
TRACE FORMS OF SYMBOL ALGEBRAS

RONAN FLATLEY

A. Let S be a symbol algebra. The trace form ofS is computed and it is
shown how this form can be used to determine whetherS is a division algebra or not.
In addition, the exterior powers of the trace form ofS are computed.

1. I

Let n be an arbitrary positive integer and letK be a field containing a primitiven-th
root of unityω. Unless stated otherwise, we assume throughout this paper that char(K)
is different from 2 and does not dividen. Let K× = K\{0}. Let a,b ∈ K× and letS be
the algebra overK generated by elementsx andy where

xn = a, yn = b and yx = ωxy.

We call this algebra asymbol algebra(see [4, Chapter 1,§2]). Note that in [2,§11],
Draxl calls such an algebra apower norm residue algebra, denoting it as (a, b; n,K, ω)
and shows it to be a central simple algebra overK of degreen. Quaternion algebras
are the symbol algebras of degree 2.

Let A be a central simple algebra of degreen over a fieldK of characteristic different
from 2. We writeTA : A→ K for the quadratic trace form

TA(z) = TrdA(z2) for z ∈ A,

where TrdA is the reduced trace ofA. The main purpose of this paper is to compute the
trace form of a symbol algebraS and to show how the form determines if the algebra
is division.

Notation and terminology is borrowed from Lam’s book [5] andScharlau’s book
[11]. A diagonalised quadratic form overK with coefficientsa1, . . . , am ∈ K× is de-
noted by〈a1, . . . , am〉. The hyperbolic plane〈1,−1〉 is denoted byH. If ϕ andψ are
forms overK thenϕ ≃ ψ means that these forms are isometric. The Witt index ofϕ is
denoted byiW(ϕ) and the anisotropic part ofϕ byϕan, so that we haveϕ ≃ ϕan ⊥ (i × H)
wherei = iW(ϕ). The tensor product of the 1-dimensional form〈n〉 with ϕ is denoted
〈n〉ϕ to be distinguished fromn copies ofϕ which is written asn× ϕ.
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2. S     

Let S be the symbol algebra (a, b; K, n, ω) with basis{xiy j}, 0≤ i, j ≤ n− 1.

Proposition 2.1. We have

(i) TS ≃ 〈n〉 ⊥
n2 − 1

2
× H for n odd.

(ii) TS ≃ 〈n〉〈1, a, b, (−1)n/2ab〉 ⊥
n2 − 4

2
× H for n even.

Proof. Let φTS be the symmetric bilinear form associated withTS. Consider{xiy j},
0 ≤ i, j ≤ n − 1, the set ofn2 basis elements ofS. Consider the left regular matrix
representation of each such element under the isomorphism used in the definition of
the trace map. Easy, but tedious arguments, and switching from the trace to the reduced
trace show that

φTS(xiy j, xiy j) = TrdS((xiy j)2) = 0

unless we have of the following cases:

i = j = 0, in which case the reduced trace isn;

i = 0 and j =
n
2
, in which case the reduced trace isnb;

i =
n
2

and j = 0, in which case the reduced trace isna;

i =
n
2

and j =
n
2
, in which case the reduced trace is (−1)

n
2 nab.

Clearly, the latter three cases only arise forn even.

(i) Le i = j = 0. ThenφTS(1, 1) = n, as mentioned above. Now let 1≤ i, j ≤ n− 1.
There aren2−1

2 pairs (xiy j, xn−iyn− j) and we have

φTS(xiy j, xn−iyn− j) = TrdS(xiy j xn−iyn− j) = TrdS(ω j(n−i)xnyn) = nω−i j ab.

Each pair contributes a 2× 2 block in the Gram matrix ofφTS, as follows:

φTS(−,−) xiy j xn−iyn− j

xiy j 0 nω−i j ab
xn−iyn− j nω−i j ab 0

Each such block corresponds to a 2-dimensional hyperbolic plane which is a direct
summand ofTS. The Gram matrix will have exactly one non-zero entry in eachrow.
HenceTS ≃ 〈n〉 ⊥ n2−1

2 × H.
(ii) The subset{1, xn/2, yn/2, xn/2yn/2} of basis elements ofS gives rise to the quadratic

form 〈n〉〈1, a, b, (−1)n/2ab〉. By placing the othern2 − 4 basis elements into ordered
pairs of the form (xiy j , xn−iyn− j), we get thatφTS maps each pair tonω−i j ab as seen
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in the proof of(i). So we getn
2−4
2 hyperbolic planes as direct summands. Hence

TS ≃ 〈n〉〈1, a, b, (−1)n/2ab〉 ⊥ n2−4
2 × H.

