NOTE ON WITT GROUP AND KO-THEORY OF
COMPLEX GRASSMANNIANS

NOBUAKI YAGITA

ABSTRACT. For a complex Grassmannian X, there is the isomor-
phism between the Balmer’s Witt group and the quotient of topo-
logical K-theories so that W*(X) = KO?*(X)/KU*(X).

1. INTRODUCTION

Let X be a smooth variety over a field k£ with 1/2. The Witt group
W(X) is the quotient of the Grothendieck group of vector bundles
with quadratic forms over X, by subbundles V' with quadratic forms
which admit Lagragian subbundles E (i.e., E is its own orthogonal
complement in V).

Hence when k& = C, there is the natural map

W(X) — KO"(X(C))/KU(X(C)).

Here KO°(—) and KU°(—) is the usual (topological) real and complex
K-theories. One purpose of this paper is to show that this map is
isomorphic when X = M,,, the complex Grassmannian of m-planes
in an m + n-plane. Moreover, we have the isomorphism

W*(X) = KO*(X(C))/KU*(X(C))

where W*(X) is the Balmer’s Witt group with W9(X) = W(X).

The right hand side of the above isomorphism is computed explic-
itly by Hara and Hara-Kono [Ha],[Ha-Ko| by using Atiyah-Hirzebruch
spectral sequence, here the computation of S¢? is most important.

On the other hand, W*(X) is given recently by Balmer-Calmes [Ba-
Ca2] in complete general forms, using m x n-framed even Young di-
agrams. However we can also get the results (for & = C) by using
Pardon and Balmer-Walter spectral sequences by using the computa-
tion of S¢? by Hara-Kono. The another purpose of this paper is to
explain the relation between the results by Balmer-Calmes and Hara-
Kono.
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I would like to thank to Burt Totaro who suggested the above iso-
morphisms, to Paul Balmer who taught me the result of Calmes and
him, and to Akihiro Ohshita who taught me results of Hara-Kono and
him.

2. KO-THEORY

We explain the KO-theory of Garassmannian according to Hara
[Ha] and Hara-Kono [Ha-Ko]. Let M, , be the complex Grassmannian
GL,,(C™") of m-planes in C™*™. Then there is the homeomorphism

My = Um +n)/(U(m) x U(n).
By using the Serre spectral sequence induced from the fiber sequence
U(m +mn)/U(m) x U(n) — BU(m) x BU(n) — BU(m +n),
we get the cohomology for any field K
(2.1) H* My, K) = Klay, ..., G, b1y o, by /(€14 ooy Congn)

where a;, b;, ¢, are Chern classes induced from maps in the above fiber-
ing, and ¢; = > a;_;b;. (See also [Fu], [La] and the arguments in §4
bellow.)

Recall the coefficient ring of the (topological) KO*-theory is

KO* 2 Z[u, =t n,w]/(2n, 0%, w? — 4p)

with |u| = =8,|w| = —=2,|n] = —1. To compute KO*(M,,,), we
consider the Atiyah-Hirzebruch spectral sequence

Ey™ = H*(Myy s KO*) = KO* (M.
It is well known that the first differential is ([Ha])
dao(z) = n ® S¢*(z)

where z € H*(M,,n,;Z/2) is the mod 2 reduction of x. The Squaring
operation is well known (from Wu formula) [Hal

S¢*(ar) = ai, Sq*(as) = agip1 + asgiar for i > 1.
Let H(m,n) be the homology H(H*(M,,;Z/2); Sq?) with the dif-
ferential Sq?. Hara and Kono get this homology
Theorem 2.1. (Hara-Kono [Ha-Ko]) Let B(k,l) be the graded algebra

B(kv l) = Z/Z[(Ig, sy agka bg) cey bgl)/(cgﬂ ) C§k+2k)'
Then we have the isomorphism

u [ B1) if (m 1) = (2k,2k), (2k+1,20), (2K, 20+ 1)
(m, n) = Bk, 1) ® Bk, ) {aspiba} if (m,1) = (2k + 1,20 +1).
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They also proved

Theorem 2.2. ([Ha-Ko]) The Atiyah-Hirebruch spectral sequence col-
lapses from E;:’*/-term.

