
NOTE ON WITT GROUP AND KO-THEORY OF

COMPLEX GRASSMANNIANS

NOBUAKI YAGITA

Abstract. For a complex Grassmannian X , there is the isomor-
phism between the Balmer’s Witt group and the quotient of topo-
logical K-theories so that W ∗(X) ∼= KO2∗(X)/KU2∗(X).

1. Introduction

Let X be a smooth variety over a field k with 1/2. The Witt group
W (X) is the quotient of the Grothendieck group of vector bundles
with quadratic forms over X, by subbundles V with quadratic forms
which admit Lagragian subbundles E (i.e., E is its own orthogonal
complement in V ).

Hence when k = C, there is the natural map

W (X)→ KO0(X(C))/KU0(X(C)).

Here KO0(−) and KU0(−) is the usual (topological) real and complex
K-theories. One purpose of this paper is to show that this map is
isomorphic when X = Mm,n the complex Grassmannian of m-planes
in an m + n-plane. Moreover, we have the isomorphism

W ∗(X) ∼= KO2∗(X(C))/KU2∗(X(C))

where W ∗(X) is the Balmer’s Witt group with W 0(X) = W (X).
The right hand side of the above isomorphism is computed explic-

itly by Hara and Hara-Kono [Ha],[Ha-Ko] by using Atiyah-Hirzebruch
spectral sequence, here the computation of Sq2 is most important.

On the other hand, W ∗(X) is given recently by Balmer-Calmes [Ba-
Ca2] in complete general forms, using m × n-framed even Young di-
agrams. However we can also get the results (for k = C) by using
Pardon and Balmer-Walter spectral sequences by using the computa-
tion of Sq2 by Hara-Kono. The another purpose of this paper is to
explain the relation between the results by Balmer-Calmes and Hara-
Kono.
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I would like to thank to Burt Totaro who suggested the above iso-
morphisms, to Paul Balmer who taught me the result of Calmes and
him, and to Akihiro Ohshita who taught me results of Hara-Kono and
him.

2. KO-theory

We explain the KO-theory of Garassmannian according to Hara
[Ha] and Hara-Kono [Ha-Ko]. Let Mm,n be the complex Grassmannian
GLm(Cm+n) of m-planes in Cm+n. Then there is the homeomorphism

Mm+n
∼= U(m + n)/(U(m)× U(n)).

By using the Serre spectral sequence induced from the fiber sequence

U(m + n)/U(m)× U(n)→ BU(m)× BU(n)→ BU(m + n),

we get the cohomology for any field K

(2.1) H∗(Mm,n; K) ∼= K[a1, ..., am, b1, ..., bn]/(c1, ..., cm+n)

where ai, bj , ck are Chern classes induced from maps in the above fiber-
ing, and ci =

∑

ai−jbj . (See also [Fu], [La] and the arguments in §4
bellow.)

Recall the coefficient ring of the (topological) KO∗-theory is

KO∗ ∼= Z[µ, µ−1, η, w]/(2η, η3, w2 − 4µ)

with |µ| = −8, |w| = −2, |η| = −1. To compute KO∗(Mm,n), we
consider the Atiyah-Hirzebruch spectral sequence

E∗,∗′

2
∼= H∗(Mm,n; KO∗) =⇒ KO∗(Mm,n).

It is well known that the first differential is ([Ha])

d2(x) = η ⊗ Sq2(x̄)

where x̄ ∈ H∗(Mm,n; Z/2) is the mod 2 reduction of x. The Squaring
operation is well known (from Wu formula) [Ha]

Sq2(a1) = a2
1, Sq2(a2i) = a2i+1 + a2ia1 for i ≥ 1.

Let H(m, n) be the homology H(H∗(Mm,n; Z/2); Sq2) with the dif-
ferential Sq2. Hara and Kono get this homology

Theorem 2.1. (Hara-Kono [Ha-Ko]) Let B(k, l) be the graded algebra

B(k, l) = Z/2[a2
2, ..., a

2
2k, b

2
2, ..., b

2
2l)/(c2

2, ..., c
2
2k+2k).

