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Abstract

Let R be a semi-local regular domain containing an infinite perfect subfield and
let K be its field of fractions. Let G be a reductive semi-simple simply connected
R-group scheme such that each of its R-indecomposable factors is isotropic. We
prove that in this case the kernel of the map

H1
ét(R,G) → H1

ét(K,G)

induced by the inclusion of R into K is trivial. In other words, under the above
assumptions every principal G-bundle P which has a K-rational point is itself trivial.
This confirms a conjecture posed by Serre and Grothendieck. Our proof is based on
a combination of methods of Raghunathan’s paper [R1], Ojanguren—Panin’s paper
[OP1] and Panin’s preprint [Pa1].

If R is the semi-local ring of several points on a k-smooth scheme, then it suffices
to require that k is infinite and keep the same assumption concerning G.

1 Introduction

Recall that an R-group scheme G is called reductive (respectively, semi-simple or simple),
if it is affine and smooth as an R-scheme and if, moreover, for each ring homomorphism
s : R→ Ω(s) to an algebraically closed field Ω(s), its scalar extension GΩ(s) is a reductive
(respectively, semi-simple or simple) algebraic group over Ω(s). The class of reductive
group schemes contains the class of semi-simple group schemes which in turn contains the
class of simple group schemes. This notion of a simple R-group scheme coincides with
the notion of a simple semi-simple R-group scheme from Demazure—Grothendieck [D-G,
Exp. XIX, Defn. 2.7 and Exp. XXIV, 5.3]. Throughout the paper R denotes an integral
domain and G denotes a semi-simple R-group scheme, unless explicitly stated otherwise.
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Such an R-group scheme G is called simply-connected (respectively, adjoint), provided
that for an inclusion s : R →֒ Ω(s) of R into an algebraically closed field Ω(s) the scalar
extension GΩ(s) is a simply-connected (respectively, adjoint) Ω(s)-group scheme. This
definition coincides with the one from [D-G, Exp. XXII. Defn.4.3.3].

A well-known conjecture due to J.-P. Serre and A. Grothendieck [Se, Remarque, p.31],
[Gr1, Remarque 3, p.26-27], and [Gr2, Remarque 1.11.a] asserts that given a regular local
ring R and its field of fractions K and given a reductive group scheme G over R the map

H1
ét(R,G) → H1

ét(K,G),

induced by the inclusion of R into K, has trivial kernel. The following theorem, which
is the main result of the present paper, asserts that for isotropic groups this is indeed
the case (recall that a simple R-group scheme is called isotropic if it contains a split tori
Gm,R).

Theorem 1.1. Let R be regular semi-local domain containing an infinite perfect field and
let K be its field of fractions. Let G be an isotropic simple simply-connected group scheme
over R. Then the map

H1
ét(R,G) → H1

ét(K,G),

induced by the inclusion R into K, has trivial kernel.

In other words, under the above assumptions on R and G each principal G-bundle P
over R which has a K-rational point is itself trivial. More generally, it is natural to ask,
whether two elements ξ, ζ ∈ H1

ét(R,G) which are equal over K are already equal over
R. In general, this does not follow from Theorem 1.1. However, this is indeed the case
provided at least one of the group schemes G(ξ) or G(ζ) is isotropic.

Theorem 1.1 can be extended to the case of semi-simple group schemes as well. How-
ever, in this generality its statement is a bit more technical and we postpone it till Sec-
tion 12 (see Theorem 12.1). Let us list other known results in the same vein, corroborating
Serre—Grothendieck’s conjecture.

• For simple simply connected group schemes of classical series this result follows from
more general results established by the first author, A. Suslin, M. Ojanguren and K. Zain-
oulline [PS], [OP1], [Z], [OPZ], In fact, unlike our Theorem 1.1, no isotropy hypotheses
was imposed there. However, for the exceptional group schemes our theorem is new . Our
proof is based on different ideas and treats classical and exceptional types in a unified
way.

• The case of an arbitrary reductive group scheme over a discrete valuation ring is
completely solved by Y. Nisnevich in [Ni].

• The case where G is an arbitrary torus over a regular local ring was settled by
J.-L. Colliot-Thélène and J.-J. Sansuc in [C-T/S].

• In [Pa2] I.Panin extended Theorem 1.1 to the case of an arbitrary reductive group
scheme satisfying a mild ”isotropy” condition; however his proof is heavily based on
Theorem 1.1 and on the main result of [C-T/S] concerning the case of tori.
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• The case of arbitrary simple adjoint group schemes of type E6 and E7 is done by the
first author, V.Petrov and A.Stavrova in [PPS]. No isotropy condition is imposed there.

• There exists a folklore result, concerning a simple R-group scheme of type G2, where
R is a regular semi-local ring containing an infinite perfect field or the semilocal ring of
finitely many points on a k-smooth scheme with an infinite field k. That result gives
affirmative answer in this case and also independent of isotropy hypotheses, see the paper
by V. Chernousov and the first author [ChP].

• The case where the group scheme G comes from the ground field k is completely
solved by J.-L. Colliot-Thélène, M. Ojanguren, M. S. Raghunatan and O. Gabber: in
[C-T/O] when k is infinite; in [R1] when k is perfect; O. Gabber [Ga] announced a proof
for an arbitrary ground field k.

• The remaining unsolved open question in case of simple simply-connected group
scheme of classical type is this: prove the conjecture for the spinor group of an algebra
with an orthogonal involution. The case of the spinor group of a quadratic space is done
in [OPZ].

A geometric counterpart of Theorem 1.1 is the following result

Theorem 1.2. Let k be an infinite field. Let O be the semi-local ring of finitely many
points on a smooth irreducible k-variety X and let K be its field of fractions. Let G be an
isotropic simple simply-connected group scheme over O. Then the map

H1
ét(O, G) → H1

ét(K,G),

induced by the inclusion O into K, has trivial kernel.

2 An outline of the proof

Since the proof of Theorem 1.1 is long and technical, in this section we briefly describe
its general outline. The actual proofs are postponed till Section 11. Our proof consists of
three parts.

(1) Reduction of the general case to Theorem 1.2.

Theorem 1.2 is usually called the geometric case of Theorem 1.1. The reduction itself
is rather standard, the arguments are very similar to those in [OP2, Sect.7], and we mostly
skip them.

In turn, analysis of the geometric case is subdivided into two parts:

(2) a geometric part , and

(3) a group part.

The geometric part of the proof starts with the following data. Fix a smooth affine
k-scheme X, a finite family of points x1, x2, . . . , xn on X, and set O := OX,{x1,x2,...,xn}

and U := Spec(O). Further, consider a simple simply-connected U -group scheme G and
a principal G-bundle P over O which is trivial over the field of fractions K of O. We

3



may and will assume that for certain f ∈ O the principal G-bundle P is trivial over Of.
Shrinking X if necessary, we may secure the following properties

(i) The points x1, x2, . . . , xn are still in X.

(ii) The group scheme G is a simple group scheme defined over X. We often denote
this X-group scheme by GX and write GU for the original G.

(iii) The principal G-bundle P is defined over X and f ∈ k[X].

(iv) The restriction Pf of the bundle P to a principal open sub-scheme Xf is trivial for
a non-zero f ∈ k[X] and f vanishes at each xi’s.

In the sequel we may shrink X a little further, if necessary, always looking after verification
of (i) to (iv). This way we construct in Section 5 a basic nice triple (9), see Definition
4.1. Beginning with that basic nice triple we construct in Section 6 the following data:

(a) a unitary polynomial h(t) in R[t],

(b) a principal GU -bundle Pt over A1
U ,

(c) a diagram of the form

A1
U

pr
&&MMMMMMMMMMMMM Y

σoo

qU

��

qX // X

U

can

88qqqqqqqqqqqqq

δ

YY (1)

(d) an isomorphism Φ : q∗U(GU) → q∗X(G) of Y -group schemes.

By Theorem 6.1 one may chose these objects to enjoy the following properties:

(1*) qU = pr ◦ σ,

(2*) σ is étale,

(3*) qU ◦ δ = idU ,

(4*) qX ◦ δ = can,

(5*) the restriction of Pt to (A1
U)h is a trivial GU -bundle,

(6*) (σ)∗(Pt) and q∗X(P ) are isomorphic as principal GU -bundles. Here q∗X(P ) is re-
garded as a principal GU -bundle via the group scheme isomorphism Φ from Item (d).

