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1. Introduction

We outline a specialization theory of quadratic and (symmetric) bilinear forms
with respect to a place λ : K → L∪∞. Here K,L denote fields of any characteristic.
We have to make a distinction between bilinear forms and quadratic forms and study
them both over fields and valuation rings.

For bilinear forms this turns out to be essentially as easy as in the case char
L 6= 2, albeit no general cancellation law holds for nondegenerate bilinear forms
over a valuation domain O, in which 2 is not a unit. For quadratic forms things
are more difficult mainly for two reasons. 1) Forms cannot be diagonalized. 2)
The quasilinear part of an anisotropic form over O may become isotropic over the
residue class field of O.

Nevertheless a somewhat restricted specialization theory for quadratic forms is
possible which is good enough to establish a fully fledged generic splitting theory.
On the other hand it seems, that for bilinear forms no generic splitting is possible.
(Most probably there does not exist a “generic zero field” for a bilinear form over
a field of characteristic 2.) But specialization of bilinear forms is nevertheless
important for generic splitting of quadratic forms, since a bilinear form and a
quadratic form can be multiplied via tensor product to give another quadratic
form.

All this is explicated in a recent book by the author [Spez]. The book contains
more material than outlined here. In particular its last chapter IV gives a spe-
cialization theory of forms under “quadratic places”, much more tricky than the
theory for ordinary places. Miraculously this leads to a generic splitting theory
with respect to quadratic places which is as satisfactory as for ordinary places.

If ϕ is a quadratic form over a field K which has “good reduction” with respect
to a place λ : K → L ∪ ∞ then our specialization theory gives a quadratic form
λ∗(ϕ) over L. We also develop a theory of “weak specialization”, which associates
to ϕ only a Witt class λW (ϕ) of forms over L, but under a more general condition
on ϕ than just having good reduction. In the present article weak specialization
plays only an auxiliary role in order to define specializations λ∗(ϕ). But weak
specialization is a key notion in establishing the specialization theory for quadratic
places (not described here, cf. [Spez, Chap. IV]).
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The book [Spez] is in German. It is now in the process of translation into English
by Thomas Unger. A preprint of the first two chapters is available [Spez’].

Everything said in §2−§6 of the present article can be found with proofs and/or
references in these two chapters. I have freely borrowed from passages in Unger’s
translation. I also give almost no references here to the work of others, referring to
the references in the book instead.

I thank Professors Ricardo Baeza and Ulf Rehmann for help in preparing this
manuscript.

2. Specialization of symmetric bilinear forms

We are given a place λ : K → L ∪∞ and a symmetric bilinear form ϕ, i.e., a
polynomial

ϕ(x, y) =

n∑

i,j=1

aijxiyi (1)

over K in two sets of variables x = (x1, . . . , xn), y = (y1, . . . , yn), with coefficients
aij = aji ∈ K. Under suitable conditions (“good reduction”, see below) we want
to associate to ϕ a symmetric bilinear form λ∗(ϕ) over L in a reasonable way.

We assume that ϕ is nondegenerate, i.e., det(aij) ∈ K∗, and we want that λ∗(ϕ)
is again a nondegenerate form, of the same dimension n = dimϕ as ϕ.

For the rest of this section a form always means a nondegenerate symmetric
bilinear form. We denote the form ϕ above by the symmetric matrix (aij). Non-
degeneracy of ϕ means that det(aij) 6= 0.

We call two forms ϕ = (aij), ψ = (bij) isometric ( = isomorphic), and write
ϕ ∼= ψ, if dimϕ = dimψ and ψ is obtained from ϕ by a linear change of coordinates,
in matrix notation

(bij) = tU(aij)U (2)

with some U ∈ GL(n,K).
Let Oλ denote the valuation ring of λ,Oλ = {x ∈ K | λ(x) 6= ∞}.

Definition 2.1. We say that the form ϕ = (aij) has good reduction with respect to
the place λ : K → L ∪∞, if there exists a symmetric matrix (bij) with coefficients
in Oλ and det(bij) a unit of Oλ, such that ϕ is isometric to the form (bij) over K.
Alternatively we then say that ϕ is λ-unimodular, and we call an isometry ϕ ∼= (bij)
a λ-unimodular representation of ϕ.

In this situation we are tempted to define

λ∗(ϕ) := (λ(bij)), (3)

hoping that - up to isometry - the form (λ(bij)) does not depend on the choice
of the λ-unimodular representation of ϕ.

(N.B.: We do not care to identify a form with an isometric form, thus abusively
speaking of “forms” instead of isometry classes of forms.).

In this hope justified? The answer will be

“Yes”, if charL 6= 2, and “Nearly”, if charL = 2.

Our approach to the question will be via Witt rings. We briefly recall the
definition of the Witt ring W(K). We call two forms ϕ and ψ over K stably
isometric, if there exists a form χ over K such that ϕ ⊥ χ ∼= ψ ⊥ χ. We then write
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ϕ ≈ ψ. If charK 6= 2 then ϕ ≈ ψ implies ϕ ∼= ψ by Witt’s cancellation theorem.
For charK = 2, this is false.

Definition 2.2. We say that two forms ϕ and ψ over K are Witt equivalent, and
then write ϕ ∼ ψ, if there exist numbers r, s ∈ N0 such that

ϕ ⊥ r ×

(
0 1
1 0

)
≈ ψ ⊥ s×

(
0 1
1 0

)
.

The Witt (equivalence) class of a form ϕ will be denoted by {ϕ}.
Witt classes can be added and multiplied as follows:

{ϕ} + {ψ} := {ϕ ⊥ ψ},

{ϕ} · {ψ} := {ϕ⊗ ψ},

where ⊥ and ⊗ denote the usual orthogonal sum and tensor product of symmetric
bilinear forms. In this way the set of the Witt classes overK becomes a well defined
commutative ring with 1, the Witt ring W(K). The zero element is given by the

class

{(
0 1
1 0

)}
(or by the zero-dimensional form ϕ = 0, which we admit), and

the unit element by the class {(1)} of the one-dimensional form (1). For any form
ϕ, we have {ϕ} + {−ϕ} = 0.

A good insight into Witt equivalence is given by the following Proposition 2.3.
First a bit of notation. A form ϕ of dimension n is called isotropic, if there ex-
ists some x ∈ Kn, x 6= 0, with ϕ(x, x) = 0, and anisotropic otherwise.ϕ is called
metabolic if

ϕ ∼=

(
a1 1
1 0

)
⊥ . . . ⊥

(
ar 1
1 0

)

for some i > 0 and a1, . . . , ar ∈ K.

Every form ϕ has a decomposition

ϕ ∼= ϕ0 ⊥ ϕ1

with ϕ0 anisotropic and ϕ1 metabolic, called a Witt decomposition of ϕ.

Proposition 2.3. Let ϕ ∼= ϕ0 ⊥ ϕ1 and ψ ∼= ψ0 ⊥ ψ1 be Witt decompositions of
two forms ϕ and ψ. Then ϕ ∼ ψ iff ϕ0

∼= ψ0. �

In particular, the anisotropic part ϕ0 of ϕ is uniquely determined by ϕ up to
isometry. We call ϕ0 the kernel form of ϕ and write ϕ0 = ker(ϕ).