Then we have the isomorphism

H(m, n) ∼=

{

B(k, l) if (m, l) = (2k, 2k), (2k + 1, 2l), (2k, 2l + 1)

B(k, l)⊕B(k, l){a2k+1b2l} if (m, l) = (2k + 1, 2l + 1).
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They also proved

Theorem 2.2. ([Ha-Ko]) The Atiyah-Hirebruch spectral sequence col-

lapses from E∗,∗′

3 -term.

For the proof of this theorem, Hara and Kono used the natural maps
U(n) → Sp(n) and Sp(n) → U(2n). Let us write Nm,n = Sp(m +
n)/Sp(m)× Sp(n) and consider the maps

Mm,n
q
→ Nm,n

c′
→M2m,2n.

The cohomology is also computed as the case U(n),

H∗(Nn,m; Z/2) ∼= Z/2[q1, ..., qm, r1, ..., rn]/(s1, ..., sm+n),

si =
∑

qi−jrj with q∗qi = a2
i and c′∗a2i = qi (c′∗(a2i−1) = 0).

Note KOodd = KO8∗−1 and H∗(Nm,n) = H4∗(Nm,n). By the dimen-
sional reason for differntial deg(dr) = (r,−r +1), we know the Atiyah-

Hirzebruch spectral sequence for KO∗(Nm,n) collapses from E∗,∗′

2 -term,
that means

grKO∗(Nm,n) ∼= KO∗ ⊗H∗(Nm,n; Z).

Proof of Theorem 2.2. By the naturality of the spectral sequence, the
maps q∗, c′∗ are defined as maps of spectral sequences. The fact q∗qi =
a2

i implies that dr(a
2
i ) = 0 for all r > 1. The fact c′∗a2i = qi implies

that a2
2i 6= 0 in E∗,∗′

∞ and moreover each nonzero element in B(k, l)
is also nonzero in E∗,∗′

∞ . If dr(a2k+1b2l) 6= 0, then it is contained in
B(k, l) by dimensional reason ; this is a contradiction to the preceding
result. �

There is the well known exact sequence for topological space X

(1) → KO∗(X)
η
→ KO∗(X)

c
→ KU∗(X)

r
→ KO∗(X)→

where c is the complexification and r is the restriction maps. Therefore

KO∗(X)/KU∗(X) ∼= ηKO∗(X).

From the above theorem, we see

Eodd,∗
∞

∼= E8∗−1,∗
∞

∼= Z/2{η}[µ, µ−1]⊗H(m, k).

Hence we have

Corollary 2.3. grKO2∗(Mm,n)/KU2∗(Mm,n) ∼= H(m, n).
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3. Balmer’s Witt group.

For a smooth X over a field k with 1/2 ∈ k, let W (X) denote the
Witt group of X. Balmer defined the periodic Witt group W i(X) ∼=
W i+4(X), (i ∈ Z) with W 0(X) = W (X).

Balmer and Walter [Ba-Wa] define the Gersten-Witt complex

0→W (k(X))→ ⊕x∈X(1)W (k(x))→ ...⊕x∈X(n) W (k(x))→ 0.

Let H∗(W (X)) denote the cohomology group of the above cochain
complex, with W (k(X)) places in degree 0. From the above complex,
we have the (Balmer-Walter) spectral sequence

E(BW )r,s
2
∼=

{

Hr(W (X)) (s = 4s′) =⇒W r+s(X)

0 (s 6= 0(mod(4))
.