This completes the geometric part. In the group part we prove the following result,
see the end of Section 8.

Theorem 2.1. Let O and G be the same as in Theorem 1.2. Let P be a principal G-
bundle over the polynomial ring O[t] in one variable t such that for a monic polynomial
h(t) ∈ O[t] the bundle Ph(t) over the ring O[t]h(t) is trivial. Then the G-bundle P is trivial.

It remains to explain how Theorem 1.2 follows from Theorem 2.1. We have to check
that the G-bundle P is trivial over U .

By assumption the group scheme GU is isotropic. The restriction of the principal
GU -bundle Pt to (A1

U)h is trivial by Condition (5*). Then the principal GU -bundle Pt is
itself trivial by Theorem 2.1.
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On the other hand, the GU -bundle (σ)∗(Pt) is isomorphic to q∗X(P ) as principal GU -
bundle by (6*). Therefore, q∗X(G) is trivial as a q∗X(G)-bundle. It follows that δ∗(q∗X(P )) =
can∗(P ) is trivial as a δ∗(q∗X(G)) = can∗(G)-bundle. Thus, can∗(P ) = PU is trivial as a
principal can∗(G) = GU -bundle.

3 Elementary fibrations

In this Section we extend a result of Artin from [A] concerning existence of nice neigh-
borhoods. The following notion is due to Artin [A, Exp. XI, Déf. 3.1].

Definition 3.1. An elementary fibration is a morphism of schemes p : X → S which can
be included in a commutative diagram

X

p
&&MMMMMMMMMMMMM

j // X

p

��

Y
ioo

q

xxqqqqqqqqqqqqq

S

(2)

of morphisms satisfying the following conditions:

(i) j is an open immersion dense at each fibre of p, and X = X − Y ;

(ii) p is smooth projective all of whose fibres are geometrically irreducible of dimension
one;

(iii) q is finite étale all of whose fibres are non-empty.

The following Bertini type theorem is an extension of Artin’s result [A, Exp.XI,Thm.2.1]

Theorem 3.2. Let k be an infinite field, and let V ⊂ Pn
k be a locally closed sub-scheme

of pure dimension r. Further, let V ′ ⊂ V be an open sub-scheme consisting of all points
x ∈ V such that V is k-smooth at x. Finally, let p1, p2, . . . , pm ∈ Pn

k be a family of
pair-wise distinct closed points. For a family H1(d), H2(d), . . . , Hs(d), with s ≤ r, of
hyper-planes of degree d containing all points pi, 1 ≤ i ≤ m, set

Y = H1(d) ∩H2(d) ∩ · · · ∩Hs(d).

Then there exists an integer d depending on the family p1, p2, . . . , pm such that if
the family H1(d), H2(d), . . . , Hs(d) with s ≤ r is sufficiently general, then Y crosses V
transversally at each point of Y ∩ V ′.

If, moreover, V is irreducible (respectively, geometrically irreducible) and s < r then
for the same integer d and for a sufficiently general family H1(d), H2(d), . . . , Hs(d) the
intersection Y ∩ V is irreducible (respectively, geometrically irreducible).

Using this theorem, one can prove the following result, which is a slight extension of
Artin’s result [A, Exp.XI,Prop.3.3]
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Proposition 3.3. Let k be an infinite field, X/k be a smooth geometrically irreducible
variety, x1, x2, . . . , xn ∈ X be closed points. Then there exists a Zariski open neighborhood
X0 of the family {x1, x2, . . . , xn} and an elementary fibration p : X0 → S, where S is an
open sub-scheme of the projective space PdimX−1.

If, moreover, Z is a closed co-dimension one subvariety in X, then one can choose X0

and p in such a way that p|Z
T

X0 : Z
⋂
X0 → S is finite surjective.

We also omit for now the proof of the following proposition.

Proposition 3.4. Let p : X → S be an elementary fibration. If S is a regular semi-local
scheme, then there exists a commutative diagram of S-schemes

X
j //

π

��

X

π
��

Y
ioo

��

A1 × S
in // P1 × S {∞} × S

ioo

(3)

such that the left hand side square is Cartesian. Here, j and i are the same as in Definition
3.1, while prS ◦ π = p, where prS is the projection A1 × S → S.

In particular, π : X → A1 × S is a finite surjective morphism of S-schemes, where
X and A1 × S are regarded as S-schemes via the morphism p and the projection prS,
respectively.

4 Nice triples

In the present section we introduce and study certain collections of geometric data and
their morphisms. The concept of a nice triple is very similar to that of a standard triple
introduced by Voevodsky [Vo, Defn.4.1], and was in fact inspired by that last notion.
Let k be an infinite field, X/k be a smooth geometrically irreducible variety, and let
x1, x2, . . . , xn ∈ X be its closed points. Further, let O = OX,{x1,x2,...,xn} be the correspond-
ing geometric semi-local ring.

Definition 4.1. Let U := Spec(OX,{x1,x2,...,xn}). A nice triple over U consists of the
following data:

(i) a smooth morphism qU : X → U ,

(ii) an element f ∈ Γ(X,OX),

(iii) a section ∆ of the morphism qU ,

subject to the following conditions:

(a) each component of each fibre of the morphism qU has dimension one,

(b) the module Γ(X,OX)/f · Γ(X,OX) is finite as a Γ(U,OU) = O-module,
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(c) there exists a finite surjective U-morphism Π : X → A1 × U ,

(d) ∆∗(f) 6= 0 ∈ Γ(U,OU).

Definition 4.2. A morphism of two nice triples (X′, f ′,∆′) → (X, f,∆) is an étale
morphism of U-schemes θ : X′ → X such that

(1) q′U = qU ◦ θ,

(2) f ′ = θ∗(f) · g′ for an element g′ ∈ Γ(X′,OX′),

(3) ∆ = θ ◦ ∆′.

Two observations are in order here.

• Item (2) implies in particular that Γ(X′,OX′)/θ∗(f) ·Γ(X′,OX′) is a finite O-module.

• It should be emphasized that no conditions are imposed on the inter-relation of Π′

and Π.

Let us state two crucial results which will be used in our main construction. Their
proofs are postponed till Sections 9 and 10.

Theorem 4.3. Let U be as in Definition 4.1. Let (X, f,∆) be a nice triple over U . Let GX

be a simple simply-connected X-group scheme, and let GU := ∆∗(GX). Finally, let Gconst

be the pull-back of GU to X. Then there exists a morphism θ : (X′, f ′,∆′) → (X, f,∆) of
nice triples and an isomorphism

Φ : θ∗(Gconst) → θ∗(GX)

of X′-group schemes such that (∆′)∗(Φ) = idGU
.

The proof of this theorem is sketched in Section 9. Let U be as in Definition 4.1.
Let (X, f,∆) be a nice triple over U . Then for each finite surjective U -morphism σ :
X → A1 × U and the corresponding O-algebra inclusion O[t] →֒ Γ(X,OX) the algebra
Γ(X,OX) is finitely generated as an O[t]-module. Since both rings O[t] and Γ(X,OX) are
regular, the algebra Γ(X,OX) is finitely generated and projective as an O[t]-module by
theorem [E, Cor.18.17]. Take the characteristic polynomial tr − an−1t

r−1 + · · · ±N(f) of

the O[t]-module endomorphism Γ(X,OX)
f
−→ Γ(X,OX) and set

gf,σ := f r−1 − an−1f
r−2 + · · · ± a1 ∈ Γ(X,OX). (4)

Lemma 4.4. f · gf,σ = ±N(f) ∈ Γ(X,OX).

In fact, the characteristic polynomial of the operator Γ(X,OX)
f
−→ Γ(X,OX) vanishes

on f .

Theorem 4.5. Let U be as in Definition 4.1. Let (X, f,∆) be a nice triple over U . There
exists a distinguished finite surjective morphism

σ : X → A1 × U

of U-schemes which enjoys the following properties.
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(1) σ is étale along the closed subset {f = 0} ∪ ∆(U).

(2) For gf,σ and N(f) defined by the distinguished σ, one has

σ−1
(
σ
(
{f = 0}

))
= {N(f) = 0} = {f = 0} ⊔ {gf,σ = 0}.