(Alternatively we may call ϕ0 the anisotropic part of ϕ and write ϕ0 = ϕan.)

As a consequence of Proposition 2.3 we state

Corollary 2.4. ϕ ≈ ψ iff ϕ ∼ ψ and dimϕ = dimψ. �

Given elements a1, . . . , an ∈ K∗, we denote the diagonal form



a1 0
. . .

0 an



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more succinctly by 〈a1, . . . , an〉. We have the rules

〈a1, . . . , an〉 ⊥ 〈b1, . . . , bm〉 ∼= 〈a1, . . . , an, b1, . . . , bm〉,

〈a1, . . . , an〉 ⊗ 〈b1, . . . , bm〉 ∼= 〈a1b1, . . . , a1bm, a2b1, . . . , anbm〉,

〈a,−a〉 ∼=

(
0 1
1 0

)

If for a form ϕ there exists at least one vector x with ϕ(x, x) 6= 0, then ϕ has
an orthogonal basis, i.e.ϕ can be diagonalized, ϕ ∼= 〈a1, . . . , an〉 for some ai ∈ K∗.

Otherwise ϕ is an orthogonal sum m×

(
0 1
1 0

)
of copies of the form

(
0 1
1 0

)
,

hence ϕ ∼ 0. Thus the Witt ring W(K) is additively generated by the classes {〈a〉}
with a running through K∗.

As a very special case of Proposition 1.1 we observe that two classes {〈a〉}, {〈b〉}
are equal iff 〈a〉 ∼= 〈b〉 iff the square classes aK∗ and bK∗2 are equal. In the following
we identify the set of these Witt classes, and also the set of isometry classes of one-
dimensional forms over K, with the group Q(K) = K∗/K∗2 of square classes of
K.

We have 〈a〉 ⊗ 〈b〉 = 〈ab〉, and thus may - and will - regard Q(K) as a subgroup
of the group W(K)∗ of units of the Witt ring W(K).

We return to the place λ : K → L ∪ ∞ with valuation ring O := Oλ. Our
specialization theory of bilinear forms is based on the following theorem.

Theorem 2.5. There exists a well defined additive map λW : W(K) → W(L),
which can be characterized as follows. If a is a unit of O, then λW (〈a〉) = 〈λ(a)〉.
If a square class 〈a〉 = aK∗2 does not contain a unit of O, then λW (〈a〉) = 0.1

This can be proved by using a description of the additive group of W(K) by
generators and relations. We have an additive map ΛW from the group ring Z[Q(K)]
to W(L), which maps a group element 〈a〉 ∈ Q(K) to 〈λ(a)〉 if a ∈ O∗, and to 0 if
aK∗2 does not contain a unit of O.

The obvious surjection Z[Q(K)] → W(K) has a kernel a which can be described
explicitly (cf. [Spez, §2]).

One then verifies that ΛW (a) = 0. Thus ΛW factors through an additive map
λW : W(K) → W(L) with the properties stated in the theorem.

Proposition 2.6. Assume that the form ϕ has good reduction under λ, and ϕ ∼=
(bij) is a λ-unimodular representation of ϕ. Then

λW ({ϕ}) = {(λ(bij))} (4)

�

This is obvious from Theorem 1.3 if (bij) is a diagonal matrix. In the general
case one has to argue that the symmetric matrix can be “diagonalized over O”, i.e.,

1The letter W in the notation λW refers to “Witt” or“weak” (cf. also §5).
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there exists an equation

(bij) = tU




c1 0
. . .

0 cn


U (5)

with ci ∈ O∗ and U ∈ GL(n,O).
This is not always true, but becomes true if we replace (bij), say, by (bij) ⊥

〈1,−1〉. The proof is best understood in the geometric setting to be developed in
§3.

Corollary 2.7. Assume that ϕ and ψ are forms over K with good reduction
and that ϕ ∼= (aij), ψ ∼= (bij) are λ-unimodular representations. If ϕ ≈ ψ, then
(λ(bij)) ≈ (λ(cij)).

Proof. We conclude by Theorem 2.5 that the forms (λ(bij)) and (λ(cij)) are Witt
equivalent, and then by Proposition 2.4 that they are stably isometric, since they
have the same dimension. �

In particular, if ϕ ∼= (aij) and ϕ ∼= (bij) are two λ-unimodular representations of
a form ϕ over K then the forms (λ(aij)) and (λ(bij)) over L are stably isometric.
Abusively we call (λ(aij)) “the” specialization of ϕ under λ, and denote this form
by λ∗(ϕ), although λ∗(ϕ) is uniquely determined by ϕ and λ only up to stable
isometry.

3. Bilinear Modules

We now switch to the “geometric language” for bilinear and - later ( §4) - qua-
dratic forms. Everything said in this section is very well known.

We first fix the basic notation valid for the rest of the paper. O always denotes
a valuation domain, m its maximal ideal, k = O/m its residue class field and K =
Quot(O) its quotient field, O∗ denotes the group of units of O, hence O∗ = O\m.

The case m = {0}, i.e., O = K, is by no means excluded.

A bilinear module M = (M,B) over O consists of an O-module M and a sym-
metric bilinear form B : M×M → O. If nothing else is said, we tacitly assume that
the O-module M is free of finite rank n. We write n = dimM. If e1, . . . , en is a basis
of M, then B is given by the symmetric n× n-matrix (aij) with aij = B(ei, ej).

Abusively we denote M = (M,B), or better, its isometry class by this matrix
(aij). If e1, . . . , en is an orthogonal basis, aij = aiδij , we denote the bilinear module
M also by 〈a1, . . . , an〉.

We call the bilinear module M (or the form B) non degenerate if B gives
an isomorphism of O-modules x 7→ B(x,−) from M to its dual module M̌ =
HomO(M,O). This means that det(aij) ∈ O∗. We then also say that M is a
bilinear space over O.

It is well known that if M is a bilinear space containing a vector x with B(x, x) ∈
O∗, then M has an orthogonal basis, hence M ∼= 〈a1, . . . , an〉 with ai ∈ O∗. This
fills the gap in our sketch of proof of §2, Proposition 2.6.

We call a submodule N of a bilinear space M a subspace of M , if N is a direct
summand of the module M . It will be helpful to remember that every finitely
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generated torsion free O-module is free. Thus a submodule N of M is a subspace
iff M/N is torsion free.

For any subset S of a bilinear module M the module

S⊥ = {x ∈M | B(x, S) = 0}

is a direct summand of M, since M/S⊥ is clearly torsion free and finitely generated.
We call a bilinear space M isotropic, if M contains a subspace U 6= 0, which is

“totally isotropic”, i.e., B(U,U) = 0, in other terms, U ⊂ U⊥. Otherwise we call
M anisotropic.

Since O has no zero divisors, and every finitely generated ideal of O is principal,
it is easily seen that M is isotropic iff there exists a vector x 6= 0 in M with
B(x, x) = 0.

