ⊗ (Q′, ).

When these equivalent properties hold, we can find c, d, d′ ∈ F× such that

Q ≃ (c, d)F , Q′ ≃ (c, d′)F ,

and

(A, σ) ≃ Ad〈1,−1,1,−d〉 ⊗(Q′′, ρ′′)

where Q′′ = (c, dd′)F and ρ′′ is an orthogonal involution on Q′′ with disc ρ′′ = c.

Proof. Clearly, (A, σ)FQ
is hyperbolic if (A, σ) is Witt-equivalent to an algebra

containing (Q, ). Conversely, suppose (A, σ)FQ
is hyperbolic. Since (A, σ) is not

totally decomposable, it is not hyperbolic. If A is split, Proposition 2.1 shows that
the anisotropic kernel of (A, σ) is AdnQ

≃ (Q, ) ⊗ (Q, ), hence

(A, σ) ≃ Ad〈1,−1,1,−a〉 ⊗Ad〈〈b〉〉 .

For the rest of the proof, we may thus assume A is not split. By Proposition 1.3, one
of the components of the Clifford algebra, C+(A, σ) say, is split by FQ. However,
C+(A, σ) is not split since (A, σ) is not totally decomposable, hence C+(A, σ) is
Brauer-equivalent to Q. As was observed in Proposition 1.3, (C+(A, σ), σ+)FQ

is
isotropic. If it is hyperbolic, then (A, σ) is hyperbolic by the main theorem of [6], a
contradiction. Therefore, the anisotropic kernel of (C+(A, σ), σ+) has degree 4. It
has discriminant 1 by triality, hence (C+(A, σ), σ+) is Witt-equivalent to a product
(Q′, ) ⊗ (Q′′, ) for some quaternion F -algebras Q′, Q′′ such that Q′ ⊗ Q′′ is
Brauer-equivalent to Q. We may therefore find c, d, d′, d′′ ∈ F× such that

Q ≃ (c, d)F , Q′ ≃ (c, d′)F , Q′′ ≃ (c, d′′)F .

Letting ρ (resp. ρ′, resp. ρ′′) be an orthogonal involution on Q (resp. Q′, resp. Q′′)
with discriminant c, we have by Lemma 6.1

(C+(A, σ), σ+) ≃ Ad〈1,−1,1,−d′〉 ⊗(Q, ρ) ≃ Ad〈1,−1,1,−d′′〉 ⊗(Q, ρ).

By Lemma 6.2, it follows that (A, σ) is isomorphic to

Ad〈1,−1,1,−d〉 ⊗(Q′, ρ′) or Ad〈1,−1,1,−d〉 ⊗(Q′′, ρ′′),

hence it is Witt-equivalent to

(Q, ) ⊗ (Q′, ) or (Q, ) ⊗ (Q′′, ).

Interchanging Q′ and Q′′ if necessary, we thus obtain the stated description of
(A, σ). �

7. Examples of arbitrarily large degree

Let (A, σ) be a central simple F -algebra with involution of orthogonal or sym-
plectic type. Consider the (iterated) Laurent series fields F1 = F ((x)), F2 =
F ((x))((y)), and the quaternion F2-algebra H = (x, y)F2

. Let ρ be any involution
of orthogonal or symplectic type on H , and let

(A1, σ1) = (A, σ) ⊗F Ad〈〈x〉〉, (A2, σ2) = (A, σ) ⊗F (H, ρ).
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If (A, σ)FQ
is hyperbolic, then (A1, σ1)FQ

and (A2, σ2)FQ
also are hyperbolic, since

they contain a hyperbolic factor.

Theorem 7.1. Assume (A, σ) is anisotropic. Then (A1, σ1) and (A2, σ2) are
anisotropic. Moreover, the following conditions are equivalent:

(i) (A, σ) contains (Q, );
(ii) (A1, σ1) contains (Q, );
(iii) (A2, σ2) contains (Q, ).

Proof. Let ξ1 =
(

1 0
0 −1

)
, η1 =

(
0 x
1 0

)
∈M2(F1), so

ad〈〈x〉〉(ξ1) = ξ1 and ad〈〈x〉〉(η1) = −η1.
Let also (ai)i∈I be an F -basis of A, so (ai ⊗ 1, ai ⊗ ξ1, ai ⊗ η1, ai ⊗ ξ1η1)i∈I is an
F1-basis of A1. We extend the x-adic valuation v1 on F1 to a map

g1 : A1 →
(

1
2Z

)
∪ {∞}

defined by

g1
(∑

i∈I

ai ⊗ (αi + βiξ1 + γiη1 + δiξ1η1)
)

= min
i∈I

(
v1(αi), v1(βi), v1(γi) + 1

2 , v1(δi) + 1
2

)

for αi, βi, γi, δi ∈ F1. It is readily verified that the map g1 satisfies the following
conditions for s, t ∈ A1 and α ∈ F1:

• g1(1) = 0 and g1(s) = ∞ if and only if s = 0;
• g1(s+ t) ≥ min

(
g1(s), g1(t)

)
and g1(sα) = g1(s) + v1(α);

• g1(st) ≥ g1(s) + g1(t).