By way of example, the matrix ofTS whenn = 3 is as follows:





































3
0 3a
3a 0

0 3b
3b 0

0 3ω2ab
3ω2ab 0

0 3ωab
3ωab 0





































.

The matrix is computed for the basis elements{1, x, x2, y, y2, xy, x2y2, x2y, xy2} and
each blank entry in the matrix is zero.

3. F   degK S  

We now return to the case whenn is odd and show that we can improve upon the
formula deduced forTS. We require the following two propositions.

Proposition 3.1. Let n be odd. Then〈n〉 ≃ 〈(−1)
n−1

2 〉.

Proof. We recall the following definitions from classical number theory: for p an odd
prime

τp :=
p−1
∑

i=1

(

i
p

)

ωi

where
(

i
p

)

is the Legendre symbol and

p∗ :=

(

−1
p

)

p.

We have the theorems (see [8], for example)

p∗ = τ2
p and

(

−1
p

)

= (−1)
p−1
2

and the facts

p1 ≡ 1 (mod 4)⇔ p∗1 = p1 and p2 ≡ 3 (mod 4)⇔ p∗2 = −p2.

Supposen is prime. Thenτ2
n = n∗ =

(

−1
n

)

n = (−1)
n−1

2 n. On the other hand supposen
is compound. Writen =

∏t
j=1 p j where thep j are primes, not all necessarily different

andt > 1. If n ≡ 1 (mod 4) then

n =
t

∏

j=1

p∗j = (−1)
n−1

2

t
∏

j=1

p∗j = (−1)
n−1

2

















t
∏

j=1

τ j

















2

.
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Otherwise, ifn ≡ 3 (mod 4) then

n = −
t

∏

j=1

p∗j = (−1)
n−1

2

t
∏

j=1

p∗j = (−1)
n−1

2

















t
∏

j=1

τ j

















2

.

Hence〈n〉 ≃ 〈(−1)
n−1

2 〉.

Proposition 3.2. Let n be odd. Then n× 〈1〉 ≃ 〈(−1)
n−1

2 〉 ⊥ n−1
2 × H.

Proof. Recall that thelevelof a field F, denoteds(F), is the least number of squares
required to sum to−1 in F or∞ if no such number exists. SinceK contains a primitive
n-th root of unity,s(K) ∈ {1, 2, 4}. If n ≡ 3 or 5 (mod 8), thenn has a prime divisorp
such thatp ≡ 3 or 5 (mod 8). In this case we haves(K) = 2 by [3]. Thus, 2× 〈1〉 ≃
2× 〈−1〉 which implies

n× 〈1〉 ≃ 3× 〈1〉 ⊥
n− 1

2
× H if n ≡ 3 (mod 8)

≃ 〈−1〉 ⊥ n− 1
2
× H

n× 〈1〉 ≃ 5× 〈1〉 ⊥ n− 7
2
× H if n ≡ 5 (mod 8)

≃ 〈1〉 ⊥
n− 1

2
× H.

In the remaining cases of interest we haves(K) ≤ 4, i.e. 4×〈1〉 ≃ 4×〈−1〉. Therefore,

n× 〈1〉 ≃ 〈1〉 ⊥ n− 1
2
× H if n ≡ 1 (mod 8)

n× 〈1〉 ≃ 7× 〈1〉 ⊥ n− 7
2
× H if n ≡ 7 (mod 8)

≃ 〈−1〉 ⊥
n− 1

2
× H.

Corollary 3.3. For n odd, TS ≃ n2 × 〈(−1)
n−1

2 〉.

Proof. Propositions 2.1(i) and 3.1 show that forn odd,

TS ≃ 〈n〉 ⊥
n2 − 1

2
× H

≃ 〈(−1)
n−1

2 〉 ⊥ n2 − 1
2
× H.

Then by Proposition 3.2 and the fact that

n2 × 〈(−1)
n−1

2 〉 = n× 〈(−1)
n−1

2 〉 ⊗ n× 〈1〉,

we getTS ≃ n2 × 〈(−1)
n−1

2 〉.
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Remark 3.4. For n odd, we could also writeTS ≃ n × 〈1〉 ⊥ n2−n
2 × H which can

be deduced from the calculation in the split case, see [6], together with Springer’s
Theorem on odd degree extensions (see [5, p.194], for example).