Indeed, we may always write x = cz with c ∈ O and z a primitive vector of
M, i.e., a vector z, such that Oz is a direct summand of the module M . { N.B.:
If e1, . . . , en is a basis of M and z = a1e1 + . . . + anen, then z is primitive iff
a1O + . . .+ anO = O.}

We call M metabolic if M contains a subspace U = U⊥. Equivalently we can say,
that M is metabolic iff M contains a totally isotropic subspace U with 2 dimU =
dimM . Every metabolic space M has an orthogonal decomposition

M ∼=

(
a1 1
1 0

)
⊥ . . . ⊥

(
am 1
1 0

)

with some ai ∈ O. Notice that in the case O = K our present terminology is
in complete harmony with §2, identifying isometry classes of spaces and isometry
classes of forms in the obvious way.

Every bilinear space M is an orthogonal sum of an anisotropic space M0 and a
metabolic space M1. But now, in contrast to the case O = K (cf. Prop. 2.3), the
isometry class of M0 usually is not uniquely determined by M, if 2 6∈ O∗.

For the rest of this section “space” always means “bilinear space”. Exactly as
in §2 we define stable isometry (≈) and Witt equivalence (∼) of forms over O,and
then proceed as there to the Witt ring W(O) consisting of the Witt (equivalence)
classes of spaces.

We denote the Witt class of a space M by {M}. It turns out that {M} = 0,
i.e., M ∼ 0, iff M is metabolic. Also, for every space M = (M,B) the space
(M,B) ⊥ (M,−B) is metabolic. Thus, abbreviating the space (M,−B) by −M,
we have {−M} = −{M} in W(O).

The bilinear form B on M extends in a unique way to a K-bilinear form B′ on
the K-vector space E := K ⊗O M obeying the formula

B′(c⊗ x, d⊗ y) = cdB(x, y) (6)

for x, y ∈ M and c, d ∈ K. Identifying an element x of M with 1 ⊗ x ∈ E, we
regard the free module M as an O-submodule of E. We then have B′|M×M = B.
A basis e1, . . . , en of M over O is also a basis of E over K, and the spaces M and
E have the same symmetric matrix (aij) with respect to e1, . . . , en. We often write
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B instead of B′.

If U is a subspace of E, then U ∩M is a subspace of M, and K · (U ∩M) = U .
In this way the subspaces of E correspond uniquely to the subspaces of M. Clearly
U is totally isotropic iff U ∩M is totally isotropic. Thus the following proposition
is pretty obvious.

Proposition 3.1. Let M be a space over O and E := K ⊗O M .

a) E is isotropic iff M is isotropic.
b) E is metabolic iff M is metabolic.

It follows that the natural map {M} 7→ {K⊗OM} from W (O) to W(K), which
is a ring homomorphism, is injective. We will often regard W(O) as a subring of
W(K).

The square class group Q(O) := O∗/O∗2 of O injects into Q(K) = K∗/K∗2 since
clearly every unit of O which is a square in K is a square in O. As previously in
the case of fields we identify a square class aO∗2, a ∈ O∗, with the one-dimensional
space 〈a〉 over O (more precisely, with its isometry class), and then observe that
the natural map Q(O) → W(O) is injective, due to a natural commuting square

Q(O)
� _

��

// W(O)

��

Q(K) � � // W(K)

(7)

Thus Q(O) can – and will – be also viewed as a subgroup of W(O)∗. In other
terms, if a, b ∈ O∗ then 〈a〉 ∼ 〈b〉 iff 〈a〉 ∼= 〈b〉.

Without invoking the commutative square (7) this can be also proved by use of
the signed determinant

d(M) := 〈(−1)
n(n−1)

2 det(aij)〉 (8)

of an n-dimensional space M ∼= (aij) over O.

We switch to a place λ : K → L ∪∞ with valuation domain O = Oλ. The no-
tation from §2 (λW , good reduction, λ∗ etc.) will be freely used for spaces instead
of forms.

Our place λ restricts to a ring homomorphism λ|O from O to L, and λ|O factors

through a field embedding λ : k →֒ L. The definition of good reduction (Def. 2.1)
and specialization under λ now reads as follows.

Scholium 3.2. A bilinear space E over K has good reduction under λ iff E ∼=
K ⊗O M for some bilinear space M over O. In this case

λ∗(E) ≈ L⊗λ M = L⊗λ M. (9)
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Here L ⊗λ M denotes the scalar extension of the bilinear module M to L via
λ | O, 2 and M is the bilinear space M/mM over k obtained from M by reduction
modulo m.

�

Example 3.3. Every metabolic space over K has good reduction. This follows

easily from the fact that, for any a, c ∈ K we have

(
a 1
1 0

)
∼=

(
ac2 1
1 0

)
. �

Corollary 2.7 tells us that, if E and F are spaces with good reduction and E ≈ F,
then λ∗(E) ≈ λ∗(F ).{ In particular λ∗(E) is well defined up to stable isometry. }.
This can now be proved in another, more transparent way as follows.

Let E ∼= K ⊗O M, F ∼= K ⊗O N with spaces M,N over O. Then K ⊗O (M ⊥
−N) ∼= E ⊥ −F is metabolic, hence M ⊥ −N is metabolic by Proposition 3.1, and
this implies that

L⊗λ (M ⊥ −N) ∼= L⊗λ M ⊥ (−L⊗λ N)

is metabolic. Thus L⊗λM ad L⊗λN are Witt equivalent. Since these spaces have
the same dimension, they are stably isomorphic.

We also want to describe the map λW from §2 in geometric language.
Preparing for this we add more notation, which will be important also for later

sections.

We choose a surjective valuation v : K → Γ ∪∞, essentially unique, associated
with our valuation domain O. So Γ ∼= K∗/O∗.{ We use additive notation for Γ, so
v(xy) = v(x) + v(y).} We regard Q(O) as a subgroup of Q(K), and we choose a
complement Σ ofQ(O) in Q(K), i.e., a subgroup Σ ofQ(K) with Q(K) = Q(O)×Σ.

This is possible, since the group Q(K) is elementary abelian of exponent 2. Fur-
ther, we choose, for every square class σ ∈ Σ an element s ∈ O with σ = 〈s〉. For
σ = 1 we choose the representative s = 1. Let S be the set of these elements s.
For every a ∈ K∗, there exists exactly one s ∈ S and elements ε ∈ O∗, b ∈ K∗ with
a = sεb2. Since K∗/O∗ ∼= Γ, it is clear that S (resp. Σ) is a system of representa-
tives of Γ/2Γ in K∗ (resp. Q(K)) for the homomorphism from K∗ (resp. Q(K))
onto Γ/2Γ determined by υ : K∗ → Γ.

Definition 3.4. A λ-modular decomposition of a bilinear space E over K is an
orthogonal decomposition

E ∼= ⊥
s∈S

〈s〉 ⊗ (K ⊗O Ms)

with every Ms a space over O and only finitely many Ms 6= 0. Here the unadorned
⊗ means tensor product over K. Instead of “λ-modular” we also use the word
“O-modular”, since not the place λ but only the valuation domain O is involved.
�

Every space E over K has a λ-modular decomposition. Indeed, we may decom-
pose E orthogonally in one-dimensional spaces and metabolic planes, usually in

2The bilinear form of L ⊗λ M is defined by a formula analogous to (6) above.
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many ways. One-dimensional spaces are products 〈s〉 ⊗ 〈ε〉 with s ∈ S, ε ∈ O∗, and

metabolic spaces are orthogonal sums of forms

(
a 1
1 0

)
with a ∈ O. One then

simply gathers summands belonging to the same s ∈ S.