For the proof of this theorem, Hara and Kono used the natural maps
U(n) — Sp(n) and Sp(n) — U(2n). Let us write N, = Sp(m +
n)/Sp(m) x Sp(n) and consider the maps

Mm,n i) Nm,n il) M2m72n~
The cohomology is also computed as the case U(n),

H*<Nn,maz/2> = Z/Q[Qh s Gmy T, "'7rn]/<317 XS] Sm+n)7

s; = > qi—jrj with ¢*¢; = a? and " ag; = ¢; (" (azi-1) = 0).
Note KO = KO*~! and H*(N,,,) = H*(N,,.,). By the dimen-
sional reason for differntial deg(d,) = (r, —r + 1), we know the Atiyah-

Hirzebruch spectral sequence for KO*(N,, ) collapses from F *_term,
that means

grKO*(Npyn) 2 KO* @ H* (N 7).

Proof of Theorem 2.2. By the naturality of the spectral sequence, the
maps ¢*, ¢* are defined as maps of spectral sequences. The fact ¢*¢; =
a? implies that d.(a?) = 0 for all » > 1. The fact ¢*ay; = ¢; implies
that a2, # 0 in E** and moreover each nonzero element in B(k,[)
is also nonzero in E%*. If d.(agri1by) # 0, then it is contained in
B(k,1) by dimensional reason ; this is a contradiction to the preceding
result. OJ

There is the well known exact sequence for topological space X
(1) — KO*(X) 2 KO*(X) 5% KU*(X) 5 KO*(X) —
where c is the complexification and r is the restriction maps. Therefore
KO*(X)/KU*(X) 2 nKO*(X).
From the above theorem, we see
Bt = BXTY 2 Z/2{n}[u, p'] @ H(m, k).
Hence we have

Corollary 2.3. grKO**(M,, )/ KU*(M,,,) = H(m,n).
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3. BALMER'S WITT GROUP.

For a smooth X over a field k& with 1/2 € k, let W(X) denote the
Witt group of X. Balmer defined the periodic Witt group W*(X) =
WH(X), (i € Z) with Wo(X) = W(X).

Balmer and Walter [Ba-Wa] define the Gersten-Witt complex

0 = W(k(X)) = pex W(k(z)) = .. Dpexm W(k(z)) — 0.

Let H*(W (X)) denote the cohomology group of the above cochain
complex, with W (k(X)) places in degree 0. From the above complex,
we have the (Balmer-Walter) spectral sequence

HM(W(X)) (s =4s) = W (X)

E(BW)y* = {0 (s # 0(mod(4))

By the affirmative answer of the Milnor conjecture of quadratic forms
by Orlov-Vishik-Voevodsky [Or-Vi-Vo], we have the isomorphism of
graded rings H*(k(z);Z/2) = grW*(k(z)). Using this fact, Pardon
([Pal,[To]) defined the spectral sequence

E(P)y" 2 Hy,,(X; Hyjp) = H'(W(X)) 2 BE(BW),"

so that the differential d, has degree (1,7 —1) for r > 2. Here Hy, the

Zarisky sheaf induced from the presheaf H,(V;Z/2) for open subset

V oof X.

The above sheaf cohomology H7,.(X; H; /2) relates the motivic co-
homology H**(X;7Z/2) ( see [Vol-3]). Let 7 € H%'(Speck(k);Z/2) =
7./2 be a generator. (Hence H** (Speck(C);Z/2) = 7Z/2[r].) Then we
get the long exact sequence from the solution of Beilinson-Lichtenbaum
conjecture by Voevodsky [Or-Vi-Vo]

— H™"Y(X;Z/2) = H™™(X;Z/2)
— Hy M(X; Hyjy) — HM (X 2/2) 25

Therefore, we have
Lemma 3.1. E(P)," """ = Hy, "(X; Hy ) =

H™M(X;7/2)/ (1) ® Ker(r)|[H™ "X Z/2).

In particular, F(P)y"™ = H*™™(X;Z/2) =2 CH™(X)/2. Moreover

Totaro proved
Lemma 3.2. (Totaro [To]) If x € E(P)y,"™ = CH™(X)/2, then
dy(z) = Sq*().
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Now we consider the case X = M,,,, and & = C. Since M,,,, is
cellular, we see
H** (M3 2)2) 2 2/2[7|@CH* (M) /2 =2 2)2[7|@H* (Myy.; 7./2).
Hence we have

E(P)y" = E(P)s" = H* (M Z/2).
From the result of Totaro, we have
E(P)5" 2 H(H* (My; Z/2); S¢°) = H(m,n).