(3) Denote by X0 →֒ X the largest open sub-scheme, where the morphism σ is étale.
Write g for gf,σ in this item. Then the square

X0
N(f) = X0

fg
inc //

σ0
fg

��

X0
g

σ0
g

��
(A1 × U)N(f)

in // A1 × U

(5)

is an elementary Nisnevich square. More precisely, this square is Cartesian and the
morphism of the reduced closed sub-schemes

σ0
g |{f=0}red

: {f = 0}red → {N(f) = 0}red

of the schemes X0
g and A1 × U is an isomorphism.

(4) One has ∆(U) ⊂ X0
g.

A sketch of the proof of this Theorem is given in Section 10.
Using Theorems 4.3 and 4.5 in the next Section we construct data (a) to (d) from the

Introduction subject to Conditions (1*) to (6*).

5 A basic nice triple

With Propositions 3.3 and 3.4 at our disposal we may form a basic nice triple, namely the
triple (9). This is the main aim of the present Section. Namely, fix a smooth irreducible
affine k-scheme X, a finite family of points x1, x2, . . . , xn on X, and a non-zero function
f ∈ k[X]. We always assume that the set {x1, x2, . . . , xn} is contained in the vanishing
locus of the function f.

Replacing k by its algebraic closure in k[X], we may assume that X is a geometrically
irreducible k-variety. By Proposition 3.3 there exist a Zariski open neighborhood X0 of
the family {x1, x2, . . . , xn} and an elementary fibration p : X0 → S, where S is an open
sub-scheme of the projective space PdimX−1, such that

p|{f=0}∩X0 : {f = 0} ∩X0 → S

is finite surjective. Let si = p(xi) ∈ S, for each 1 ≤ i ≤ n. Shrinking S, we may
assume that S is affine and still contains the family {s1, s2, . . . , sn}. Clearly, in this case
p−1(S) ⊆ X0 contains the family {x1, x2, . . . , xn}. We replace X by p−1(S) and f by its
restriction to this new X.
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In this way we get an elementary fibration p : X → S such that

{x1, . . . , xn} ⊂ {f = 0} ⊂ X,

S is an open affine sub-scheme in the projective space PdimX−1, and the restriction of
p|{f=0} : {f = 0} → S to the vanishing locus of f is a finite surjective morphism. In other
words, k[X]/(f) is finite as a k[S]-module.

As an open affine sub-scheme of the projective space PdimX−1 the scheme S is regular.
By Proposition 3.4 one can shrink S in such a way that S is still affine, contains the family
{s1, s2, . . . , sn} and there exists a finite surjective morphism

π : X → A1 × S

such that p = prS◦π. Clearly, in this case p−1(S) ⊆ X contains the family {x1, x2, . . . , xn}.
We replace X by p−1(S) and f by its restriction to this new X.

In this way we get an elementary fibration p : X → S such that

{x1, . . . , xn} ⊂ {f = 0} ⊂ X,

S is an open affine sub-scheme in the projective space PdimX−1, and the restriction of
p|{f=0} : {f = 0} → S to the vanishing locus of f is a finite surjective morphism. Eventually
we conclude that there exists a finite surjective morphism

π : X → A1 × S

such that p = prS ◦ π.
Now, set U := Spec(OX,{x1,x2,...,xn}), denote by can : U →֒ X the canonical inclusion

of schemes, and let pU = p ◦ can : U → S. Further, we consider the fibre product
X := U ×S X. Then the canonical projections qU : X → U and qX : X → X and the
diagonal morphism ∆ : U → X can be included in the following diagram

X

qU

��

qX // X

U

can

88qqqqqqqqqqqqq

∆

YY (6)

where
qX ◦ ∆ = can (7)

and
qU ◦ ∆ = idU . (8)

Note that qU is a smooth morphism with geometrically irreducible fibres of dimension
one. Indeed, observe that qU is a base change via pU of the morphism p which has
the desired properties. Taking the base change via pU of the finite surjective morphism
π : X → A1 × S we get a finite surjective morphism

Π : X → A1 × U
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such that qU = prU ◦Π. Set f := q∗X(f). The OX,{x1,x2,...,xn}-module Γ(X,OX)/f ·Γ(X,OX)
is finite, since the k[S]-module k[X]/f · k[X] is finite.

Note that the data
(qU : X → U, f,∆) (9)

form an example of a nice triple, as defined in Definition 4.1.

Claim 5.1. The schemes ∆(U) and {f = 0} are both semi-local and the set of closed
points of ∆(U) is contained in the set of closed points of {f = 0}.

This holds since the set {x1, x2, . . . , xn} is contained in the vanishing locus of the
function f.

6 Main Construction

The main result of this Section is Theorem 6.1.
Fix a smooth affine k-scheme X, a finite family of points x1, x2, . . . , xn on X, and

set O := OX,{x1,x2,...,xn} and U := Spec(O). Further, consider a simple simply-connected
U -group scheme G and a principal G-bundle P over O which is trivial over the field of
fractions K of O. We may and will assume that for certain f ∈ O the principal G-bundle
P is trivial over Of. Shrinking X if necessary, we may secure the following properties

(i) The points x1, x2, . . . , xn are still in X.

(ii) The group scheme G is defined over X and it is a simple group scheme. We will
often denote this X-group scheme by GX and write GU for the original G.

(iii) The principal G-bundle P is defined over X and the function f belongs to k[X].

(iv) The restriction Pf of the bundle P to a principal open sub-set Xf is trivial and f
vanishes at each xi’s.

In particular, now we are given the smooth irreducible affine k-scheme X, the finite
family of points x1, x2, . . . , xn on X, and the non-zero function f ∈ k[X] vanishing at each
point xi. Recall, that starting from these data we constructed at the very end of Section
5 the nice triple (9). We did that shrinking X and secure properties (1) to (4) at the
same time.

Let G be the simple simply-connected X-group scheme, P be the principal G-bundle
over X. The restriction Pf of the bundle P to the principal open sub-scheme Xf is trivial
by Item (iv) above. Set GX := (qX)∗(G). By Theorem 4.3 there exists a morphism of nice
triples

θ : (X′, f ′,∆′) → (X, f,∆)

and an isomorphism
Φ : θ∗(Gconst) → θ∗(GX) =: GX′ (10)

of X′-group schemes such that (∆′)∗(Φ) = idGU
.

Set
q′X = qX ◦ θ : X′ → X. (11)
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Recall that
q′U = qU ◦ θ : X′ → U, (12)

since θ is a morphism of nice triples. Consider (q′X)∗(P ) as a principal (q′U )∗(GU) = Gconst-
bundle via the isomorphism Φ. Recall that P is trivial as a G-bundle over Xf. Therefore,
(q′X)∗(P ) is trivial as a principal GX′-bundle over X′

θ∗(f). Since θ is a nice triple morphism

one has f ′ = θ∗(f) · g′, and thus the principal GX′-bundle (q′X)∗(P ) = (qX ◦ θ)∗(G) is
trivial over X′

f ′ .
We can conclude that (q′X)∗(P ) is trivial over X′

f ′ , when regarded as a principal Gconst-
bundle via the isomorphism Φ.

By Theorem 4.5 there exists a finite surjective morphism σ : X′ → A1×U of U -schemes
satisfying (1) to (3) from that Theorem. In particular, one has

σ−1
(
σ
(
{f ′ = 0}

))
= N(f ′) = {f ′ = 0} ⊔ {g′σ = 0}

with N(f ′) and g′ defined in the item (2) of Theorem 4.5. Thus, replacing for brevity g′σ
by g′, one gets the following elementary Nisnevich square

(X′)0
N(f ′) = (X′)0

f ′g′
inc //

σ0
f ′g′

��

(X′)0
g′

σ0
g′

��
(A1 × U)N(f ′)

in // A1 × U

(13)

Regarded as a principal GU -bundle via the isomorphism Φ, the bundle (q′X)∗(P ) over X′

becomes trivial over X′
f ′ , and a fortiori over (X′)0

f ′g′. Now, taking the trivial GU -bundle
over (A1 × U)N(f ′) and the isomorphism

ψ : (X′)0
N(f ′) ×U GU → (q′X)∗(P )|(X′)0

N(f ′)
(14)

of principal GU -bundles, we get a principal GU -bundle Pt over A1 × U such that

(1) it is trivial over (A1 × U)N(f ′),

(2) (σ)∗(Pt) and (q′X)∗(P ) are isomorphic as principal GU -bundles. Here (q′X)∗(P ) is
regarded as a principal GU -bundle via the X′-group scheme isomorphism Φ from
(10);

(3) over (X′)0
N(f ′) the two GU -bundles are identified via the isomorphism ψ from (14).