The following is now obvious from §2.

Scholium 3.5. Assume that

E ∼= ⊥
s∈S

〈s〉 ⊗ (K ⊗O Ms)

is a λ-modular decomposition of a space E over K. Then

λW ({E}) = {L⊗λ M1}. (10)

�

In particular the space L⊗OM1 over L is uniquely determined by E up to Witt
equivalence. In contrast to Scholium 3.2 we do not have a proof of this fact in
simple geometric terms. Thus we cannot assert that the present “geometric lan-
guage” supersedes the “algebraic language” of §2. We call the space L ⊗O M1 a
weak specialization of E with respect to λ.

We add an important result about good reduction. Starting from now we often
abbreviate “good reduction” by “GR”.

First notice the trivial fact, that, if E and F are spaces over K with GR under
λ, then E ⊥ F has again GR under λ, and

λ∗(E ⊥ F ) ≈ λ∗(E) ⊥ λ∗(F ). (11)

Theorem 3.6. Let E and F bilinear spaces over K. Assume that F and E ⊥ F
have GR under λ. Then E has GR under λ.

Proof. Adding −F to the space F we retreat to the case that F is metabolic. Let
E ⊥ F ∼= K ⊗ON with N a space over O. We choose decomposition E ∼= E0 ⊥ E1

and N ∼= N0 ⊥ N1 with E0 and N0 anisotropic, E1 and N1 metabolic.

Then
E0 ⊥ E1 ⊥ F ∼= K ⊗O N0 ⊥ K ⊗O N1.

The spaces E0 and K⊗ON0 are anisotropic, and the spaces E1 ⊥ F andK⊗ON1

are metabolic. We conclude by Proposition 2.3 that E0
∼= K ⊗O N0. Thus E0 has

GR. The space E1 is metabolic, hence also has GR. Thus E ∼= E0 ⊥ E1 has GR. �

4. Quadratic modules

We retain the notation and conventions of §3. In particular, O denotes a val-
uation domain, and modules over O will be free of finite rank, if nothing else is said.

A quadratic module M = (M, q) over O is an O-module M equipped with a
quadratic form q. This is a function q : M → O such that q(cx) = c2q(x) for
c ∈ O, x ∈M, and the map Bq : M ×M → O given by

Bq(x, y) = q(x+ y) − q(x) − q(y) (12)



10 MANFRED KNEBUSCH

is O-bilinear. If e1, . . . , en is a basis of M then q is determined by the values
ai = q(ei), aij = B(ei, ej) for i 6= j. More precisely,

q(

n∑

1

xiei) =

n∑

i=1

aix
2
1 +

∑

i<j

aijxixj (13)

for x1, . . . , xn ∈ O.

We have an obvious notion of isometry (= isomorphism) between quadratic mod-
ule over O, and most often will be only interested in the isometry class of a quadratic
module (M, q). Slightly abusively we abbreviate a quadratic module M with qua-
dratic form (13) by the symmetric matrix [aij ] in square brackets, with aij as

above ad aii := ai. The associated bilinear module M̃ := (M,Bq) is described by
the matrix (bij) with bii = 2ai, and bij = aij for i 6= j.

The orthogonal sum of two quadratic modules (M1, q1) and (M2, q2) over O is
defined by

(M1, q1) ⊥ (M2, q2) := (M1 ⊕M2, q1 ⊥ q2)

with

(q1 ⊥ q2)(x1 + x2) := q1(x1) + q2(x2)

(x1 ∈ M1, x2 ∈ M2). Notice that the associated bilinear module of (M1, q1) ⊥

(M2, q2) is the orthogonal sum M̃1 ⊥ M̃2.

Orthogonality in a quadratic module M = (M, q) refers to the bilinear form Bq.
In particular, if N1 and N2 are submodules of M, then M = N1 ⊥ N2 means that
M = N1⊕N2 as an O-module and Bq(N1, N2) = 0. The following fact will be used
frequently.

Lemma 4.1. Let M = (M, q) be a quadratic module. Assume that N is a submod-
ule of M and the bilinear form Bq|N×N is non-degenerate. Then

M = N ⊕N⊥.

�

Often we will denote a quadratic module by one letter, sayM, without specifying
the quadratic form on M. We then usually denote this form by q and the associated
bilinear form Bq by B.

If 2 6= 0 in O, then a quadratic module M may be viewed as a bilinear module
with B(x, x) ∈ 2O for every x ∈ M via the formula B(x, x) = 2q(x), and if 2 is a
unit of O we may identify in this way quadratic and bilinear modules over O. But,
if 2 = 0 in O, bilinear and quadratic modules over O are rather different objects.

Definition 4.2.

a) A quadratic module N = (N, q) is called quasilinear if Bq = 0.
b) If M is any quadratic module over O, then the quadratic module

M⊥ := {x ∈M | B(x,M) = 0}

with the form q|M⊥ is called the quasilinear part of M . We denote it by
QL(M).
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M⊥ is a direct summand of the O-module M . Choosing any submodule N of M
with M = N ⊕M⊥ we have

M ∼= N ⊥ QL(M)

as quadratic module. Moreover, QL(M) is an orthogonal sum of quadratic modules
of dimension (= rank) 1,

QL(M) = [a1] ⊥ . . . ⊥ [an]

with ai ∈ O.

The following definition will be central for our theory of good reduction and
specialization of a quadratic form over a field under a place.

Definition 4.3. We call a quadratic module (M, q) over O nondegenerate, if it
satisfies the following conditions:

(Q0) M is free of finite rank.
(Q1) The bilinear form Bq, induced by Bq on M/M⊥ in the obvious way, is

nondegenerate.
(Q2) q(x) ∈ O∗ for every vector x in M⊥, which is primitive in M⊥ (and hence

in M).

If instead of (Q2), the following condition is satisfied

(Q2′) QL(M) = 0 or QL(M) ∼= [ε] with ε ∈ O∗,

then we call (M, q) regular.
In the special case M⊥ = 0, we call (M, q) strictly regular.

Comment on conditions (Q2) and (Q2’).
If 2 6= 0 in O, then q|M⊥ = 0 and the requirement (Q2) implies M⊥ = 0, hence

implies - in conjunction with (Q0) and (Q1) - strict regularity. If 2 ∈ O∗, then
the nondegenerate quadratic O-modules are the same objects as the nondegenerate
bilinear O-modules, as defined in §3.

Suppose now that 2 = 0 in O. The condition M⊥ = 0, in other words, strict
regularity, is very natural but too limited for applications. Indeed, if M⊥ = 0, then
the bilinear module (M,Bq) is nondegenerate and we have Bq(x, x) = 2q(x) = 0
for every x ∈ M . This implies that M has even dimension, as is well-known. (To

prove this, consider the bilinear space K ⊗O M̃.) So, if we insist on using strict
regularity, we can only deal with quadratic forms of even dimension.