By dimensional reason of differential deg(d,) = (,1, r—1),itis immeldi—
ate t/hat the spectral sequence collapses from E3™ -term, i.e., E(P)y™ =
EOOTl;e Balmer-Walter spectral sequence also collapses, that is, we will
prove

E(P)=* = E(BW)Y" = E(BW)®", r =0 mod(4).

For this we consider the Sp(n)-version of above arguments. We con-
sider spectral sequences for N,,,. By dimensional reason, the Pardon
and Balmer-Walter spectral sequences collapse from FE-terms. (Note
H*(Npn; Z/2) = 0 for x # 0 mod(4).) That is

grW*( My, ) = E(BW)5 = H**(Npyn; Z/2).
Then the arguments of the proof of Theorem 2 also work. Thus we

see the collapseness of the Balmer-Walter spectral sequence for M,, ,,.
Therefore we have isomorphisms

Theorem 3.3.
grW*( M) = H(m,n) = grKO* (My,,,)/ KU (M)

4. YOUNG DIAGRAM AND WITT GROUP

In this section we recall the result of Balmer-Calmes [Ba-Cal,2], and
consider relation to the result of Hara-Kono.

The cohomology H*(M,,,) (or CH*(M,,,)) is also computed by
induction on n, m. In fact the following exact sequence

(41) = BN (M) & H (M) 5 H (Myyo ) 2

becomes split since @ = 0. Here g, is the Gysin map for the embedding
My -1 C My, ,,. The map f* is induced from

Mm—l,n pjﬁj. Mm,n - Mm,n—l - Mm,n-
(See [Ba-Cal,2] or Laksov [Lal, [Fu]). Here note g.(z) = a,, - z.
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It is well known that the cohomology of M,, ,, is stated also by using
Young diagram. The m x n-framed partition A = (A, ..., \y) means

n>MN>..>2xN>1 and m>d.

The partition A corresponds a Young diagram, consisting of \; boxes
in the i-th row from the top, lined up on the left. Then m x n-framed
Young diagrams with d = |[\| = A\;+...+ A4 form the basis of H4(M,, ,,),
namely, H*(My, ) = ®.—»Z. This fact is shown as follows.

The Young diagram for the conjugate partition A of ) is obtained by
interchanging rows and columns in the diagram. For a Young diagram
A, we can define the Schur polynomial (e.g. see [Fu]) by

A)\(b) = det(b,\iﬂ-,i) € H*<Mm,n)
It is known (Lemma 14.5.1 in [Fu]) A\(b) = Aj(a). Hence we have

.....

definition of A,

A)\(b) = bAl...b)\ mod(F>)\).

d

Here F.) is the filtration of elements by, ....by , with A’ > X by the
lexicographical order.

We still know the above A, (b) make a basis [A] of H*(M,,,) from
(2.1). However we can also get it by induction by using the short exact

sequence (4.1) such that
g*([)‘]) = [(17 ) ]-) + )‘] = [(1 + )‘1a N >‘d7 L. 1)]7

(Indeed, Ay, (1) (D) = @ - Ax(b) mod(Fsg4+(xy).) The induced map f* is
given f*(\) = X for d < m, and = 0 for d = m.

Let us say that framed Young diagram A is strongly even if all its
segments have even length, namely all \;, \; are even. Then its Schur
polynomial is written

Ay(b) = (B2, 02,.02, ) mod(Fsy).

/d/

Hence if m or n is even, then set of strongly even m xn-framed diagrams
make Z/2-base of the ring B(k,[) given in Theorem 2.1 by Hara-Kono.
Balmer and Calmes results generalize above arguments. We can
consider the generalized Witt group W¥(X; L) for i € Z/4 and L €
Pic(X)/2 such that the usual Witt group W*(X) = W'(X; Ox).

