TRACE FORMS OF SYMBOL ALGEBRAS

RONAN FLATLEY

AsstracT. Let S be a symbol algebra. The trace form $fis computed and it is
shown how this form can be used to determine whefhiera division algebra or not.
In addition, the exterior powers of the trace formSé&re computed.

1. INTRODUCTION

Letn be an arbitrary positive integer and ketbe a field containing a primitive-th
root of unityw. Unless stated otherwise, we assume throughout this dagestiark)
is different from 2 and does not divide Let K* = K\{0}. Leta,b € K* and letS be
the algebra oveK generated by elementsandy where

X'=a, y"=b and yx=wxy.

We call this algebra aymbol algebrgsee [4, Chapter 1§2]). Note that in [2,§11],
Draxl calls such an algebrggmwer norm residue algebraenoting it asd, b; n, K, w)
and shows it to be a central simple algebra d¢esf degreen. Quaternion algebras
are the symbol algebras of degree 2.

Let Abe a central simple algebra of degreaver a fieldK of characteristic dferent
from 2. We writeT,: A — K for the quadratic trace form

Ta(2) = Trda(Z) forze A,

where Trdl is the reduced trace @& The main purpose of this paper is to compute the
trace form of a symbol algebi@ and to show how the form determines if the algebra
is division.

Notation and terminology is borrowed from Lam’s book [5] aBdharlau’s book
[11]. A diagonalised quadratic form ov&r with codficientsa,,...,a, € K* is de-
noted by(ay,...,a,). The hyperbolic plangl, —1) is denoted byH. If ¢ andy are
forms overK theny ~ ¥ means that these forms are isometric. The Witt index isf
denoted by (¢) and the anisotropic part gfby ¢a,, SO that we have =~ ¢,, L (i x H)
wherei = iyw(¢). The tensor product of the 1-dimensional fofm) with ¢ is denoted
(N to be distinguished from copies ofy which is written as x ¢.
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2. S{MBOL ALGEBRAS AND THEIR TRACE FORMS
Let S be the symbol algebrayb; K, n, w) with basis{x'y!}, 0 <i,j <n-1.

Proposition 2.1. We have
2

(i) Ts=(nyL x H for n odd.

n —4

(i) Ts=(n¥lab,(-1)"%aby L x H for n even.
Proof. Let ¢r, be the symmetric bilinear form associated with. Consider{x'y'},
0 <i,j £ n-1, the set o basis elements d8. Consider the left regular matrix
representation of each such element under the isomorplgsdhin the definition of
the trace map. Easy, but tedious arguments, and switclongtfie trace to the reduced
trace show that

¢1s(Xy!, Xy') = Trds((X'y')?) = 0
unless we have of the following cases:

i=)=0, in which case the reduced tracenis
i=0andj = g in which case the reduced tracenis
i = g andj =0, in which case the reduced traceniz
I = g andj = g in which case the reduced trace islj?nah

Clearly, the latter three cases only ariseri@ven.
(i) Lei = j = 0. Theng¢r,(1,1) = n, as mentioned above. Now let<li, j < n— 1.
There arel‘zz;1 pairs 'y, x"'y"1) and we have
Prs(Xy!, X y™ 1) = Trds(Xy! x'y™ 1) = Trds(w! ™ x"%") = nw™ab.
Each pair contributes ax22 block in the Gram matrix ofr, as follows:
¢Ts(_’ _) ‘ lej Xn_iyn_j

Xyl 0 nw™ab
XYyl nwliab 0

Each such block corresponds to a 2-dimensional hyperbtimepwhich is a direct
summand offs. The Gram matrix will have exactly one non-zero entry in eami
Hencels =~ (n) L %‘1 x H.

(i) The subsefl, X2, y"/2, xV2y"2} of basis elements & gives rise to the quadratic
form (n)(1, a, b, (~1)"?ab). By placing the othen? — 4 basis elements into ordered
pairs of the form X'y!, x*'y"-1), we get thalpr, maps each pair tow'/ab as seen
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in the proof of(i). So we get”zT‘4 hyperbolic planes as direct summands. Hence
Ts ~ (nX(L,a b, (-1)"2ab) L 4 x H. .

By way of example, the matrix ofs whenn = 3 is as follows:

3
0
0 3w?ab
3wlab 0
0 3wab
3wab 0

The matrix is computed for the basis elemefitsx, X2, y, y2, Xy, X°y?, X°y, xy*} and
each blank entry in the matrix is zero.

3. FURTHER REsULTS WHEN deg, S 1s opp

We now return to the case whenis odd and show that we can improve upon the
formula deduced fofs. We require the following two propositions.

Proposition 3.1. Let n be odd. Thetn) =~ ((-1)7).