4. T          

Proposition 4.1. If n ≡ 2 (mod 4)then the quaternion algebra(a, b)K is contained in
S .

Proof. Consider the elementsxn/2, yn/2 ∈ S. Then
(

xn/2
)2
= a,

(

yn/2
)2
= b and

yn/2xn/2 =
(

ωn/2
)n/2

xn/2yn/2 = −xn/2yn/2.

Proposition 4.2. If n ≡ 2 (mod 4)and TS is hyperbolic then−1 is a square in K and
S is not a division algebra.

Proof. SupposeTS is hyperbolic. By Proposition 4.1,Q := (a, b)K ⊂ S. Sincen is
even we have from Proposition 2.1(ii) that

TS ≃ 〈n〉〈1, a, b, (−1)n/2ab〉 ⊥ n2 − 4
2
× H ≃ 〈n〉〈1, a, b,−ab〉 ⊥ n2 − 4

2
× H.

Thus, by our assumption,〈1, a, b,−ab〉 ≃ 2 × H and by evaluating determinants we
get 〈−1〉 ≃ 〈1〉. Thus, the norm form ofQ, NQ := 〈1,−a,−b, ab〉 is hyperbolic. This
implies thatQ, and thusS, contains zero divisors. Therefore,S is not division.

Proposition 4.3. Let K be a field such that−1 ∈ K×2. Let A be any central simple
algebra over K. Let n:= degK A be a power of2. If TA is not hyperbolic, then A is a
division algebra.

Proof. SupposeA is not a division algebra. ThenA � Mr(D) for some integerr > 1
and some division algebraD overK. Now TA ≃ TMr (D) ≃ TMr (K)⊗K D ≃ TMr (K) ⊗ TD ≃
r × 〈1〉 ⊗ TD by [6, Lemma 1.2]. Sincen is a 2-power,r must be even and since
−1 ∈ K×2, we have thatTA is hyperbolic.

5. E         

Bourbaki defined the concept of exterior power of a symmetricbilinear form in
[1, IX, §1, (37)]. McGarraghy derived basic properties of such formsin the Witt-
Grothendieck ring of a field in [7]. We present some key definitions and results for
exterior powers from McGarraghy’s paper as well as some new results. In all cases,K
denotes a field of characteristic different from 2.

Definition 5.1. Let ϕ : V × V → K be a bilinear form and letk be a positive integer
not greater thanm. We define thek-fold exterior powerof ϕ,

Λkϕ : ΛkV × ΛkV → K

by
Λkϕ(x1 ∧ · · · ∧ xk, y1 ∧ · · · ∧ yk) = det

(

ϕ(xi , y j)
)

1≤i, j≤k.
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We defineΛ0ϕ := 〈1〉, the identity form of dimension 1. Fork > m, we defineΛkϕ to
be the zero form, sinceΛkV = 0 for all k > m.

Let V be a vector space of dimensionm overK. If k is a non-negative integer then
thek-fold exterior power ofV, ΛkV, has dimension

(

m
k

)

, where we take
(

m
k

)

to be 0 for
all k > m. In particular, if{v1, . . . , vm} is a basis forV, then a basis forΛkV is given by
the set ofk-fold wedge products{vi1 ∧ · · · ∧ vik : 1 ≤ i1 < · · · < ik ≤ m} and there are
(

m
k

)

such expressions.

Remark 5.2. We haveΛ1ϕ ≃ ϕ. It is easily seen thatΛkϕ is a bilinear form and is
symmetric ifϕ is symmetric. Also, ifq is the quadratic form associated toϕ, we write
Λkq for the quadratic form associated toΛkϕ.

Proposition 5.3. [7, Proposition 4.1]Let V be a vector space over K withdimKV = m.
Let ϕ be a symmetric bilinear form over K withϕ ≃ 〈a1, . . . , am〉. ThenΛkϕ is a
symmetric bilinear form of dimension

(

m
k

)

and

Λkϕ ≃ ⊥
1≤i1<···<ik≤m

〈ai1 . . .aik〉.

In particular,Λk(m× 〈1〉) ≃
(

m
k

)

× 〈1〉.

Remark 5.4. We also have thatΛk(m× 〈−1〉) =
(

m
k

)

× 〈(−1)k〉.