Let us say that framed Young diagram A is even if all its segments
have even length, which are strictly inside of the frame, namely all
Ai— A for1 <o <d—1, 5\1‘_5\Z‘+1 for 1 Sigd—l are even. Let
t(A\) be half of the perimeter of .
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Theorem 4.1. (Balmer-Camles [Ba-Ca2]) The total Witt group
W My ) = Diezya, LeZ/QWi<Mm,n; L)

has 7./2-basis indexed by even Young diagrams \. The corresponding
base [\ is in WN(M,, ., t(N)).

Remark. In [Ba-Ca2], the theorem is stated in very generalized
situation.

Let m or m be even. Then when ¢(\) = 0, it is easily seen that A is
even means strongly even. So the argument before the above theorem
explains the relation of the results by Hara-Kono and Balmer-Calmes.

Next we consider the case (m,n) = (2k+1,2l+1). Each even m X n-
framed diagram A with ¢(\) = 0 is easily seen strongly even [A*¢] or
[I'A*¢] which is defined as

(204 1,1, 0, 1) 4 (0,0%9)] = [(20+ 1, A€ + 1, o, A%+ 1,10, 1)].
Note u = (21 4+ 1,1,..,1) is even but not strongly even, and |u| = odd,
t(n) = 0. We still know [A*¢] form the Z/2-basis of B(k,[) in Theorem
2.1. Note that

AL (D) = bygra9k = askr1by  mod(Fs,,).

Hence [['A*¢] form a basis of B(k,l){aox1by}. Therefore we see even
m x n-framed Young diagrams form the base of

B(k,1) @ B(k,){ass1ba} = H(m,n).

Thus we can explain the relation between Hara-Kono and Balmer-
Calmes.

Balmer and Camles prove their theorem by showing following (long)
exact sequence. (They construct the Gysin and the boundary maps as
the maps in W (X).) Let g : Z C X be a regular closed immersion
of codim = c > 2, and U = X — Z. Let w, be the relative canonical
bundle (for the definition see [Ba-Cal]). Then there is the natural
exact sequence

S W (Z,w, ® L) & WX, L) L w2, L], 2.

In general 0 # 0. In fact, when X = M,, ,,, it is proved (Figures 4-6
in [Ba-Ca2]).

g.([N]) = {[(17 1)+ A if m—d:even () = {P\] if d<m

0 otherwise, 0 otherwise,

0 otherwise.

a([N]) = {[A (Lo D)) if A s odd
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In the Al-homotopy category, Hornbostel [Ho|] proved that W*(—)
is represented as a P!-spectrum. This implies
WP A X) =2 WWH(X).
Therefore we can define the natural map
q: W*X)— KO*(X(C))/KU>(X(C)) forall .

We will see that this map induces the isomorphism given preceding
and this sections.

First we consider the cases (m,n) = (2k,2l). Let §: My 2 C My,
and f : M, — My_9,. (Note g.(z) = a2x.) Then we have the
commutative diagram.

2
m

0 —— WO Mpns) —2 WOMp,) —1 WO(Mpysn) —2 0

bl o

0 —— K%My, o) —2 KO(M,,,) —— KM, 5,) —2— 0
where K*(X) = KU*(X)/KO*(X). The exactness of rows follow from
the isomorphism given in the preceding or this sections. (In fact this
case Wy = W) .) By the induction and five lemma, we have the
isomorphism of ¢;. The case m or n even follows from the above result
and the naturality.

The case (m,n) = (2k + 1,20 + 1) is proved as follows. Let ¢ :
Moy o1 — Mogi1,91+1 and recall ¢’,([A]) = [['A]. Consider the following
diagram

!

WO(Mzk,zl) L Wl(M2k+1,2l+1)

I o

KO(May, 1) QT* K?*(Makt1,2041)-

R

We see ¢ is isomorphic for this case. Similarly we consider f’ :
Moy o1 — Moj41 2k+1. By the isomorphism of preceding or this section,
we have the isomorphism f"* : WO (Mo 1 o5 41) =W ( Moy o1,). This also
induces the isomorphism of ¢ for W%(M,,,,) — K°(M,,,). Thus we
can show

Theorem 4.2. The map q : W*(M,,) — KO* (M) /KU (M)
induces the isomorphism.

Corollary 4.3. There is the isomorphism of graded rings
grW*(M,,,) = H(m,n).
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In particular, we note that griW%(Myy, o) = H*(My1;Z/2).
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