Proof. We recall the following definitions from classical numbeediny: for p an odd

prime
Ly
=25

i=1

where(;—)) is the Legendre symbol and

We have the theorems (see [8], for example)
p* =15 and (_—1) =(-1)7
p
and the facts
pi=1 (mod4)e pi=p1 and p,=3 (mMod 4)s p; = —ps.

Supposen is prime. Thenr?2 = n* = (%)n = (—1)”;21 n. On the other hand suppose
is compound. Writen = Htjzl p; where thep; are primes, not all necessarilyfidirent
andt > 1. Ifn=1 (mod 4) then
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Otherwise, ifn = 3 (mod 4) then

t

t t 2
n=—[[p=CD7]]p :(—1)"—21( n-] :
j=1 j=1

i=1
Hence(n) ~ <(—1)”;21). n
Proposition 3.2. Let n be odd. Then r (1) ~ ((-1)"7) L B! x H.

Proof. Recall that thdevel of a field F, denoteds(F), is the least number of squares
required to sumte-1 in F or co if no such number exists. Sinéecontains a primitive
n-th root of unity,s(K) € {1,2,4}. If n= 3 or 5 (mod 8), them has a prime divisop
such thatp = 3 or 5 (mod 8). In this case we hagK) = 2 by [3]. Thus, 2x (1) ~

2 X (=1) which implies

nx(l):Sx(l)L%le ifn=3 (mod 8)
n-1
=(-1) L ——xH
n-7 .

nx(l):Sx(l)J_TxH ifn=5 (mod 8)

~ (1)L %1 x HL.

In the remaining cases of interest we ha{i€) < 4, i.e. 4x (1) ~ 4x(-1). Therefore,

nx(l)~(1) L —= xH ifn=1 (mod 8)
nx<1>z7x<1>l%7xH ifn=7 (mod 8)

n-1
z(—l)LTxH.

Corollary 3.3. Forn odd, | ~ 2 x ((=1)'Z ).

Proof. Propositions 2.@) and 3.1 show that fan odd,
2

n
Ts~(n) L x H

n? -1

~((-1)7) L x H.
Then by Proposition 3.2 and the fact that
M x((-1)7) = nx((-1)7)@nx (1),

we getTs ~ n x ((-1)7). "
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Remark 3.4. For n odd, we could also writdg ~ nx (1) L iz‘” x H which can
be deduced from the calculation in the split case, see [@ftter with Springer’s
Theorem on odd degree extensions (see [5, p.194], for exgmpl

4. TRACE FORM CRITERIA TO DETERMINE IF A SYMBOL ALGEBRA IS DIVISION
Proposition 4.1. 1f n = 2 (mod 4)then the quaternion algebr@, b)x is contained in
S.

. 2 2
Proof. Consider the elementg’?, 42 € S. Then (x”/z) = a, (y”/z) = b and
yn/ZXn/Z — (wn/Z)n/2 Xn/2yn/2 — _Xn/2yn/2_ -

Proposition 4.2. 1f n = 2 (mod 4)and Ts is hyperbolic then-1 is a square in K and
S is not a division algebra.

Proof. Suppose€Tls is hyperbolic. By Proposition 4.1Q := (a,b)x ¢ S. Sincenis
even we have from Proposition 2ii) that

n"_4 n? -4

x H =~ (n){1,a,b,—ab) L x H.

Ts =~ (n)(1,a b, (-1)"2aby L

Thus, by our assumptiodl, a, b, —ab) ~ 2 x H and by evaluating determinants we
get(-1) ~ (1). Thus, the norm form oQ, Ng := (1, —a, —b, ab) is hyperbolic. This
implies thatQ, and thusS, contains zero divisors. Therefoi®js not division. ]

Proposition 4.3. Let K be a field such thatl € K*2. Let A be any central simple
algebra over K. Let n= deg, A be a power of. If T, is not hyperbolic, then Ais a
division algebra.

Proof. SupposéA is not a division algebra. TheA = M, (D) for some integer > 1
and some division algebia over K. Now Ta = Ty, o) = Tm,(k)exd = Tmk) ® Tp =
r x (1) ® Tp by [6, Lemma 1.2]. Since is a 2-power,r must be even and since
—1 € K*2, we have thaT 4 is hyperbolic. n

5. EXTERIOR POWERS OF THE TRACE FORM OF A SYMBOL ALGEBRA

Bourbaki defined the concept of exterior power of a symmadiiioear form in
[1, IX, §1, (37)]. McGarraghy derived basic properties of such formthe Witt-
Grothendieck ring of a field in [7]. We present some key deting and results for
exterior powers from McGarraghy’s paper as well as some eeuits. In all casess
denotes a field of characteristidiirent from 2.