Proposition 5.5. [7, Proposition 7.3]Letϕ andψ be symmetric bilinear forms over K
and let k∈ N. Then

Λk(ϕ ⊥ ψ) ≃⊥
i+ j=k
Λiϕ ⊗ Λ jψ

5.1. Exterior powers of hyperbolic forms. We now compute exterior powers of a
hyperbolic formφ ≃ h× H whereh ∈ N.

Proposition 5.6. Letφ ≃ h× H where h∈ N and k odd with1 ≤ k ≤ 2h− 1. Then

Λkφ ≃ 1
2

(

2h
k

)

× H.

Proof.

Λkφ ≃ Λk
(

h× 〈1〉 ⊥ h× 〈−1〉
)

≃⊥
i+ j=k
Λi

(

h× 〈1〉
)

⊗ Λ j
(

h× 〈−1〉
)

≃⊥
i+ j=k

(

h
i

)

× 〈1〉 ⊗
(

h
j

)

× 〈(−1)j〉

≃
∑

i odd

(

h
i

)(

h
k− i

)

× 〈1〉 ⊥
∑

i even

(

h
i

)(

h
k− i

)

× 〈−1〉.
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Since

∑

i odd

(

h
i

)(

h
k− i

)

=
∑

i even

(

h
i

)(

h
k− i

)

for k odd and sinceΛkφ has dimension
(

2h
k

)

, the result follows.

Proposition 5.7. Letφ ≃ h× H where h∈ N, k = 2ℓ and0 ≤ ℓ ≤ h. Then

Λkφ = Λ2ℓφ ≃
(

h
ℓ

)

× 〈(−1)ℓ〉 ⊥ 1
2

((

2h
2ℓ

)

−
(

h
ℓ

))

× H.

Proof. We use induction onh andℓ. Let P(h, ℓ) be the statement in the proposition.
P(h, 1) is true for allh since

Λ2φ ≃ 2

(

h
2

)

× 〈1〉 ⊥
(

h
1

)2

× 〈−1〉

≃
(

h
1

)

× 〈−1〉 ⊥ 1
2

((

2h
2

)

−
(

h
1

))

× H.

ConsiderP(1, ℓ). Hereφ ≃ H andℓ ∈ {0, 1}. Now

Λ0
H := 〈1〉 ≃

(

1
0

)

× 〈(−1)0〉 ⊥ 1
2

((

2
0

)

−
(

1
0

))

× H

and

Λ2
H = 〈−1〉 ≃

(

1
1

)

× 〈−1〉 ⊥ 1
2

((

2
2

)

−
(

1
1

))

× H.

SoP(1, ℓ) is true.
Inductive step: Let m, n be integers, 0< m < h. AssumeP(m, n − 1) is true for
0 ≤ n−1 ≤ mor, equivalently, 1≤ n ≤ m+1. The casen = m+1 givesΛ2(m+1) := 〈0〉.
Also, assume thatP(m− 1, n) is true for 0≤ n ≤ m− 1. We proveP(m, n) to be true
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for 0 ≤ n ≤ m:

Λ2nφ = Λ2n
(

m× H
)

= Λ2n
(

(m− 1)× H ⊥ H
)

≃ ⊥
i+ j=2n

Λi((m− 1)× H
)

⊗ Λ j
H

≃ Λ2n
(

(m− 1)× H
)

⊥ Λ2n−1
(

(m− 1)× H
)

⊗ H ⊥ Λ2n−2
(

(m− 1)× H
)

≃
(

m− 1
n

)

× 〈(−1)n〉 ⊥
1
2

((

2(m− 1)
2n

)

−
(

m− 1
n

))

× H ⊥
(

2(m− 1)
2n− 1

)

× H

⊥
(

m− 1
n− 1

)

× 〈(−1)n〉 ⊥
1
2

((

2(m− 1)
2(n− 1)

)

−
(

m− 1
n− 1

))

× H

≃
(

m
n

)

× 〈(−1)n〉 ⊥ 1
2

((

2m
2n

)

−
(

m
n

))

× H

by P(m− 1, n), P(m, n− 1) and Proposition 5.6.

Remark 5.8. The above proposition has been proved for ordered fields in [7, Proposi-
tion 11.8]. The proof uses the signature ofφ with respect to an ordering.