(It suffices to prove the last inequality for s, t in the above F1-base of A1, see [20,
Lemma 1.2].) The map g1 defines a filtration of A1, and the associated graded ring
gr(A1) is

gr(A1) ≃ A⊗F M2(F [x, x−1])

with the grading defined by

gr(A1)λ = A⊗
(
xλ 0
0 xλ

)
for λ ∈ Z,

gr(A1)λ = A⊗
(

0 xλ+ 1

2

xλ− 1

2 0

)
for λ ∈

(
1
2Z

)
\ Z.

Therefore, gr(A1) is a graded simple algebra, and g1 is a v1-gauge in the sense of
[20]. The involution σ1 preserves g1. On gr(A1)0, the induced involution σ̃1 is
σ ⊗ Id, hence it is anisotropic. Therefore, σ1 is anisotropic by [21, Cor. 2.3], g1 is
the unique v1-gauge that is preserved by σ1 by [21, Th. 2.2], and we have

g1(σ1(s)s) = 2g1(s) for all s ∈ A1. (14)

Now, suppose (A1, σ1) contains (Q, ); it then contains elements i, j such that

i2 = a, j2 = b, ji = −ij, σ1(i) = −i, σ1(j) = −j. (15)

Then by (14) we have g1(i) = 1
2g1(−a) = 0 and, similarly, g1(j) = 0. The images

ĩ, j̃ of i, j in gr1(A1)0 satisfy conditions similar to (15). Since gr(A1)0 ≃ A × A
we may consider a projection gr(A)0 → A, which is a homomorphism of algebras

with involution π : (gr(A1)0, σ̃1) → (A, σ). The images π(̃i), π(j̃) generate a copy
of (Q, ) in (A, σ). Thus, (A, σ) contains (Q, ) if (A1, σ1) contains (Q, ). The
converse is clear.
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The argument for (A2, σ2) follows the same lines. Let ξ2, η2 ∈ H be such that

ξ22 = x, η2
2 = y, η2ξ2 = −ξ2η2.

Note that if ρ is orthogonal its discriminant is represented by the quadratic form
〈x, y,−xy〉, hence it is the square class of x, y, or −xy. Therefore, we may assume
ρ = Int(ξ2)◦ , Int(η2)◦ , or Int(ξ2η2)◦ . In each case (and also if ρ is symplectic)
we have ρ(ξ2) = ±ξ2 and ρ(η2) = ±η2.

Let v2 : F2 → Z
2 ∪ {∞} be the (x, y)-adic valuation such that v2(x

λyµ) = (λ, µ)
for λ, µ ∈ Z, where Z

2 is endowed with the right-to-left lexicographic ordering.
Considering again an F -basis (ai)i∈I of A, we extend v2 to a map

g2 : A2 →
(

1
2Z

)2 ∪ {∞}
defined by

g2
(∑

i∈I

ai ⊗ (αi + βiξ2 + γiη2 + δiξ2η2)
)

=

min
i∈I

(
v2(αi), v2(βi) + (1

2 , 0), v2(γi) + (0, 1
2 ), v2(δi) + (1

2 ,
1
2 )

)

for αi, βi, γi, δi ∈ F2. The map g2 is a v2-gauge on A2 with associated graded ring

gr(A2) = A⊗ (x, y)F [x,x−1,y,y−1].

The involution σ2 preserves g2 and the induced involution σ̃2 on gr(A2)0 = A is
σ. Therefore, the same arguments as for (A1, σ1) show that (A2, σ2) is anisotropic,
and that (A2, σ2) contains (Q, ) if and only if (A, σ) contains (Q, ). �

Theorem 7.1 applies in particular to the division algebra with orthogonal invo-
lution (A, σ) of Theorem 5.2, and yields central simple algebras with anisotropic
involution (A1, σ1) and (A2, σ2) of degree 16 that do not contain (Q, ), even though
they are hyperbolic over FQ. The involution σ1 is orthogonal and indA1 = 8, while
the involution σ2 may be of orthogonal or symplectic type and A2 is division. Of
course, these constructions can be iterated to obtain examples of algebras with
anisotropic involution of arbitrarily large degree that become hyperbolic over FQ

and do not contain (Q, ). Such examples can also be derived from the central
simple algebras of degree 4 with symplectic involution in case (b) of Theorem 3.6,
although no division algebra can be obtained in this way since the algebras in
case (b) of Theorem 3.6 have index 2.
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C.R. Acad. Sci. Paris, Série I 332 (2001), no. 2, 105–108.

[6] R.S. Garibaldi, Clifford algebras of hyperbolic involutions, Math. Z. 236 (2001), 321–349,
[DOI 10.1007/s002090000180].

[7] , Orthogonal involutions on algebras of degree 16 and the Killing form of E8 (with
an appendix by K. Zainoulline), preprint.
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