Finally, form the following diagram

A1
U

pr

''OOOOOOOOOOOOOOO
(X′)0

g′

��

σ0
g′oo

q′U
��

q′
X // X

U

can

77ppppppppppppppp

∆′

WW
(15)

This diagram is well-defined since by Item (4) of Theorem 4.5 the image of the morphism
∆′ lands in (X ′)0

g′ .
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Theorem 6.1. The unitary polynomial N(f ′), the principal Gconst-bundle Pt over A1
U ,

the diagram (15) and the isomorphism (10) constructed above satisfy Conditions (1*) to
(6*) from the Introduction.

Proof. By the very choice of σ it is an U -scheme morphism, which proves (1*). Since
(X′)0 →֒ X′ is the largest open sub-scheme where the morphism σ is étale, one gets (2*).
Property (3*) holds for ∆′ since (X′,Z′,∆′) is a nice triple and, in particular, ∆′ is a
section of q′U . Property (4*) can be established as follows:

q′X ◦ ∆′ = (qX ◦ θ) ◦ ∆′ = qX ◦ ∆ = can.

The first equality here holds by the definition of q′X , see (11); the second one holds, since
θ is a morphism of nice triples; the third one follows from (7). Property (5*) is just
Property (1) in the above construction of Pt. Property (6*) is precisely Property (2) in
our construction of Pt.

7 Group of points of isotropic simple groups

In this section we establish several results concerning groups of points of simple groups,
in particular, Lemma 7.2, Proposition 7.7 and Lemma 7.8, which play crucial role in the
rest of the paper.

Definition 7.1. Let A be an arbitrary commutative ring, and let G be a reductive group
scheme over A. Assume that G has a proper parabolic subgroup P = P+ over A, and
denote by U+ its unipotent radical. By [D-G, Exp. XXVI Cor. 2.3, Th. 4.3.2] there exists
a parabolic subgroup P− of G opposite to P+, and by [D-G, Exp. XXVI Cor. 1.8] any two
such subgroups are conjugate by an element of U+(A). Let U− be the unipotent radical of
P−. For any A-algebra B we define the P -elementary subgroup EP (B) of the group G(B)
as follows:

EP (B) = 〈U+(B), U−(B)〉.

Lemma 7.2. Let B → B̄ be a surjective A-algebra homomorphism. Then the induced
homomorphism of elementary groups EP (B) → EP (B̄) is also surjective.

Proof. By [D-G, Exp.XXVI Cor. 2.5] the A-schemes U+ and U− are isomorphic to A-
vector bundles of finite rank. Thus, the maps U±(B) → U±(B̄) are surjective.

Let l be an infinite field and Gl be an isotropic simple simply-connected l-group
scheme. Recall that an isotropic scheme contains an l-split rank one torus Gm,l. Choose
and fix two opposite parabolic subgroups Pl = P+

l and P−
l of the l-group scheme Gl. Let

U+
l and U−

l be their unipotent radicals. We will be interested mostly in the group of
points Gl(l(t)). The following definition originates from [T, MainTheorem].

Definition 7.3. Define Gl(l(t))
+ as a subgroup of the group Gl(l(t)) generated by l(t)-

points of unipotent radicals of all parabolic subgroups of Gl defined over the field l.
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Remark 7.4. Clearly, l(t) = l(t−1). Thus,

Gl(l(t)) = Gl(l(t
−1)) and Gl(l(t))

+ = Gl(l(t
−1))+.

By definition the group Gl(l(t))
+ is generated by unipotent radicals of all l-parabolic

subgroups, and thus contains the elementary group EPl
(l(t)), introduced in Definition 7.1.

In fact they coincide.

Proposition 7.5. The group Gl(l(t))
+ is generated by l(t)-points of unipotent radicals of

any two opposite parabolic subgroups of the l-group scheme Gl. In particular, one has the
equality

Gl(l(t
−1))+ =

〈
U+

l (l(t−1)), U−
l (l(t−1))

〉
= EPl

(l(t−1)). (16)

Proof. Set Gl(t) = Gl ×Spec l Spec l(t). The group Gl(l(t))
+ is contained in the subgroup

of Gl(l(t)) = Gl(t)(l(t)) generated by l(t)-points of unipotent radicals of all parabolic sub-
groups of the group scheme Gl(t) defined over the field l(t). By [BT, Prop.6.2.(v)] the latter
group is generated by l(t)-points of unipotent radicals of any two opposite parabolic sub-
groups of Gl(t), in particular, by l(t)-points of U+

l(t) and U−
l(t). Since U±

l(t)(l(t)) = U±
l (l(t)),

we have (16).

Remark 7.6. For any ring A and an A-algebra B, and any reductive A-group scheme G
we can define the group GA(B)+ as in the Definition 7.3, that is, as the subgroup generated
by B-points of unipotent radicals of all A-parabolic subgroups of G. The question, whether
this subgroup coincides with EP (B) for an A-parabolic subgroup P of G, is in general rather
subtle. See the paper [PSt] by V. Petrov and the second author for details.

The following result is crucial for the sequel.

Proposition 7.7. One has equality

Gl(l(t
−1)) = Gl(l(t

−1))+ ·Gl(R) (17)

where Gl(l(t
−1))+ is the group defined in Definition 7.3 (see also Remark 7.4) and R =

l[t−1](t−1) is the localization of l[t−1] at the prime ideal (t−1).

Proof. Let Sl be a maximal l-split torus in Gl and let CentGl
(Sl) be its scheme theoretic

centralizer in Gl. Then by [R1, Cor.1.7] one has

Gl((l(t
−1))) = Gl(l(t

−1))+ · Sl(l(t
−1)) · CentGl

(Sl)(R). (18)

We show that Sl(l(t
−1)) is contained in Gl(l(t

−1)). Choose a maximal torus Tl in Gl

containing Sl. Let Ψ := Φ(S,Gl) be the relative root system of Gl with respect to Sl.
Further, let lsep be the separable closure of l. Denote by Φ the root system of Glsep with
respect to Tlsep — the absolute root system of Gl. Let

Ψ′ = {α ∈ Ψ | 2α /∈ Ψ}.
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A semi-simple l-split l-subgroup scheme Hl of Gl is constructed in [BT, Thm.7.2].
That semi-simple l-split l-subgroup scheme Hl contains the torus Sl as its maximal l-split
torus, the root system of Hl with respect to Sl coincides with Ψ′ and for each α ∈ Ψ′

the root subgroup Uα,l of the l-group scheme Hl is contained in the unipotent radical of
an appropriate l-parabolic subgroup Pl of the l-group scheme Gl, and consequently, in
Gl(l(t

−1))+.
Further, by [BT, (4.6) (Corollary J.Humphreys)] the semi-simple l-split l-group scheme

Hl is simply-connected provided that Gl is simply-connected. Since Hl is split, it follows
that the group of points Hl(l(t

−1)) is generated by the root subgroups Uα,l(l(t
−1)), α ∈ Ψ′

(e.g. [D-G, Exp. XXII Cor. 5.7.6]). Since Sl is a maximal split torus ofHl, using the above
inclusions Uα,l(l(t

−1)) ≤ Gl(l(t
−1))+, α ∈ Ψ′, we conclude that Sl(l(t

−1)) ≤ Gl(l(t
−1))+.

This completes the proof of the proposition, since the centralizer CentGl
(Sl) is an

l-subgroup scheme of Gl.

Let f(t) ∈ l[t] be a polynomial of degree n = deg(f) in t such that f(0) 6= 0. We
consider the reciprocal polynomial

f ∗(t−1) = f(t)/tn ∈ l[t−1],

clearly, f ∗(0) 6= 0. Conversely, if g(t−1) ∈ l[t−1] is a polynomial of degree n = deg(g) in
t−1 such that g(0) 6= 0, the reciprocal polynomial

g∗(t) = g(t−1) · tn ∈ l[t]

is defined by a similar formula. The above correspondences are mutually inverse. Fur-
ther, when f(t) ∈ l[t] runs over all polynomials in t with f(0) 6= 0, then the reciprocal
polynomial f ∗(t−1) runs over all polynomials g(t−1) ∈ l[t−1] with g(0) 6= 0.