Definition 5.1. Let¢ : V XV — K be a bilinear form and Ik be a positive integer
not greater tham. We define thé-fold exterior powenf ¢,

Ak 1 AV x AV — K

by
Ak‘P(Xl Ao A Xy A A y) = det(e(Xi, yj))lgi,jsk'
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We defineA% := (1), the identity form of dimension 1. Fdr> m, we defineAXp to
be the zero form, sincakV = 0 for allk > m.

LetV be a vector space of dimensianoverK. If kis a non-negative integer then
thek-fold exterior power oV, AV, has dimensio(ﬂ‘), where we takeé’,?) to be O for

all k > m. In particular, if{v1, . . ., vm} is @ basis fol, then a basis foAXV is given by
the set ofk-fold wedge productési, A --- Av;, 1 1<i; <--- <ix < m}and there are

(’;‘) such expressions.

Remark 5.2. We haveAlyp ~ ¢. It is easily seen thanky is a bilinear form and is
symmetric ifg is symmetric. Also, ifg is the quadratic form associatedgpwe write
AKq for the quadratic form associatedAde.

Proposition 5.3.[7, Proposition 4.1} et V be a vector space over K wilimyV = m.
Let ¢ be a symmetric bilinear form over K with ~ (a;,...,an). ThenAky is a
symmetric bilinear form of dimensi((Fj) and

Ao~ L q@,...a)

1<iy<-<ig<m

In particular, AX(mx (1)) ~ (’I‘:) x (1).

Remark 5.4. We also have that*(mx (-1)) = (’;‘) X ((=1)5).

Proposition 5.5. [7, Proposition 7.3].etp andy be symmetric bilinear forms over K
and let ke N. Then ' _
N1y = L Npeniy
i+]j=

5.1. Exterior powers of hyperbolic forms. We now compute exterior powers of a
hyperbolic form¢ ~ h x H whereh € N.
Proposition 5.6. Let¢ ~ h x H where he N and k odd withl < k < 2h— 1. Then

1(2h
kp ~ =
A¢_2(k)><H.

Proof.

Af¢ = A(hx (1) L hx(-1))

~ L Al(hx (D)o al(hx(-1)

i+j=k

-1 (t‘) x(l)®(?) X {(-1)))

i+j=k

21 B ERCE M AR

i odd i even
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Since
)= 2260
IoZd:d(l K—i i;n i\k—i
for k odd and sinceéA\*¢ has dimensioﬁzkh), the result follows. ]

Proposition 5.7. Let¢ ~ h x H where he N, k= 2¢and0 < ¢ < h. Then

h 1((2h h
oo (ecan s HE)-()

Proof. We use induction o and¢. Let P(h, ¢) be the statement in the proposition.
P(h,1) is true for allh since

.. _.fh h\?
A¢_2(2)><<1>¢(1) x (~1)
h 1((2h\ (h
a5 (2)- G

ConsiderP(1, ¢). Here¢ ~ H and¢ € {0, 1}. Now

A%H := (1) ~ (é) x ((-1)% L % ((g) - ((1))) x H

and

e o35

SoP(1,?) is true.

Inductive step Let m,n be integers, O< m < h. AssumeP(m,n — 1) is true for
0 < n-1 < mor, equivalently, I n < m+ 1. The cas@ = m+ 1 givesA2M1 := (0).

Also, assume tha®(m — 1, n) is true for 0< n < m— 1. We proveP(m, n) to be true
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forO<n<m

A"'¢ = A*"(mx H)
= A%Y((M-1)x H 1 H)

~ 1 Am-1)xmeAn

i+j=2n

= AP((m-1)x H) L A*Y(m- 1) x H) @ H L A*™*((m- 1) x H)
_(m- ny 2(m-1) m-1 2(m-1)
(" e (5 ) (T e ()
m-— ny 2(m-1) m-1
a5 {Gam ) (o)<

2@

by P(m- 1,n), P(m,n— 1) and Proposition 5.6. [

Remark 5.8. The above proposition has been proved for ordered fields Rrpposi-
tion 11.8]. The proof uses the signaturefofvith respect to an ordering.

Remark 5.9. In [7] it was shown that wheK is an ordered field and a hyperbolic
form thenAX¢ is hyperbolic if and only ik is odd. Proposition 5.7 shows that this is
not true for fields in general. For example, for a figld¢ontainingvV—1 andg ~ 4xH,
we havea?s = (1) x(-1) L 3((3) - (1)) x H = 14x H.

5.2. Some properties of binomial cofficients. We use some properties of binomial
codficients in the subsequent section. Some of them are wellHknotkers not. All
of them can be derived from first principles or by using idiegito be found in [9,
Chapter 1], for example. We list the properties here:
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5.3. Computation of exterior powers of the trace form of a symbol dgebra. Let
K andS be as in Section 1. From Propositions 2.1, 3.1 and 3.2, wethav¢he trace
form of S'is

XD LB X H = ((-1)7) L T2 xH, if nis odd;
® 7 JnxL a, b, (-1)%ab) L ”27‘4 x H, if nis even.