On the other hand, property Q2 has an annoying effect: Q2 is not always pre-
served under a base extension. If O′ ⊃ O is another valuation domain, whose
maximal ideal m

′ lies over m, i.e., m
′ ∩ O = m, and if M is non degenerate, then

O′ ⊗O M can be degenerate. However, if M satisfies (Q2′), this clearly cannot
happen. �

In the case m = 0, i.e., O = K, we call a non degenerate quadratic O-module a
quadratic space over K.

We gather some facts about nondegenerate quadratic modules, all to be found
in [Spez, §6]. In the following M = (M, q) is a quadratic module over O.
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Fact 4.4. If M is nondegenerate then M is an orthogonal sum of quadratic modules[
α 1
1 β

]
, with α, β ∈ O, 1 − 4αβ ∈ O∗, and modules [ε] with ε ∈ O∗. �

Fact 4.5. If M is regular and dimM is even, then M is strictly regular and equal

to an orthogonal sum of modules

[
α 1
1 β

]
, with α, β ∈ O, 1 - 4αβ ∈ O∗. �

Fact 4.6. Assume that M is nondegenerate. Then every primitive vector e ∈ M
with q(e) = 0 can be completed to a hyperbolic vector pair, i.e., a pair e, f with
q(f) = 0 and B(e, f) = 1. �

As an illustration, how our conditions Q1 and Q2 can be put to work, we give
the proof of 4.6. We choose a decomposition M = N ⊥ M⊥ and write e = x + y
with x ∈ N, y ∈ M⊥. Suppose for the sake of contradiction that the vector x is
not primitive in N, hence not primitive in M. Then y is primitive in M⊥, and
thus q(y) ∈ O∗ by condition Q2. Hence also q(x) = −q(y) ∈ O∗ and x has to be
primitive, a contradiction.
Thus x is primitive in N . Since Bq is nondegenerate on N, there exists some z ∈ N
with Bq(x, z) = 1. We also have Bq(e, z) = 1. Clearly f := z− q(z)e completes the
vector e to a hyperbolic pair. �

Fact 4.7. (Cancellation theorem) If M and N are quadratic O-modules and G is
a strictly regular quadratic O-module with M ⊥ G ∼= N ⊥ G, then M ∼= N . �

We call a quadratic O-module M isotropic, if M contains a vector x 6= 0 with
q(x) = 0, anisotropic otherwise. We call M hyperbolic if M is isometric to an or-

thogonal sum r×

[
0 1
1 0

]
of r copies of the “hyperbolic plane”

[
0 1
1 0

]
for some

r ∈ N. As in the bilinear case one proves easily:

Fact 4.8. M is isotropic iff the quadratic module K ⊗O M over K is isotropic,
and M is hyperbolic iff K ⊗O M is hyperbolic. �

Fact 4.9. (Witt decomposition). If M is nondegenerate, then

M ∼= M0 ⊥ r ×

[
0 1
1 0

]

with M0 anisotropic (and nondegenerate) and r ∈ N0. �

It follows from 4.7 that the number r and the isometry class of M0 are uniquely
determined by M . We call r the (Witt-) index of M and M0 the kernel module,
or the anisotropic part of M, and we write r = ind(M),M0 = ker(M). We often

denote the hyperbolic plane

[
0 1
1 0

]
by H (regardless which ring O is under con-

sideration).

Notice also that, by 4.8, we have ind(K ⊗O M) = ind(M) and ker(K ⊗O M) =
K ⊗O ker(M).

Fact 4.10. If M = (M, q) is strictly regular then

(M, q) ⊥ (M,−q) ∼= (dimM) ×H.

�
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If we write M for (M, q) we usually write −M for (M,−q), following the same
practice as for bilinear modules.

Definition 4.11. We call two nondegenerate quadratic modules M and N over O
Witt-equivalent, and write M ∼ N if there exist natural numbers s, t such that

M ⊥ s×

[
0 1
1 0

]
∼= N ∼ t×

[
0 1
1 0

]
.

Due to 4.9 this happens iff ker(M) ∼= ker(N). The Witt class of M, i.e., the
equivalence of M under ∼, will be denoted by {M}. �

It is now easy to verify:

Fact 4.12. If M,M ′ are strictly regular and N,N ′ are non degenerate quadratic
modules over O with M ∼ M ′ and N ∼ N ′, then M ⊥ N and M ′ ⊥ N ′ are non
degenerate and M ⊥ N ∼M ′ ⊥ N ′. �

Definition 4.13. We denote the set of Witt classes of nondegenerate quadratic O-

modules by W̃q(O). We denote the subsets of Witt classes of regular, resp. strictly
regular quadratic O-modules by Wqr(O), resp.Wq(O). �

Due to 4.12 we have a well-defined “addition” of classes {M} ∈ Wq(O) with

classes {N} ∈ W̃q(O),
{M} + {N} := {M ⊥ N}.

Restricting also {N} to Wq(O) we obtain on Wq(O) the structure of an abelian

group. This groups Wq(O) operates by addition on the set W̃q(O). The subset
Wqr(O) is a union of orbits.

Definition 4.14. We call Wq(O) the quadratic Witt group of O, W̃q(O) the qua-
dratic Witt set of O, and Wqr(O) the regular quadratic Witt set of O. �

In the case O = K we go further and define Witt classes of arbitrary (finite
dimensional) quadratic modules over K as follows.

Starting with such a module M = (M, q) we define the “defect” of M by

δ(M) = {x ∈M⊥ : q(x) = 0}.

The form q gives us a quadratic form q on M/δ(M) in the obvious way, hence
a quadratic space (M/δ(M), q), which we call the quadratic space associated to M

and denote by M̂ . Clearly

M ∼= M̂ ⊥ δ(M) ∼= M̂ ⊥ s× [0]

with s := dim δ(M). We have

M ∼= M0 ⊥ r ×H

with M̂0 anisotropic and r ∈ N0.

Again M0 and r are uniquely determined by M, and again we call M0 the kernel
module ker(M) of M and r the index ind(M) of M. Notice that now M0 can be
isotropic. Notice that in contrast to strictly regular quadratic spaces we do not
have cancellation in general. For example [a] ⊥ [a] ∼= [0] ⊥ [a] for any a ∈ K.
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We call two quadratic modules M,N over K Witt equivalent, and write M ∼ N ,
if M ⊥ s × H ∼= N ⊥ t × H for some number s, t. This means the same as
ker(M) ∼= ker(N). We denote the set of Witt equivalence classes {M} of quadratic

K-modules M by Ŵq(K), and we call Ŵq(K) the defective quadratic Witt set of

K. The value {M} + {N} = {M ⊥ N} makes Ŵq(K) an abelian semigroup with

neutral element {0} = {H}. It contains W̃q(K) as a subset and Wq(K) as a sub-
group.

The reason why we need Ŵq(K) instead of just W̃q(K) is lack of functoriality
of the latter set. If K ′ ⊃ K is a field extension, we have a well defined semigroup

homomorphism Ŵq(K) → Ŵq(K ′) mapping a class {M} to {K ′ ⊗K M}. This

homomorphism does not map W̃q(K) to W̃q(K ′) in general (if char K = 2), since
for a space M over K the quasilinear part of K ′ ⊗K M may be isotropic.