Now let us return to the setting considered in (16) and (17) and Remark 7.6. Each
non-constant f(t) ∈ l[t] admits a unique factorisation of the form f(t) = tr · g(t), where
g(t) ∈ l[t] and g(0) 6= 0. Clearly, for each h(t) ∈ l[t] with h(0) 6= 0 one gets the following
inclusions

Gl

(
l[t]f(t)

)
≤ Gl

(
l[t−1, t]g∗

)
≤ Gl

(
l[t−1, t]g∗h∗

)
.

This leads us to the following Lemma.

Lemma 7.8. For each α ∈ Gl(l[t]f(t)) one can find a polynomial h(t) ∈ l[t], h(0) 6= 0,
and elements

u ∈ EPl

(
l[t−1, t]g∗h∗

)
, β ∈ Gl

(
l[t−1]g∗h∗

)

such that
α = uβ ∈ Gl

(
l[t−1, t]g∗h∗

)
. (19)

The chain of l-algebra inclusions l[t]fh ⊆ l[t]tfh = l[t, t−1]gh = l[t−1, t]g∗h∗ shows that

u ∈ EPl

(
l[t]tfh

)
, and α ∈ Gl

(
l[t]tfh

)
.
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Proof. As observed above, inclusions α ∈ Gl

(
l[t−1, t]g∗

)
≤ Gl

(
l[t−1, t]g∗h∗

)
are obvious.

The equalities (17) and (16) imply that there exists a polynomial h(t) ∈ l[t], h(0) 6= 0,
and elements

u ∈ EPl

(
[t−1, t]g∗h∗

)
, β ∈ Gl

(
l[t−1]g∗h∗

)
,

such that α = uβ in Gl

(
l[t−1, t]g∗h∗

)
. The last claim follows from the obvious l-algebra

inclusions
l[t]fh ⊆ l[t]tfh = l[t, t−1]gh = l[t−1, t]g∗h∗ .

8 Principal G-bundles on a projective line

The main result of the present section is Corollary 8.7. Let B be a commutative ring,
and let A1

B and P1
B be the affine line and the projective line over B, respectively. Usually

we identify the affine line with a sub-scheme of the projective line as follows A1
B =

P1
B −({∞}×Spec(B)), where ∞ = [0 : 1] ∈ P1. Let G be a semi-simple B-group scheme,

let P a principal G-bundle over A1
B, and let p : P → A1

B be the corresponding canonical
projection.

For a monic polynomial

f = f(t) = tn + an−1t
n−1 + · · · + a0 ∈ B[t]

we set Pf = p−1((A1
B)f). Clearly, it is a principal G-bundle over (A1

B)f . Further, we
denote by

F (t0, t1) = tn1 + an−1t
n−1
1 t0 + · · ·+ a0t

n
0

the corresponding homogeneous polynomial in two variables. Note that the intersection
of the principal open set in P1

B defined by the inequality F 6= 0 with the affine line A1
B

equals the principal open subset (A1
B)f . As in the previous section in the case where

a0 6= 0 we consider the reciprocal polynomial f ∗(t−1) ∈ B[t−1] equal to f(t)/tn.

Definition 8.1. Let ϕ : G(A1
B

)f
→ Pf be a principal G-bundle isomorphism. We write

P (ϕ, f) for a principal G-bundle over the projective line P1
B obtained by gluing P and

G(P1
B

)F
over (A1

B)f via the principal G-bundle isomorphism ϕ.

Remark 8.2. For any ϕ and f the principal G-bundles P (ϕ, f) and P (ϕ, fg) coincide
for each monic polynomial g ∈ B[t].

For any ϕ and f , any monic polynomial h(t) ∈ B[t] such that h(0) ∈ B∗ is invertible,
and any β ∈ G(B[t−1]h∗) the principal G-bundles P (ϕ, f) and P (ϕ◦β, tfh) are isomorphic.
In fact, they differ by a co-boundary.

Now, let l be an infinite field and Gl be a semi-simple l-group scheme. Let f ∈ l[t] be
a polynomial. Let P be a principal Gl-bundle over A1

l such that Pf is trivial over A1
f . Let

ϕ : GA1
f
→ Pf be a principal Gl-bundle isomorphism. Let P (ϕ, f) be the corresponding

principal G-bundle over P1
l .
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Lemma 8.3. In the above notation there exists an α ∈ G(l[t]f ) such that the principal
G-bundle P (ϕ ◦ α, f) is trivial over P1

l .

Proof. By the main theorem of [RR] we may assume that there is an isomorphism GA1
l

=

P over A1
l . In this case the above isomorphism ϕ coincides with the right multiplication

by an element β ∈ Gl(l[t]f ). Clearly, P (β ◦ β−1, f) is trivial over P1
l . Thus, P (β ◦α, f) is

trivial for α = β−1.

Corollary 8.4. Let Gl be an isotropic simply-connected semi-simple l-group scheme and
let P be a Gl-bundle over A1

l . Further, let f(t) ∈ l[t] be a non-constant polynomial,
ϕ : GA1

f
→ PA1

f
be a principal Gl-bundle isomorphism and let P (ϕ, f) be the corre-

sponding principal Gl-bundle on the projective line P1
l . Then there exist h(t) ∈ l[t] and

u ∈ G(l[t]tfh)
+ such that the principal Gl-bundle P (ϕ ◦ u, tfh) is trivial over P1

l .

Proof. By Lemma 8.3 there exists an α ∈ Gl(l[t]f ) such that the principal Gl-bundle
P (ϕ ◦ α, f) is trivial.

Let f(t) = trg(t) be the unique factorisation such that g(t) ∈ l[t] and g(0) 6= 0.
By Lemma 7.8 for each h(t) ∈ S, h(0) 6= 0, one has the inclusion α ∈ Gl(l[t

−1, t]g∗h∗).
Moreover, there exist an element h(t) ∈ l[t] with h(0) 6= 0 and elements

u ∈ Gl(l[t]tfh)
+, β ∈ Gl(l[t

−1]g∗h∗)

such that
α = uβ ∈ Gl(l[t

−1, t]g∗h∗). (20)

The following chain of principal Gl-bundle isomorphisms completes the proof

Gl ×Spec(l) P1
l = P (ϕ ◦ α, f) = P (ϕ ◦ α, tfg) = P (ϕ ◦ u ◦ β, tfh) ∼= P (ϕ ◦ u, tfh).

All the equalities are obvious. The last isomorphism holds since β ∈ Gl(l[t
−1]g∗h∗).

Let k be an infinite field and let X be a k-smooth irreducible affine variety. Re-
placing k by its algebraic closure in k[X] we may assume that X is smooth affine and
geometrically irreducible over k. Let x1, x2, . . . , xn be a finite family of points on X. Let
O = OX,{x1,x2,...,xn} be the semi-local ring of the family x1, x2, . . . , xn ∈ X and let U for
Spec(O). Let G be a simple group scheme over O. By G(xi), 1 ≤ i ≤ n, we denote the fibre
of G over the point xi, in other words, G(xi) = G×X xi. Note that for each i = 1, 2, . . . , n
the k(xi)-group scheme G(xi) is an isotropic simple simply-connected k(xi)-group scheme.

Let mi ⊆ k[X] be the maximal ideal corresponding to the point xi. Let J be the
intersection of all mi, 1 ≤ i ≤ n. Then l = k[X]/J = l1 × l2 × · · · × ln, where li = k(xi).
Let Gl = G×X Spec(l) be the fibre of G over Spec(l). In the sequel we write P1 and A1

for P1
O

and A1
O

respectively, whereas P1
l and A1

l denote the projective line and the affine
line over l.

Let f ∈ O[t] be a monic polynomial and let P be a principal GO-bundle over A1 such
that PA1

f
is trivial. Let ϕ : GA1

f
→ PA1

f
be a principal G-bundle isomorphism and let

P (ϕ, f) be the corresponding principal G-bundle on P1
O

(see Definition 8.1).
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Theorem 8.5. Assume that the O-group scheme G is isotropic simple and simply-connected.
Then there exists a monic polynomial h(t) ∈ O[t] and an element α ∈ G(O[t]tfh) such that
the principal G-bundle P (ϕ ◦ α, tfh) satisfies the condition

(i) P (ϕ ◦ α, tfh)|P1
l

is a trivial principal Gl-bundle over the projective line P1
l .