By the affirmative answer of the Milnor conjecture of quadratic forms
by Orlov-Vishik-Voevodsky [Or-Vi-Vo], we have the isomorphism of
graded rings H∗(k(x); Z/2) ∼= grW ∗(k(x)). Using this fact, Pardon
([Pa],[To]) defined the spectral sequence

E(P )r,s
2
∼= Hr

Zar(X; Hs
Z/2) =⇒ Hr(W (X)) ∼= E(BW )r,4s

2

so that the differential dr has degree (1, r−1) for r ≥ 2. Here Hn
Z/2 the

Zarisky sheaf induced from the presheaf Hn
et(V ; Z/2) for open subset

V of X.
The above sheaf cohomology Hr

Zar(X; Hs
Z/2) relates the motivic co-

homology H∗,∗′(X; Z/2) ( see [Vo1-3]). Let τ ∈ H0,1(Speck(k); Z/2) ∼=
Z/2 be a generator. (Hence H∗,∗′(Speck(C); Z/2) ∼= Z/2[τ ].) Then we
get the long exact sequence from the solution of Beilinson-Lichtenbaum
conjecture by Voevodsky [Or-Vi-Vo]

→ Hm,n−1(X; Z/2)
×τ
→ Hm,n(X; Z/2)

→ Hm−n
Zar (X; Hn

Z/2)→ Hm+1,n−1(X; Z/2)
×τ
→ .

Therefore, we have

Lemma 3.1. E(P )m−n,n
2

∼= Hm−n
Zar (X; Hn

Z/2)
∼=

Hm,n(X; Z/2)/(τ)⊕Ker(τ)|Hm+1,n−1(X; Z/2).

In particular, E(P )m,m
2
∼= H2m,m(X; Z/2) ∼= CHm(X)/2. Moreover

Totaro proved

Lemma 3.2. (Totaro [To]) If x ∈ E(P )m,m
2

∼= CHm(X)/2, then
d2(x) = Sq2(x).
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Now we consider the case X = Mm,n and k = C. Since Mm,n is
cellular, we see

H2∗,∗′(Mm,n; Z/2) ∼= Z/2[τ ]⊗CH∗(Mm,n)/2 ∼= Z/2[τ ]⊗H2∗(Mm,n; Z/2).

Hence we have

E(P )∗,∗
′

2
∼= E(P )∗,∗2

∼= H2∗(Mm,n; Z/2).

From the result of Totaro, we have

E(P )∗,∗
′

3
∼= H(H2∗(Mm,n; Z/2); Sq2) = H(m, n).

By dimensional reason of differential deg(dr) = (1, r−1), it is immedi-

ate that the spectral sequence collapses from E∗,∗′

3 -term, i.e., E(P )∗,∗
′

3
∼=

E∗,∗′

∞ .
The Balmer-Walter spectral sequence also collapses, that is, we will

prove

E(P )∗,∗∞
∼= E(BW )∗,r2

∼= E(BW )∗,r∞ , r = 0 mod(4).

For this we consider the Sp(n)-version of above arguments. We con-
sider spectral sequences for Nm,n. By dimensional reason, the Pardon
and Balmer-Walter spectral sequences collapse from E2-terms. (Note
H∗(Nm,n; Z/2) = 0 for ∗ 6= 0 mod(4).) That is

grW ∗(Mm,n) ∼= E(BW )∗,r∞
∼= H2∗(Nm,n; Z/2).

Then the arguments of the proof of Theorem 2 also work. Thus we
see the collapseness of the Balmer-Walter spectral sequence for Mm,n.
Therefore we have isomorphisms

Theorem 3.3.

grW ∗(Mm,n) ∼= H(m, n) ∼= grKO2∗(Mm,n)/KU2∗(Mm,n).

4. Young diagram and Witt group

In this section we recall the result of Balmer-Calmes [Ba-Ca1,2], and
consider relation to the result of Hara-Kono.

The cohomology H∗(Mm,n) (or CH∗(Mm,n)) is also computed by
induction on n, m. In fact the following exact sequence

(4.1) → H∗−|an|(Mm,n−1)
g∗
→ H∗(Mm,n)

f∗

→ H∗(Mm−1,n)
∂
→

becomes split since ∂ = 0. Here g∗ is the Gysin map for the embedding
Mm,n−1 ⊂Mm,n. The map f ∗ is induced from

Mm−1,n
proj.
← Mm,n −Mm,n−1 ⊂Mm,n.