We return to an arbitrary valuation ring O. If M1 = (M1, B1) is a bilinear O-
module and M2 = (M2, q2) is a quadratic O-module, we can install on the tensor
product M1 ⊗O M2 a quadratic form q := B1 ⊗ q2 be choosing a (non symmetric)
bilinear form β2 with β2(z, z) = q2(z) for all z ∈ M2, taking the tensor product
β := B1 ⊗ β2 on M1 ⊗M2, and putting q(x) := β(x, x). The quadratic form q is
independent of the choice of β, and can be characterized by the rules

Bq = B1 ⊗ Bq2 , q(x1 ⊗ x2) = B1(x1, x1)q2(x2)

(x1 ∈M1, x2 ∈M2).

We denote the quadratic module (M1 ⊗O M2, q) by M1 ⊗ M2 for short. If
M1 = 〈a1, . . . , an〉, then

M1 ⊗M2
∼= (M2, a1q2) ⊥ . . . ⊥ (M2, arq2).

In particular, for any a ∈ K,

〈a〉 ⊗M2
∼= (M2, aq2).

If M1 is non degenerate and M2 is strictly regular then M1 ⊗ M2 is strictly
regular. It is now straightforward to verify that we have a well defined product of
Witt classes

{M1} · {M2} = {M1 ⊗M2},

which turns Wq(O) into a module over the ring W(O). { Notice in particular that,
if M1 ≈M ′

1 then M1⊗M2
∼= M ′

1 ⊗M2. } Unfortunately there seems to be no good

way to let W(O) operate on W̃q(O).

5. Weak specialization and good reduction

As in previous sections λ : K → L∪∞ is a place, O = Oλ is the valuation domain
of λ,m its maximal ideal and k = O/m its residue class field. Let E = (E, q) be a
quadratic space over K.

Definition 5.1. We say that E has good reduction (abbreviated: GR) with respect
to λ if E ∼= K ⊗O M with M a non degenerate quadratic O-module. �



SPECIALIZATION OF FORMS . . . 15

In this situation we obtain from E a quadratic L-module

λ∗(E) := L⊗λ M = L⊗λ M/mM (14)

(Notations analogous to those in §3). Notice that the “reduced” quadratic module
M/mM over k is non degenerate, but L ⊗λ M/mM may be degenerate, since the
quasilinear part of M/mM may become isotropic over L.

We would like to prove that the quadratic module λ∗(E) is independent of the
choice of M .

Only then the notation λ∗(E) will be justified. If E is strictly regular this
can be done by the same sort of geometric argument as used in §3 in the bilin-
ear case. To prove it in the general case we would like to use an additive map

λW : Ŵq(K) → Ŵq(L), similar to the map λW : W(K) → W(L) from §2, and then
to proceed in a similar way as in §2 and §3 for bilinear spaces. But now a new path

has to be taken, since we do not have a presentation of Ŵq(K) by generators and
relations which fits well with the place λ.

Let Oh denote the henselization of O,Kh its field of quotient (= the henselization
of K with respect to O). λ extends to a place λh : Kh → L∪∞ with valuation ring
Oh, since Oh has the same residue class field Oh/mh = O/m as O. If M is a non
degenerate quadratic O-module, Mh := Oh ⊗O M is again non degenerate and

L⊗λ M = L⊗λh Mh.

Thus we can retreat to the case that O is henselian.

Here the following lemma offers help.

Lemma 5.2. Assume that O is henselian. Let E = (E, q) be an anisotropic qua-
dratic space over K.

(a) The sets

µ(E) := {x ∈ E | q(x) ∈ O} and µ+(E) := {x ∈ E | q(x) ∈ m}

are O-submodules of E.
(b) For any x ∈ µ(E) and y ∈ µ+(E) we have q(x + y) − q(x) ∈ m and

Bq(x, y) ∈ m.

�

By this lemma
ρ(E) := µ(E)/µ+(E)

is a k-vector space in a natural sense (k = O/m). We define a function q : ρ(E) → k
as follows:

q(x) := q(x) (x ∈ µ(E)),

where x denotes the image of x ∈ µ(E) in ρ(E) and a denotes the image of a ∈ O
in k. Lemma 4.1 tells us that the map q is well defined, and, using the lemma
further, one proves easily that q is a quadratic form on the k-vector space ρ(E)
with associated bilinear form B = Bq given by

B(x, y) = B(x, y).
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The quadratic k-module (ρ(E), q) is clearly anisotropic.

If O is not necessarily henselian we are motivated by this lemma to make the
following Ansatz in order to associate to a space E over K a Witt class λW {E}
over L :

λW {E} := {L⊗λ ρ(ker(Kh ⊗ E)}, (15)

where, as before, λ : k →֒ L is the field embedding determined by λ.

All good and well, if only we know whether the vector space

ρ(ker(Kh ⊗ E))

has finite dimension! To guarantee this we have to confine the class of allowed
quadratic modules E.

As explicated in §3 we choose a system S of representatives of Γ/2Γ in K (with
1 ∈ S), where Γ = K∗/O∗ is the value group of the natural valuation associated to
O.

Definition 5.3. A quadratic space E over K is obedient with respect to λ if E has
an orthogonal decomposition

E = ⊥
s∈S

Es, (16)

such that each space (Es, s · (q|Es
)) has GR under λ, hence

Es = KMs
∼= 〈s〉 ⊗ (K ⊗O Ms) (17)

with Ms a non degenerate quadratic O-submodule of Es.
3 Then (16) is called a

λ-modular decomposition of E, and (16), (17) is called a λ-modular representation
of E. Instead of “λ-modular” we also use the term “O-modular”. �

It is no big deal to verify the following two lemmas.

Lemma 5.4. Assume that O is henselian and E is an obedient anisotropic qua-
dratic space over K, with O-modular representation (16), (17). Then (M1, q|M1) is
the only non degenerate quadratic O-submodule of E1, and

µ(E) = M1 ⊥ ⊥
s6=1

µ+(Es),

µ+(E) = mM1 ⊥ ⊥
s6=1

µ+(Es).

Thus

(ρ(E), q) ∼= (M1/mM1, q1)

with q1 := q|M1 . �

3Of course, Es 6= 0 only for finitely many s ∈ S.



SPECIALIZATION OF FORMS . . . 17

Lemma 5.5. Let O be henselian. Let s1, . . . , sr be different elements of S and
M1, . . . ,Mr anisotropic nondegenerate quadratic O-modules. Then

E :=
n

⊥
i=1

〈si〉 ⊗ (K ⊗O Mi)

is an anisotropic quadratic space over K. �

We arrive at the main theorem of this section.

Theorem 5.6. Let E be a quadratic space over K, obedient with respect to O. Let

E = ⊥
s∈S

Es = ⊥
s∈S

Fs

be two O-modular decompositions of E, and also let M1, N1 be nondegenerate qua-
dratic O-modules with E1

∼= K ⊗O M1, F1
∼= K ⊗O N1. Then the quadratic spaces

M1/mM1 and N1/mN1 over k = O/m are Witt equivalent.