Proof. Denote by P (ϕ, f) the restriction of P (ϕ, f) to the projective line P1
l . By Corollary

8.4 there exists a monic polynomial h(t) ∈ l[t], such that h(0) ∈ l× and an element

u ∈ EPl

(
l[t]tf h

)
≤ Gl

(
l[t]tf h

)

such that the principal Gl-bundle P (ϕ ◦ u, tf h) is trivial over P1
l .

Choose a monic polynomial h(t) ∈ O[t] of degree equal to the degree of h(t) and
such that h(t) modulo J coincides with h(t). Clearly, the O-algebras homomorphism
O[t]tfh → l[t]tf h is surjective. By Lemma 7.2 it induces a surjective group homomorphisms

EPO

(
O[t]tfh

)
→ EPO

(
l[t]tf h

)
= EPl

(
l[t]tf h

)
.

Thus, there exists an α ∈ G(O[t]tfh) such that α = u. In other words, α equals

u ∈ EPl
(l[t]tf h) ≤ Gl(l[t]tf h)

modulo J .
Take the G-bundle P (ϕ◦α, tfh). We claim that its restriction to the projective line P1

l

is trivial. Indeed, one has the following chain of equalities and isomorphisms of principal
Gl-bundles over P1

l :

P (ϕ ◦ α, tfh) = P (ϕ ◦ α, tf h) = P (ϕ ◦ u, tf h),

where the principal Gl-bundle P (ϕ ◦ u, tfh) is trivial over P1
l .

We keep the same notation as in Theorem 8.5, see also the text immediately preceding
its statement.

Theorem 8.6. Let G be an simple simply-connected O-group scheme. Let P be a principal
G-bundle over P1 whose restriction to the closed fibre PP1

l
is trivial. Then P is of the

form: P = pr∗(P0), where P0 is a principal G-bundle over Spec(O) and pr : P1 → Spec(O)
is the canonical projection.

The proof of this Theorem is rather standard, and for the most part follows [R2].
However, our group scheme G does not come from the ground field k. Therefore, we have
to somewhat modify Raghunathan’s arguments. We skip details for now. Let us state an
important corollary of the above theorems.

Corollary 8.7 (=Theorem 2.1). Let G be an O-group scheme satisfying the same
assumptions as in Theorem 8.5. Further, let P be a principal G-bundle over A1. Assume,
that there exists a monic polynomial f ∈ O[t] such that the principal G-bundle PA1

f
is

trivial. Then the principal G-bundle P is trivial. In other words, there exists a G-bundle
isomorphism

G×U A1 ∼= P.
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Proof of Corollary 8.7. Let f ∈ O[t] be a monic polynomial such that the principal G-
bundle PA1

f
is trivial. Choose a principal G-bundle isomorphism ϕ : GA1

f
→ PA1

f
. By

Theorem 8.5 there exists a monic polynomial h(t) ∈ O[t] and an element α ∈ G(O[t]tfh)
such that the restriction P (ϕ ◦ α, tfh)|P1

l
of the principal G-bundle P (ϕ ◦ α, tfh) to the

projective line P1
l is a trivial principal Gl-bundle.

By Theorem 8.6 the principal G-bundle P (ϕ ◦ α, tfh) is of the form: P (ϕ ◦ α, tfh) =
pr∗(P0), where P0 is a principal G-bundle over Spec(O). Note that

G|{∞}×U
∼= P (ϕ ◦ α, tfh)|{∞}×U ,

where U = Spec(O) (that is the restriction of P (ϕ ◦ α, tfh) to {∞} × U is trivial). Thus

GP1
∼= P (ϕ ◦ α, tfh).

Since the original principal G-bundle P over A1 is isomorphic to P (ϕ ◦ α, tfh)|A1, it
follows that P is trivial. This finishes the proof.

9 Equating Groups

The aim of this Section is to sketch a proof of Theorem 4.3. The following Proposition is
a straightforward analogue of [?, Prop.7.1]

Proposition 9.1. Let S be a regular semi-local irreducible scheme and let G1, G2 be two
semi-simple simply-connected S-group schemes. Further, let T ⊂ S be a closed sub-scheme
of S and ϕ : G1|T → G2|T be an S-group scheme isomorphism. Then there exists a finite

étale morphism S̃
π
−→ S together with its section δ : T → S̃ over T and an S̃-group scheme

isomorphism Φ : π∗G1 → π∗G2 such that δ∗(Φ) = ϕ.

Proof of Theorem 4.3. We can start by almost literally repeating arguments from the
proof of [?, Lemma 8.1], which involve the following purely geometric lemma [?, Lemma
8.2].

For reader’s convenience below we state that Lemma adapting notation to the ones of
Section 4. Namely, let U be as in Definition 4.1 and let (X, f,∆) be a nice triple over U .
Further, let GX be a simple simply-connected X-group scheme, GU := ∆∗(GX), and let
Gconst be the pull-back of GU to X. Finally, by the definition of a nice triple there exists
a finite surjective morphism Π : X → A1 × U of U -schemes.

Lemma 9.2. Let Y be a closed nonempty sub-scheme of X, finite over U . Let V be an
open subset of X containing Π−1(Π(Y)). There exists an open set W ⊆ V still containing
q−1
U (qU(Y)) and endowed with a finite surjective morphism W → A1×U (in general 6= Π).
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Let Π : X → A1×U be the above finite surjective U -morphism. The following diagram
summarises the situation:

Z

��
X − Z �

� // X

qU

��

Π // A1 × U

U

∆

OO

Here Z is the closed sub-scheme defined by the equation f = 0. By assumption, Z is finite
over U . Let Y = Π−1(Π(Z∪∆(U))). Since Z and ∆(U) are both finite over U and since Π
is a finite morphism of U -schemes, Y is also finite over U . Denote by y1, . . . , ym its closed
points and let S = Spec(OX,y1,...,ym

). Set T = ∆(U) ⊆ S. Further, let GU = ∆∗(GX) be
as in the hypotheses of Theorem 4.3 and let Gconst be the pull-back of GU to X. Finally,
let ϕ : Gconst|T → GX|T be the canonical isomorphism. Recall that by assumption X is
U -smooth, and thus S is regular.

By Proposition 9.1 there exists a finite étale covering θ0 : S̃ → S, a section δ : T → S̃
of θ0 over T and an isomorphism

Φ0 : θ∗0(Gconst,S) → θ∗0(GX|S)

such that δ∗Φ0 = ϕ. We can extend these data to a neighborhood V of {y1, . . . , yn} and
get the diagram

S̃

θ0

��

�

� // Ṽ

θ

��
T �

� //

δ
@@

���
�����

S �

� // V �

� // X

(21)

where π : Ṽ → V finite étale, and an isomorphism Φ : θ∗(Gconst) → θ∗(GX).
Since T isomorphically projects onto U , it is still closed viewed as a sub-scheme of

V. Note that since Y is semi-local and V contains all of its closed points, V contains
Π−1(Π(Y)) = Y. By Lemma 9.2 there exists an open subset W ⊆ V containing Y and
endowed with a finite surjective U -morphism Π∗ : W → A1 × U .

Let X′ = θ−1(W), f ′ = θ∗(f), q′U = qU ◦ θ, and let ∆′ : U → X′ be the section of q′U
obtained as the composition of δ with ∆. We claim that the triple (X′, f ′,∆′) is a nice
triple. Let us verify this. Firstly, the structure morphism q′U : X′ → U coincides with the
composition

X′ θ
−→ W →֒ X

qU
−→ U.

Thus, it is smooth. The element f ′ belongs to the ring Γ(X′,OX′), the morphism ∆′

is a section of q′U . Each component of each fibre of the morphism qU has dimension

one, the morphism X′ θ
−→ W →֒ X is étale. Thus, each component of each fibre of the

morphism q′U is also of dimension one. Since {f = 0} ⊂ W and θ : X′ → W is finite,
{f ′ = 0} is finite over {f = 0} and hence also over U . In other words, the O-module
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Γ(X′,OX′)/f ′ · Γ(X′,OX′) is finite. The morphism θ : X′ → W is finite and surjective. We
have constructed above the finite surjective morphism Π∗ : W → A1 × U . It follows that
Π∗ ◦ θ : X′ → A1 × U is finite and surjective.