(See [Ba-Ca1,2] or Laksov [La], [Fu]). Here note g∗(x) = am · x.
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It is well known that the cohomology of Mm,n is stated also by using
Young diagram. The m× n-framed partition λ = (λ1, ..., λd) means

n ≥ λ1 ≥ ... ≥ λd ≥ 1 and m ≥ d.

The partition λ corresponds a Young diagram, consisting of λi boxes
in the i-th row from the top, lined up on the left. Then m× n-framed
Young diagrams with d = |λ| = λ1+...+λd form the basis of Hd(Mm,n),
namely, H∗(Mm,n) ∼= ⊕∗=|λ|Z. This fact is shown as follows.

The Young diagram for the conjugate partition λ̃ of λ is obtained by
interchanging rows and columns in the diagram. For a Young diagram
λ, we can define the Schur polynomial (e.g. see [Fu]) by

∆λ(b) = det(bλi+j−i) ∈ H∗(Mm,n).

It is known (Lemma 14.5.1 in [Fu]) ∆λ(b) = ∆λ̃(a). Hence we have
∆(k)(b) = bk and ∆(k̃)=(1,...,1)(b) = ak. Moreover we see by the above
definition of ∆λ,

∆λ(b) = bλ1 ...bλd
mod(F>λ).

Here F>λ is the filtration of elements bλ′
1 ....bλ′

d′
with λ′ > λ by the

lexicographical order.
We still know the above ∆λ(b) make a basis [λ] of H∗(Mm,n) from

(2.1). However we can also get it by induction by using the short exact
sequence (4.1) such that

g∗([λ]) = [(1, ..., 1) + λ] = [(1 + λ1, ..., 1 + λd, 1, ..., 1)],

(Indeed, ∆g∗(λ)(b) = am ·∆λ(b) mod(F>g∗(λ)).) The induced map f ∗ is
given f ∗(λ) = λ for d < m, and = 0 for d = m.

Let us say that framed Young diagram λ is strongly even if all its
segments have even length, namely all λi, λ̃i are even. Then its Schur
polynomial is written

∆λ(b) = (b2
λ1

b2
λ3

...b2
λd−1

) mod(F>λ).

Hence if m or n is even, then set of strongly even m×n-framed diagrams
make Z/2-base of the ring B(k, l) given in Theorem 2.1 by Hara-Kono.

Balmer and Calmes results generalize above arguments. We can
consider the generalized Witt group W i(X; L) for i ∈ Z/4 and L ∈
Pic(X)/2 such that the usual Witt group W i(X) = W i(X; OX).

Let us say that framed Young diagram λ is even if all its segments
have even length, which are strictly inside of the frame, namely all
λi − λi+1 for 1 ≤ i ≤ d − 1, λ̃i − λ̃i+1 for 1 ≤ i ≤ d̃ − 1 are even. Let
t(λ) be half of the perimeter of λ.
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Theorem 4.1. (Balmer-Camles [Ba-Ca2]) The total Witt group

W tot(Mm,n) = ⊕i∈Z/4, L∈Z/2W
i(Mm,n; L)

has Z/2-basis indexed by even Young diagrams λ. The corresponding
base [λ] is in W |λ|(Mm,n, t(λ)).

Remark. In [Ba-Ca2], the theorem is stated in very generalized
situation.

Let m or m be even. Then when t(λ) = 0, it is easily seen that λ is
even means strongly even. So the argument before the above theorem
explains the relation of the results by Hara-Kono and Balmer-Calmes.

Next we consider the case (m, n) = (2k+1, 2l+1). Each even m×n-
framed diagram λ with t(λ) = 0 is easily seen strongly even [λse] or
[Γλse] which is defined as

[(2l + 1, 1, ...,
m

1) + (0, λse)] = [(2l + 1, λse
1 + 1, ...., λse

dse + 1, 1...,
m

1)].

Note µ = (2l + 1, 1, .., 1) is even but not strongly even, and |µ| = odd,
t(µ) = 0. We still know [λse] form the Z/2-basis of B(k, l) in Theorem
2.1. Note that

∆µ(b) = b2l+1a2k = a2k+1b2l mod(F>µ).

