bmathews@math.ucla.edu
Submission: 2009, Mar 30
Let A be a central division algebra over a field F with ind A = n. In computing canonical p-dimension of projective PGL_1(A)-homogeneous varieties, for p prime, we can reduce to the case of generalized Severi-Brauer varieties X_e(A) with ind A a power of p divisible by e. We prove that canonical 2-dimension (and hence canonical dimension) equals dimension for all X_e(A) with ind A = 2e a power of 2.
2000 Mathematics Subject Classification: 20G15; 14C25
Keywords and Phrases: canonical dimension, incompressibility, projective homogeneous varieties, generalized Severi-Brauer varieties
Full text: dvi.gz 18 k, dvi 37 k, ps.gz 776 k, pdf.gz 113 k, pdf 133 k.