For the proof one passes from K to Kh, chooses Witt decompositions of the
quadratic Oh-modules Mh

i , N
h
j , and then computers the kernel space of Eh in two

different ways applying Lemma 5. Then Lemma 4 gives the result.

Definition 5.7. Let E be a quadratic space over K, obedient with respect to λ.
If E = ⊥

s∈S
Es is a λ-modular decomposition of E, and M1 is a non degenerate

quadratic O-module with E1
∼= K ⊗O M1, then we call the quadratic space

L⊗λ M1 = L⊗λ M1/mM1

a weak specialization of E with respect to λ. (As before, ⊗λ denotes a base extension
with respect to the homomorphism λ|O : O → L.)

By Theorem 5.6, the space L ⊗λ M1 is uniquely determined by E and λ, up to
Witt equivalence. We denote its Witt class by λW (E), i.e.,

λW (E) := {L⊗λ M1} ∈ Ŵq(L).

(“W” as in “Witt” or “weak”.) �

Remark. If E is strictly regular, then E1 is strictly regular, henceM1 is strictly regu-
lar, and we conclude that λW (E) ∈ Wq(L). In particular this happens if charK 6= 2.
If E is only regular then M1 is still regular, hence λW (E) ∈ Wqr(L), since now the
quasilinear part of L ⊗λ M1 has at most dimension 1, hence is anisotropic. If
charL 6= 2 then quadratic spaces over K resp. L can be identified with bilinear
spaces over K resp. L, and the present weak specialization coincides with the weak
specialization of §2 and §3. �

Corollary 5.8. If E and E′ are quadratic spaces over K, both obedient with respect
to λ, and if E ∼ E′, then λW (E) = λW (E′).

Proof. This can be quickly deduced from Theorem 5.6. Suppose without loss

of generality that dimE ≤ dimE′. Then E′ ∼= E ⊥ r ×

[
0 1
1 0

]
for a certain

r ∈ N0. If we choose a non degenerate O-module M1 for E1, as in Definition 5.7, the
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M ′
1 := M1 ⊥ r×

[
0 1
1 0

]
is a possible choice for E′. Therefore, L⊗λM

′
1 ∼ L⊗λM1.

�

Remark 5.9. Let E and F be quadratic spaces over K, obedient with respect to λ,
and suppose that E is strictly regular.

Obviously we then have

λW (E ⊥ F ) = λW (E) + λW (F ).

�

{The addition of an element of Wq(K) and an element of W̃q(K) has been
explained in §4.}

We do not exploit here the full power of weak specializations but use them only
to justify the Ansatz (15) from the beginning of the section for specializing a space
with good reduction.

Scholium 5.10. Assume that E has GR under λ,E ∼= K ⊗O M with M a non-
degenerate quadratic O-module. Then L⊗λ M is uniquely determined by E and λ
up to isometry. Indeed, the Witt class of L⊗λ M does not depend on the choice of
M by Theorem 5.6, and dimL⊗λ M = dimE.

Definition 5.11. If E has GR under λ we define

λ∗(E) := L⊗λ M,

and we call λ∗(E) the specialization of E under λ.

If E and F are quadratic K-spaces with GR under λ and E is strictly regular,
then E ⊥ F has GR under λ and clearly

λ∗(E ⊥ F ) = λ∗(E) ⊥ λ∗(F ).

By arguments analogous to the proof of Theorem 3.6 one now obtain the following
important fact.

Theorem 5.12. Let F and G be quadratic spaces over K. Suppose that F is
strictly regular. If F and F ⊥ G have GR with respect to λ, then G also has GR
with respect to λ.

We mention that – under some precaution – weak specialization is compatible
with the tensor product of a bilinear and quadratic space. For example the following
holds.

Remark 5.13. Let F be a bilinear space and G a strictly regular quadratic space
our K. Suppose that G has GR under λ. Then F ⊗ G is obedient with respect to
λ, and

λW (F ⊗G) = λW (F )λW (G) = λW (F ){λ∗(G)}.

�
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6. Generic splitting of quadratic forms

In the following quadratic O-modules leave the stage and will act only from the
background. Openly we only deal with quadratic spaces over fields. Thus we switch
to the language of quadratic forms (= homogeneous polynomials of degree 2) over
fields, freely using the terminology of §4 and §5 for forms instead of spaces.

If ϕ = ϕ(x1, . . . , xn) is a form4 over a field k and k ⊂ K is a field extension
then ϕ ⊗ K denotes the polynomial ϕ as an element of K[x1, . . . , xn] instead of
k[x1, . . . , xn].

It turns out that we can extend the well known generic splitting theory of forms
over fields of characteristic 6= 2 to arbitrary fields, as long as we can guarantee
that under the relevant places λ : K → L ∪ ∞ a given form ϕ over K with GR
with respect to λ5 has a specialization λ∗(ϕ) which is again nondegenerate, i.e.,
the specialization λ∗(QL(ϕ)) of the quasilinear part QL(ϕ) remains anisotropic {
Slogan: “Do not destroy the quasilinear part!”}

Definition 6.1. Let ϕ be a nondegenerate form over a field k. We call a field
extensions k ⊂ K ϕ-conservative if K ⊗ϕ is again nondegenerate, i.e., K ⊗QL(ϕ)
is anisotropic. �

Notice that a separable field extension k ⊂ K is ϕ-conservative for every ϕ, since
an anisotropic quasilinear form over k remains anisotropic over K.

Notice also that, if ϕ is regular then every field extension k ⊂ K is ϕ-conservative,
since forms of dimension ≤ 1 cannot become isotropic.

The generic splitting theory of a non degenerate form ϕ over k will deal with the
Witt decomposition of K ⊗ ϕ for K varying in the class of all ϕ-conservative field
extension of k.

The following observation is crucial here.

Theorem 6.2. Let λ : K → L∪∞ be a place and ϕ a form over K which has GR
with respect to λ. Suppose that also λ∗(ϕ) is nondegenerate. Suppose further that
K ′ ⊃ K is a field extension and that µ : K ′ → L∪∞ is a place extending λ. Then
the form ϕ⊗K ′ has GR with respect to µ and

µ∗(ϕ⊗K ′) = λ∗(ϕ).

Proof. Let O := Oλ, O′ := Oµ, and let k and k′ denote the residue class fields

of O and O′ respectively. The field extension λ : k →֒ L is a composition of the
extensions k →֒ k′ and µ : k′ →֒ L, where the first extension is induced by the
inclusion O →֒ O′.

Let E be a quadratic space for ϕ and M a nondegenerate quadratic O-module
with E ∼= K ⊗O M . Then K ′ ⊗ E = K ′ ⊗O′ M ′ with M ′ := O′ ⊗O M. The

4 “Form” will always mean“quadratic form”.
5 This assumption presupposes that ϕ is nondegenerate (cf. §5, Def. 1).
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quasilinear quadratic k-module G := k ⊗O QL(M) is anisotropic. By assumption,
L⊗λ G = QL(L⊗λ M) is also anisotropic. Therefore

k′ ⊗k G = k′ ⊗O ′ QL(M ′)

is anisotropic. This proves that M ′ is a nondegenerate quadratic O′-module. Hence
ϕ ⊗K ′ is nondegenerate and has GR with respect to µ. Furthermore µ∗(ϕ ⊗K ′)
corresponds to the quadratic space

L⊗µ M
′ = L⊗µ (O′ ⊗O M) = L⊗λ M.