Remark 5.9. In [7] it was shown that whenK is an ordered field andφ a hyperbolic
form thenΛkφ is hyperbolic if and only ifk is odd. Proposition 5.7 shows that this is
not true for fields in general. For example, for a fieldK containing

√
−1 andφ ≃ 4×H,

we haveΛ2φ =
(

4
1

)

× 〈−1〉 ⊥ 1
2

((

8
2

)

−
(

4
1

))

× H = 14× H.

5.2. Some properties of binomial coefficients. We use some properties of binomial
coefficients in the subsequent section. Some of them are well-known, others not. All
of them can be derived from first principles or by using identities to be found in [9,
Chapter 1], for example. We list the properties here:
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(

r
s

)

+

(

r
s− 1

)

=

(

r + 1
s

)

,

(

r
s

)

−
(

r
s− 1

)

=
r + 1− 2s

r + 1

(

r + 1
s

)

,

(

r
s

)

+

(

r
s− 2

)

=

(

r + 2
s

)

− 2

(

r
s− 1

)

,

(

r
s

)

−
(

r
s− 2

)

=
r + 2− 2s

r + 2

(

r + 2
s

)

,

(

r
s

)

=
r
s

(

r − 1
s− 1

)

.

5.3. Computation of exterior powers of the trace form of a symbol algebra. Let
K andS be as in Section 1. From Propositions 2.1, 3.1 and 3.2, we havethat the trace
form of S is

TS ≃














n× 〈1〉 ⊥ n2−n
2 × H ≃ 〈(−1)

n−1
2 〉 ⊥ n2−1

2 × H, if n is odd;

〈n〉〈1, a, b, (−1)
n
2 ab〉 ⊥ n2−4

2 × H, if n is even.

For the remainder of this section, we shall use “Hyp” to denote an unspecified number
of hyperbolic planes. Thus we may restate the computed traceform of S as

TS ≃














n× 〈1〉 ⊥ Hyp ≃ 〈(−1)
n−1

2 〉 ⊥ Hyp, if n is odd;

〈n〉〈1, a, b, (−1)
n
2 ab〉 ⊥ Hyp, if n is even.

Proposition 5.10.Let n be odd and k an integer such that0 ≤ k ≤ n2. Then

ΛkTS ≃























( n2−1
2

k−1
2

)

× 〈(−1)
k−1

2 〉 ⊥ Hyp, if k is odd;
( n2−1

2
k
2

)

× 〈(−1)
k
2 〉 ⊥ Hyp, if k is even.
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Proof. Let k be odd. Then

ΛkTS = Λ
k

(

n2 − 1
2
× H ⊥ 〈(−1)

n−1
2 〉

)

≃⊥
i+ j=k
Λi

(

n2 − 1
2
× H

)

⊗ Λ j〈(−1)
n−1

2 〉

≃ Λk

(

n2 − 1
2
× H

)

⊥ Λk−1

(

n2 − 1
2
× H

)

≃
(n2−1

2
k−1
2

)

× 〈(−1)
k−1

2 〉 ⊥ Hyp.

A similar computation for evenk yields the result.

Proposition 5.11.Let n be even. We write TS ≃ qS ⊥ m×Hwhere qS ≃ 〈n〉〈1, a, b, (−1)
n
2 ab〉

and m= n2−4
2 . Then, for0 ≤ k ≤ n2,

ΛkTS ≃























































(

m+1
k−1

2

)

× 〈(−1)
n(k−1)

4 〉qS ⊥ Hyp, if k is odd;
( n2

2
k
2

)

× 〈1〉 ⊥ Hyp, if k is even and n≡ 0 (mod 4);
(

1− 2k
n2

) ( n2
2
k
2

)

× 〈(−1)
k
2 〉 ⊥ Hyp, if k is even, k≤ n2

2 and n≡ 2 (mod 4);
(

2k
n2 − 1

) ( n2
2
k
2

)

× 〈(−1)
k+2

2 〉 ⊥ Hyp, if k is even, k> n2

2 and n≡ 2 (mod 4).

Proof. Case (i). Let k be odd. Then

ΛkTS = Λ
k(m× H ⊥ qS)

≃ Λk−1(m× H) ⊗ qS ⊥ Λk−3(m× H) ⊗ Λ3qS ⊥ Hyp

≃
(

m
k−1
2

)

× 〈(−1)
k−1

2 〉 ⊗ qS ⊥
(

m
k−3
2

)

× 〈(−1)
k−3

2 〉 ⊗ 〈(−1)
n
2 〉qS ⊥ Hyp.