Hence [Γλse] form a basis of B(k, l){a2k+1b2l}. Therefore we see even
m× n-framed Young diagrams form the base of

B(k, l)⊕ B(k, l){a2k+1b2l} = H(m, n).

Thus we can explain the relation between Hara-Kono and Balmer-
Calmes.

Balmer and Camles prove their theorem by showing following (long)
exact sequence. (They construct the Gysin and the boundary maps as
the maps in W total(X).) Let g : Z ⊂ X be a regular closed immersion
of codim = c ≥ 2, and U = X − Z. Let ωg be the relative canonical
bundle (for the definition see [Ba-Ca1]). Then there is the natural
exact sequence

→W ∗−c(Z, ωg ⊗ L|Z)
g∗
→W ∗(X, L)

f∗

→ W ∗(Z, L|Z)
∂
→ .

In general ∂ 6= 0. In fact, when X = Mm,n, it is proved (Figures 4-6
in [Ba-Ca2]).

g∗([λ]) =

{

[(1, ..,
m

1) + λ] if m− d : even

0 otherwise,
f ∗([λ]) =

{

[λ] if d < m

0 otherwise,

∂([λ]) =

{

[λ− (1, ...,
d
1)] if λd : odd

0 otherwise.



8 N.YAGITA

In the A1-homotopy category, Hornbostel [Ho] proved that W ∗(−)
is represented as a P1-spectrum. This implies

W ∗+1(P1 ∧X) ∼= W ∗(X).

Therefore we can define the natural map

q : W ∗(X)→ KO2∗(X(C))/KU2∗(X(C)) for all ∗ .

We will see that this map induces the isomorphism given preceding
and this sections.

First we consider the cases (m, n) = (2k, 2l). Let g̃ : Mm,n−2 ⊂ Mm,n

and f̃ : Mm,n → Mm−2,n. (Note g̃∗(x) = a2
mx.) Then we have the

commutative diagram.

0 −−−→ W 0(Mm,n−2)
g̃∗
−−−→ W 0(Mm,n)

f̃∗

−−−→ W 0(Mm−2,n)
∂̃∗
−−−→ 0





y

q1 q2





y

q3





y

0 −−−→ K0(Mm,n−2)
g̃∗
−−−→ K0(Mm,n)

f̃∗

−−−→ K0(Mm−2,n)
∂̃∗
−−−→ 0

where K∗(X) = KU∗(X)/KO∗(X). The exactness of rows follow from
the isomorphism given in the preceding or this sections. (In fact this
case W ∗

m,n = W 0
m,n.) By the induction and five lemma, we have the

isomorphism of q2. The case m or n even follows from the above result
and the naturality.

The case (m, n) = (2k + 1, 2l + 1) is proved as follows. Let g′ :
M2k,2l → M2k+1,2l+1 and recall g′

∗([λ]) = [Γλ]. Consider the following
diagram

W 0(M2k,2l)
g′

∗−−−→
∼=

W 1(M2k+1,2l+1)




y

q1 q2





y
.

K0(M2k,2l)
g′
∗−−−→
∼=

K2(M2k+1,2l+1).

We see q2 is isomorphic for this case. Similarly we consider f ′ :
M2k,2l → M2k+1,2k+1. By the isomorphism of preceding or this section,
we have the isomorphism f ′∗ : W 0(M2k+1,2k+1)∼=W 0(M2k,2k). This also
induces the isomorphism of q for W 0(Mm,n) → K0(Mm,n). Thus we
can show

Theorem 4.2. The map q : W ∗(Mm,n) → KO2∗(Mm,n)/KU2∗(Mm,n)
induces the isomorphism.

Corollary 4.3. There is the isomorphism of graded rings

grW ∗(Mm,n) ∼= H(m, n).
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In particular, we note that grW 0(M2k,2l) ∼= H∗(Mk,l; Z/2).
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