Clearly, the étale morphism θ : X′ → X is a morphism of nice triples, with g = 1.
Denote the restriction of Φ to X′ simply by Φ. The equality (∆′)∗Φ = idGU

holds by
the very construction of the isomorphism Φ. Theorem follows.

10 An elementary Nisnevich square

The aim of this Section is to sketch a proof of Theorem 4.5. We will use analogues of
three lemmas from [?] making them characteristic free. Lemma 10.3 is a refinement of [?,
Lemma 2].

Lemma 10.1. Let k be an infinite field and let S be an k-smooth equidimensional k-
algebra of dimension 1. Let f ∈ S be a non-zero divisor

Let m0 be a maximal ideal with S/m0 = k. Let m1,m2, . . . ,mn be pair-wise distinct
maximal ideals of S, (possibly m0 = mi for some i). Then there exists a non-zero divisor
s̄ ∈ S such that S is finite over k[s̄] and

(1) the ideals ni := mi ∩ k[s̄], 1 ≤ i ≤ n, are pair-wise distinct. If m0 is distinct from
all mi’s, then ni are all distinct from n0 := m0 ∩ k[s̄];

(2) the extension S/k[s̄] is étale at each mi’s and at m0;

(3) k[s̄]/ni = S/mi for each i = 1, 2, . . . , n;

(4) n0 = s̄k[s̄].

Proof. Let xi, 1 ≤ i ≤ n, be the point on Spec(S) corresponding to the ideal mi. Consider
a closed embedding Spec(S) →֒ An

k and find a generic linear projection p : An
k → A1

k

defined over k and such that for each i the following holds:

(1) for all i, j ≥ 0 one has p(xi) 6= p(xj), provided that xi 6= xj ;

(2) for each index i ≥ 0 the map p|Spec(S) : Spec(S) → A1 is étale at the point xi;

(3) the separable degree of the extension k(xi)/k(p(xi)) is one.

These items imply equalities k(p(xi)) = k(xi), for all i. Indeed, the extension k(xi)/k(p(xi))
is separable by (2). By (3) we conclude that k(p(xi)) = k(xi). Lemma follows.

Lemma 10.2. Under the hypotheses of Lemma 10.1 let f ∈ S be a non-zero divisor which
does not belong to a maximal ideal distinct from m0,m1, . . . ,mn. Let N(f) = NS/k[s](f)
be the norm of f . Then for an element s̄ ∈ S satisfying (1) to (4) of Lemma 10.1 one has

(a) N(f) = fg for an element g ∈ S;
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(b) fS + gS = S;

(c) the map k[s̄]/(N(f)) → S/(f) is an isomorphism.

Proof. Straightforward.

Lemma 10.3. Let R be a semi-local essentially smooth k-algebra with maximal ideals pi,
1 ≤ i ≤ r. Let A ⊇ R[t] be an R[t]-algebra smooth as an R-algebra and finite over R[t].
Assume that for each i the R/pi-algebra Ai = A/piA is equidimensional of dimension one.
Let ǫ : A→ R be an R-augmentation and I = Ker(ǫ). Given an f ∈ A with

0 6= ǫ(f) ∈

r⋂

i=1

pi ⊂ R

and such that the R-module A/fA is finite, one can find an element u ∈ A satisfying the
following conditions

(1) A is a finite projective module over R[u];

(2) A/uA = A/I ×A/J for some ideal J ;

(3) J + fA = A;

(4) (u− 1)A+ fA = A;

(5) if N(f) = NA/R[u](f), then N(f) = fg ∈ A for some g ∈ A

(6) fA+ gA = A;

(7) the composition map ϕ : R[u]/(N(f)) → A/(N(f)) → A/(f) is an isomorphism.

Proof. Replacing t by t − ǫ(t) we may assume that ǫ(t) = 0. Since A is finite over R[t]
from a theorem of Grothendieck [E, Cor.17.18] it follows that it is a finite projective
R[t]-module.

Since A is finite over R[t] and A/fA is finite over R we conclude that R[t]/(N(f)) is
finite over R, and thus R/(tN(f)) is finite over R. Setting v = tN(f), we get an integral
extension A over R[v] and, moreover,

v = tNA/R[t](f) = (ft)g = tfg.

We claim that A/R[v] is integral, ǫ(v) = 0 and v ∈ fA. Indeed, v = tNA/R[t](f) = t(fg)
and thus ǫ(v) = ǫ(t)ǫ(fg) = 0. Finally, by the very definition v ∈ fA.

Below, we use bar to denote the reduction modulo an ideal, at that subscript i indicates
reduction modulo piA. Let li = R̄i = R/pi. By the assumption of the lemma the li-algebra

Āi is li-smooth equidimensional of dimension 1. Let m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n be distinct maximal

ideals of Āi dividing f̄i and let m
(i)
0 = Ker(ǭi). Let s̄i ∈ Āi be such that the extension

Āi/li[s̄i] satisfies Conditions (1) to (4) of Lemma 10.1.
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Let s ∈ A be a common raising of s̄i’s, in other words, s = s̄i in Āi, for all i. Replacing
s by s− ǫ(s) we may assume that ǫ(s) = 0 and, as above, s = s̄i, for all i.

Let sn + p1(v)s
n−1 + · · · + pn(v) = 0 be an integral dependence for s. Let N be an

integer larger than max{2, deg(pi(t))}, where i = 1, 2, . . . , n. Then for any r ∈ k∗ the
element u = s − rvN has the following property: v is integral over R[u]. Thus, for any
r ∈ k∗ the ring R is integral over A[u].

On the other hand, one has v̄j ∈ m
j
i for all j and all 1 ≤ i ≤ n. It follows, that the

element ūj = s̄j − rv̄j
N still satisfies Conditions (1) to (4) of Lemma 10.1.

We claim that the element u ∈ R has the required properties, for almost all r ∈ k∗.
In fact, for almost all r ∈ k∗ the element u satisfies Conditions (1) to (4) of Lemma

[OP2, Lemma 5.2]. It remains to show that Conditions (5) to (7) hold for all r ∈ k∗.
Since A is finite over R[u] a theorem of Grothendieck [E, Cor.17.18] implies that it is a

finite projective R[u]-module. To prove (5), consider the characteristic polynomial of the

operator A
f
−→ A as an R[u]-module operator. This polynomial vanishes on f and its free

term equals ±N(f), the norm of f . Thus, fn − a1f
n−1 + · · · ±N(f) = 0 and N(f) = fg

for some g ∈ R.
To prove (6), one has to verify that the above g is a unit modulo the ideal fA. It

suffices to check that for each index i the element ḡi ∈ Āi is a unit modulo the ideal
f̄iĀi. With that end observe that the field li = R/pi, the li-algebra Si = Āi, its maximal

ideals m
(i)
0 ,m

(i)
1 , . . . ,m

(i)
n and the element ūi satisfy the hypotheses of Lemma 10.2, with

u replaced by ūi. Now, by Item (b) of Lemma 10.2 the reduction ḡi is a unit modulo the
ideal f̄iR̄i.

To prove (7), observe that R[u]/(NA/k[X](f)) and A/fA are finite A-modules. Thus,
it remains to check that the map ϕ : R[u]/(NA/k[X](f)) → A/fA is an isomorphism

modulo each maximal ideal m
(j)
i . With that end it suffices to verify that the map ϕ̄i :

li[ūi]/(N(f̄i)) → Āi/f̄iĀi is an isomorphism for each index i, where N(f̄i) := NĀi/li[ū](f̄i).
Now, by Item (c) of Lemma 10.2 the map ϕ̄j is an isomorphism. Lemma follows.

Proof of Theorem 4.5. Let U = Spec(OX,{x1,x2,...,xr}) be as in Definition 4.1. Write R for
OX,{x1,x2,...,xr}. It is a semi-local essentially smooth k-algebra with maximal ideals pi,
1 ≤ i ≤ r. Let (X, f,∆) be a nice triple over U . We show that it gives rise to certain data
subject to the hypotheses of Lemma 10.3.