Whenn ≡ 0 (mod 4) we have−1 ∈ K×2 and so

ΛkTS ≃
((

m
k−1
2

)

+

(

m
k−3
2

))

× qS ⊥ Hyp =

(

m+ 1
k−1

2

)

× qS ⊥ Hyp.

On the other hand, whenn ≡ 2 (mod 4),

ΛkTS ≃
(

m+ 1
k−1
2

)

× 〈(−1)
k−1

2 〉qS ⊥ Hyp.

Hence, forn even andk odd, we have

ΛkTS ≃
(n2−2

2
k−1
2

)

× 〈(−1)
n(k−1)

4 〉qS ⊥ Hyp.
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Case (ii). Let k be even. Then

ΛkTS = Λ
k(m× H ⊥ qS)

≃ Λk(m× H) ⊥ Λk−2(m× H) ⊗ Λ2qS ⊥ Λk−4(m× H) ⊗ Λ4qS ⊥ Hyp

≃
(

m
k
2

)

× 〈(−1)
k
2 〉 ⊥

(

m
k−4

2

)

× 〈(−1)
n
2 〉〈(−1)

k
2 〉 ⊥ Hyp.

Whenn ≡ 0 (mod 4) we have−1 ∈ K×2 and so

ΛkTS ≃
((

m
k
2

)

+

(

m
k−4

2

))

× 〈1〉 ⊥ Hyp

=

(

m+ 2
k
2

)

× 〈1〉 ⊥ Hyp

=

(n2

2
k
2

)

× 〈1〉 ⊥ Hyp.

On the other hand, whenn ≡ 2 (mod 4) we have that〈(−1)
n
2 〉 ≃ 〈−1〉 and so

ΛkTS ≃























(

(

m
k
2

)

−
(

m
k−4

2

)

)

× 〈(−1)
k
2 〉 ⊥ Hyp, if k ≤ n2

2 ;
(

(

m
k−4
2

)

−
(

m
k
2

)

)

× 〈(−1)
k+2

2 〉 ⊥ Hyp, if k > n2

2

=























(

1− 2k
n2

) ( n2
2
k
2

)

× 〈(−1)
k
2 〉 ⊥ Hyp, if k ≤ n2

2 ;
(

2k
n2 − 1

) ( n2
2
k
2

)

× 〈(−1)
k+2

2 〉 ⊥ Hyp, if k > n2

2 .

Example 5.12.By Proposition 5.11 withn = 4 andk odd, we getΛkTS ≃
(

7
k−1
2

)

× qS ⊥
Hyp. Since

(

7
l

)

is odd for 0≤ l ≤ 7, it follows thatΛkTS ≃ qS ⊥ Hyp for k odd,

1 ≤ k ≤ 15. Forn = 4 andk even we getΛkTS ≃
(

8
k
2

)

× 〈1〉 ⊥ Hyp. Since
(

8
l

)

is

even for 1≤ l ≤ 7 it follows thatΛkTS is hyperbolic. These conclusions confirm [10,
Corollaire 2].

Remark 5.13. In general, forn ≡ 0 (mod 4) andk even, it is not true thatΛkTS is
hyperbolic. For example, withn = 12,Λ16TS ≃ 〈1〉 ⊥ Hyp.

Remark 5.14. From Proposition 5.11 it follows thatΛkTS is hyperbolic forn even and
k ∈ {n, n2

2 }. For, whenn ≡ 0 (mod 4) we have

Λ
n2
2 TS ≃

(n2

2
n2

4

)

× 〈1〉 ⊥ Hyp

= 2

(n2−2
2

n2−4
4

)

× 〈1〉 ⊥ Hyp



12 RONAN FLATLEY

and whenn ≡ 2 (mod 4) the result follows directly from the formula forΛkTS.

Remark 5.15. It follows from Proposition 5.11 thatΛn2
TS is anisotropic whenn is

even.

Remark 5.16. As a consequence of Proposition 5.11,ΛkTS is hyperbolic whenn ≡ 0
(mod 4),p is an odd prime divisor ofn andk ∈ {2, 4, 8, 2p, 4p, 8p}.

6. A

I would like to thank David Lewis and Thomas Unger for their guidance in the
preparation of this paper and for their many suggested improvements. I am also grate-
ful to Science Foundation Ireland who funded this research under the Research Fron-
tiers Programme (project no. 07/RFP/MATF191).

R
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