For the remainder of this section, we shall use “Hyp” to derast unspecified number
of hyperbolic planes. Thus we may restate the computed toaceof S as

~

{n x (1) L Hyp = ((-1)"#') L Hyp, if nis odd;
<~

(nX1,a,b, (-1)2aby L Hyp, if nis even.
Proposition 5.10. Let n be odd and k an integer such tilfa k < n?. Then

T (%) (-1)7) L Hyp, ifkis odd;
S >~

=
AN
-

)x ((-1)%) L Hyp, ifkiseven.

NIx r\)‘
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Proof. Let k be odd. Then

AR = Ak(” X H 1 <(—1)”;21>)

=1 . .
~ 1 A'(” _ xH)@A‘((—l)Tl>
2 2
_A( 5 XH)J_A (—2 XH)

= (k_zl ) x{((-1)7) L Hyp.
2

A similar computation for evek yields the result. ]

Proposition 5.11.Let n be even. We writesT~ gs L mx Hwhere @ ~ (n)X(1, a, b, (-1)2ab)

and m= 2. Then, for0 < k < r?,
("k;) x((-1)"7)as L Hyp,  ifkis odd;
(f) x (1y L Hyp, ifkisevenandr= 0 (mod 4)
AfTs =4 2 )
> (2- )(fzz) x ((-1)%) L Hyp, ifkiseven ks Zandn=2 (mod 4)

n2

(&- )(”g) x ((-1)'?) L Hyp, ifkiseven, k- ®andn=2 (mod 4)

Proof. Case (i) Letk be odd. Then
AkTS = Ak(m xH L qS)
~ At mx H) @ gs L A¥*(mx H) ® A%gs L Hyp

= (k_ml) x{((-1)7) ®gs L (k_nl) x ((-1)'2) ® ((-1)?)gs L Hyp.
2 2

Whenn =0 (mod 4) we have-1 € K*? and so

m m m+1
AkTS ~ ((ﬂ) + ( )) X Qs L Hyp ( K—1 ) X(Qs L Hyp
2 2

2
On the other hand, whem= 2 (mod 4),

m+1 -1
AT =~ ( 1 )>< ((-1)7)gs L Hyp.

2
Hence, fom even andk odd, we have

n?-2

AXTs ~ (é) X <(—1)M>QS L Hyp.
2
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Case (ii) Letk be even. Then
AXTs = AK(mx H L gs)
~ AKmx H) L A2 (mx H) ® A%gs L A¥*(mx H) ® A*gs L Hyp

- (T) X ((-1)f) 1 (k_”l) % (~LE(-D)%) L Hyp
2 2
Whenn =0 (mod 4) we have-1 € K** and so

A¥Ts = (T) n (k;”l)) x (1) L Hyp
2

2

m+ 2
= « )x(l)J_Hyp
2

i

- E)x(l} 1 Hyp.
2

On the other hand, when= 2 (mod 4) we have thg{—1)2) ~ (—1) and so
«@ (»Xdlﬂle,iw§§;

x ((-1)'¥) L Hyp, ifk> ”—22

AT ~

3

NN NN NG )

)x ((—1)5> 1 Hyp, ifk<
)

((2)
(- 2—2)(
(Z-1)(7)x((-D)%) LHyp, ifk>15.

| ]
Example 5.12.By Proposition 5.11 witm = 4 andk odd, we get\*Ts =~ (k;l) X Qs L
Hyp. Since(]) is odd for 0< | < 7, it follows thatA¥Ts =~ gs L Hyp for k odd,
1 < k < 15. Forn = 4 andk even we get\ T =~ (g) x (1) L Hyp. Since(?) is

even for 1< | < 7 it follows thatAXTs is hyperbolic. These conclusions confirm [10,
Corollaire 2].

Remark 5.13. In general, fom = 0 (mod 4) andk even, it is not true thad*Ts is
hyperbolic. For example, with = 12, A¥Tg ~ (1) 1 Hyp.

Remark 5.14. From Proposition 5.11 it follows that“Ts is hyperbolic fom even and
k € {n, T}. For, whem = 0 (mod 4) we have

2

n?
AT = (nzz)xa) 1L Hyp
4

n?-2
:2( 2_)><<1)LHyp
7
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and whem = 2 (mod 4) the result follows directly from the formula fakTs.

Remark 5.15. It follows from Proposition 5.11 thad" T is anisotropic whem is
even.

Remark 5.16. As a consequence of Proposition 5.AfTs is hyperbolic whem = 0
(mod 4),pis an odd prime divisor af andk € {2, 4, 8, 2p, 4p, 8p}.
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