Hence µ∗(ϕ⊗K ′) = λ∗(ϕ). �

In the following ϕ is a nondegenerate form over a field k.

Scholium 6.3. Let K ⊃ k, L ⊃ k be field extensions of k, and let λ : K → L ∪∞
be a place over k, i.e., a place extending the trivial place k →֒ L. Assume that L
is ϕ-conservative. Then Theorem 6.2 tells us that K is ϕ-conservative, ϕ⊗K has
GR with respect to λ, and λ∗(ϕ⊗K) = ϕ⊗ L.

Let ϕ⊗K ∼= ϕ1 ⊥ r1 ×H be the Witt decomposition of ϕ. By Theorem 5.12 it
follows that ϕ1 has GR with respect to λ, and hence

ϕ⊗ L = λ∗(ϕ⊗K) = λ∗(ϕ1) ⊥ r ×H.

{We denote the hyperbolic plane

[
0 1
1 0

]
over any field (or ring) by H .}

Thus ind(ϕ⊗ L) ≥ ind(ϕ⊗K), and, in case of equality,

ker(ϕ⊗ L) = λ∗(ker(ϕ⊗K)).

It now follows that, if K and L are specialization equivalent over k, i.e., there
exists also a place over k from L to K, then

ind(ϕ⊗ L) = ind(ϕ⊗K),

and

ker(ϕ⊗ L) = λ∗(kerϕ⊗K)

for any place λ from K to L over k. �

Definition 6.4. We call a field extension K ⊃ k a generic zero field of ϕ, if K is
ϕ-conservative, and there exists a place from K to L over ϕ for any ϕ-conservative
field extension L ⊃ k such that ϕ⊗ L is isotropic. �

Notice that ϕ⊗ L is isotropic iff ind(ϕ⊗ L) ≥ 1, since ϕ⊗ L is nondegenerate.

Any two generic zero fields of ϕ are specialization equivalent over k.

Fortunately generic zero fields of ϕ exist whenever this makes sense.

Theorem 6.5. Assume that ϕ is anisotropic and not quasilinear, n := dimϕ ≥ 2.

a) The function field k(ϕ) of the affine quadric ϕ(x1, . . . , xn) = 0, i.e., the
quotient field of the integral domain

k[x1, . . . , xn]/(ϕ(x1, . . . , xn))

is a generic zero field of ϕ. {N.B. k(ϕ) is separable over k.}
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b) More generally the following holds. If γ : k → L∪∞ is a place such that ϕ
has GR under γ, and if γ∗(ϕ) is nondegenerate and isotropic, there exists
a place λ : k(ϕ) → L ∪∞ extending γ.

�

We now can build a generic splitting tower (Kr | 0 ≤ r ≤ h) of ϕ in the way
well known from the case that charK 6= 2 (cf. [K], [KS], [S], . . . ) and from the case
that char k = 2, but ϕ regular (cf. [KR]).

Take K0 = k, or more generally, let K0 be field extension of k such that there
exists a place from K0 to k over k, with corresponding Witt decomposition

ϕ⊗K0
∼= ϕ0 ⊥ i0 ×H

(N.B.: i0 = ind(ϕ)). If ϕ0 is quasilinear, we stop.
Otherwise we choose a generic zero field K1 ⊃ K0 of ϕ0, and then have a Witt

decomposition

ϕ0 ⊗K1
∼= ϕ1 ⊥ i1 ×H

etc. We could take K0 = k,K1 = k(ϕ0), etc. But for various problems it is useful
to allow other generic splitting towers.

We retain the terminology from the generic splitting theory in characteristic 6= 2.
In particular we call ir the r-th higher index of ϕ and h the height of ϕ. The form
ϕh is quasilinear.

Precisely as in the characteristic 6= 2 case we obtain from the above theorems
immediately:

Theorem 6.6. Let ϕ be a non degenerate form over k. Let (Kr | 0 ≤ r ≤ h) be
a generic splitting tower of ϕ with associated higher indices ir and higher kernel
forms ϕr. Let γ : k → L ∪∞ be a place such that ϕ has GR with respect to γ and
γ∗(ϕ) is non degenerate. We choose a place λ : Km → L∪∞ extending γ such that
either m = r as m < r, but λ cannot be extended to a place from Km+1 to L. Then
ϕm has GR with respect to λ. The form λ∗(ϕ) has the kernel form λ∗(ϕm) and the
Witt index i0 + . . .+ im. �

If L ⊃ k is a ϕ-conservative field extension we may apply the theorem to the triv-
ial place γ : k →֒ L and obtain precise information about the Witt decomposition
of ϕ⊗ L.

7. Epilogue

A) Perhaps the most urgent open problem in generic splitting theory is to
determine all forms of height 1. Assume that ϕ is anisotropic and h(ϕ) = 1.
If ϕ is strictly regular, then it turns out that ϕ is, up to a scalar factor, a
quadratic Pfister form. (cf. [Spez, §20]). If QL(ϕ) has dimension 1 then
ϕ is, up to scalar factor, a certain “close neighbor” of a quadratic Pfister
form (cf. [Spez, §22]), analogous to the pure part of a Pfister form in the
case of characteristic 6= 2. But, if dimQL(ϕ) ≥ 2 there exist more forms of
height 1 than those which are Witt equivalent to close Pfister neighbors.
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B) Let K and L be fields with charK = 0, charL = 2. Given a place
λ : K → L ∪ ∞, it deserves interest to “lift” a nondegenerate quadratic
form ψ over L to a form ϕ over K, i.e., to exhibit a quadratic form ϕ over
K with GR with respect to λ and λ∗(ϕ) ∼= ψ. Then one can hope to deduce
properties of ψ from properties of ϕ.

In the specialization theory outlined above such a lifting is only possible
if ψ is strictly regular. Indeed, since a nondegenerate form ϕ over K as
automatically strictly regular, also λ∗(ϕ) has to be strictly regular.

Fortunately there exists a more general specialization theory than the one expli-
cated in §5.

Given a place λ : K → L ∪ ∞ with valuation ring O, we say that a quadratic
space E = (E, q) over K has fair reduction with respect to λ, if E contains a free

O-submodule M with E = KM and q(M) ⊂ O, such that (M/mM, q|M ) is a
quadratic space over O/m, while (M, q|M ) may be degenerate. One can prove that
then

λ∗(E) := L⊗λ (M/mM) = L⊗λ M

is still well defined up to isometry by E and λ. This is the basis of a “fair special-
ization theory” which parallels our theory in §5, cf. [Spez, II, §11].

It is now well possible to find for a non degenerate form ψ over L a form ϕ over
K with fair reduction with respect to λ and λ∗(ϕ) ∼= ψ. For fair specializations
there also exists a theorem completely analogous to the generic splitting theorem
6.6 above, cf. [Spez, II, §12].
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