Let A = Γ(X,OX). It is an R-algebra via the ring homomorphism q∗U : R → Γ(X,OX).
Furthermore, it is smooth as an R-algebra. The triple (X, f,∆) is a nice triple. Thus,
there exists a finite surjective U -morphism Π : X → A1

U . It induces an R-algebra inclusion
R[t] →֒ Γ(X,OX) = A such that A is finitely generated as an R[t]-module. Since (X, f,∆)
is a nice triple, R/pi-algebra A/piA is equidimensional of dimension one, for all i. Let
ǫ = ∆∗ : A → R be an R-algebra homomorphism induced by the section ∆ of the
morphism qU . Clearly, this ǫ is an augmentation, let I = Ker(ǫ). Further, since (X, f,∆)
is a nice triple, ǫ(f) 6= 0 ∈ R and A/fA is finite as an R-module. Summarising the above,
we can conclude that we find ourselves in the setting of Lemma 10.3, and may use the
conclusion of that Lemma.
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Thus, there exists an element u ∈ A subject to Conditions (1) through (7) of Lemma
10.3. This u induces an R-algebra inclusion R[u] →֒ A such that A is finite as an R[u]-
module. Let

σ : X → A1 × U

be the U -scheme morphism induced by the above inclusion R[u] →֒ A. Clearly, σ is finite
and surjective. Let N(f) ∈ R[u] ⊆ A and gf,σ ∈ A be elements defined just above Lemma
4.4. Write g for gf,σ in this proof.

We claim that this morphism σ and the chosen elements N(f) and g satisfy conclusions
(1) to (4) of Theorem 4.5. Let us verify this claim. Since A is finite as an R[t]-module and
both rings R[t] and A are regular, the R[t]-module A is finitely generated and projective,
see [E, Corollary 18.17]). Thus, σ is étale at a point x ∈ X if and only if the k(σ(x))-algebra
k(σ(x)) ⊗R[t] A is étale. If the point x belongs to the closed sub-scheme Spec(A/piA) for
some maximal ideal pi of R, then

k(σ(x)) ⊗R[t] A = k(σ(x)) ⊗(R/pi)[t] A/piA.

We can conclude that σ is étale at a specific point x if and only if the (R/pi)[t]-algebra
A/piA is étale at the point x. It follows from the proof of Lemma 10.3 that the morphism

σ induces a morphism Spec(A/piA)
σi−→ A1

li
on the closed fibre Spec(A/piA) for each i.

This induced morphism is étale along the vanishing locus of the function f̄i and along
each point ∆i(Spec li). In fact, for the vanishing locus of the function f̄i this follows from
items (6) and (7) of Lemma 10.3. It follows from the hypotheses of Lemma 10.3 that the
function f vanishes at each maximal ideal containing I. Thus σ is étale along the closed
sub-scheme X defined by the ideal I, that is along ∆.

Item (1) of Theorem 4.5 follows.
The first of the following equalities

σ−1(σ({f = 0})) = {N(f) = 0} = {f = 0} ⊔ {gf,σ = 0}

is a commonplace. The second one follows from the equality N(f) = ±f · gf,σ, proved in
Lemma 4.4 and Item (6) of Lemma 10.3.

Write g for gf,σ. Clearly, the square (5) is Cartesian and the morphism σ0
g is étale.

The scheme X0
g contains a closed sub-scheme ∆(U), and hence is non-empty. Item (7) of

Lemma 10.3 shows that the morphism of the reduced closed sub-schemes

σ0
g |{f=0}red

: {f = 0}red → {N(f) = 0}red

is an isomorphism. Thus, we have checked Item (3) of Theorem 4.5.
It remains only to check Item (4). We already know that {f = 0} ⊂ X0

g. By Claim
5.1 both schemes ∆(U) and {f = 0} are semi-local and the set of closed points of ∆(U)
is contained in the set of closed points of the closed set {f = 0}. Thus, ∆(U) ⊂ X0

g. This
concludes the proof of Item (4) of Theorem 4.5 and thus of the theorem itself.

23



11 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.2. We start with the following data. Fix a smooth affine k-scheme X,
a finite family of points x1, x2, . . . , xn onX, and set O := OX,{x1,x2,...,xn} and U := Spec(O).
Further, consider a simple simply-connected U -group scheme G and a principal G-bundle
P over O which is trivial over the field of fractions K of O. We have to check that the
principal G-bundle P is trivial . We may and will assume that for certain f ∈ O the
principal G-bundle P is trivial over Of.

Shrinking X if necessary, we may secure the following properties

(i) The points x1, x2, . . . , xn are still in X;

(ii) The group scheme G is defined over X and it is a simple and simply-connected
group scheme. We will often denote this X-group scheme by GX and write GU for the
original G;

(iii) The principal G-bundle P is defined over X; f ∈ k[X] and f vanishes at each xi’s;

(iv) The restriction Pf of the bundle P to the principal open sub-scheme Xf is trivial.

We may shrink X a little further, if necessary, always looking after verification of (i) to
(iv). This way we constructed in Section 5 a basic nice triple (9). Beginning with that
basic nice triple we constructed in Section 6 the following data:

(a) a unitary polynomial h(t) in R[t],

(b) a principal GU -bundle Pt over A1
U ,

(c) a diagram of the form

A1
U

pr
&&MMMMMMMMMMMMM Y

σoo

qU

��

qX // X

U

can

88qqqqqqqqqqqqq

δ

YY (22)

with Y = X′,

(d) an isomorphism Φ : q∗U(GU) → q∗X(G) of Y -group schemes.

By Theorem 6.1 these data may be chosen to be subject to the following properties:

(1*) qU = pr ◦ σ,

(2*) σ is étale,

(3*) qU ◦ δ = idU ,

(4*) qX ◦ δ = can,

(5*) the restriction of Pt to (A1
U)h is a trivial GU -bundle,

(6*) (σ)∗(Pt) and q∗X(P ) are isomorphic as principal GU -bundles. Here q∗X(P ) is re-
garded as a principal GU -bundle via the group scheme isomorphism Φ from the item
(d).

Recall, that we have to check that the G-bundle P is trivial over U . By assumption
the group scheme GU is simple and simply-connected and isotropic. The restriction of
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the principal GU -bundle Pt to (A1
U)h is trivial by Condition (5*). Then the principal

GU -bundle Pt is itself trivial by Theorem 2.1.
On the other hand, the GU -bundle (σ)∗(Pt) is isomorphic to q∗X(P ) as principal GU -

bundle by (6*). Therefore, q∗X(G) is trivial as a q∗X(G)-bundle. It follows that δ∗(q∗X(P )) =
can∗(P ) is trivial as a δ∗(q∗X(G)) = can∗(G)-bundle. Thus, can∗(P ) = PU is trivial as a
principal can∗(G) = GU -bundle.

Proof of Theorem 1.1. Theorem follows from Theorem 1.2 using arguments similar to
those in [OP2, Sect.7], and we skip them. Let us only indicate here that arguments in
[OP2, Sect.7] are based on a Theorem due to D. Popescu [P] (see also [Sw] for a self-
contained exposition of that theorem).

12 Semi-simple case

In the present Section we extend Theorem 1.1 to the case of semi-simple simply-connected
groups. By [D-G, Exp. XXIV 5.3, Prop. 5.10] the category of semi-simple simply-
connected group schemes over a Noetherian domain R is semi-simple. In other words,
each object has a unique decomposition into a product of indecomposable objects. Inde-
composable objects can be described as follows. Take a domain R′ such that R ⊆ R′ is
a finite étale extension and a simple simply-connected group scheme G′ over R′. Now,
applying the Weil restriction functor RR′/R to the R-group scheme G′ we get a simply-
connected R-group scheme RR′/R(G′), which is an indecomposable object in the above
category. Conversely, each indecomposable object can be constructed in this way.

Theorem 12.1. Let R be a regular semi-local domain containing an infinite perfect sub-
field and let K be the quotient field of R. Let G be a semi-simple simply-connected group
scheme G all of whose indecomposable factors are isotropic. Then the map

H1
ét(R,G) → H1

ét(K,G)

induced by the inclusion of R into K has trivial kernel.

In other words, under the above assumptions on R and G each principal G-bundle P
over R which has a K-rational point is itself trivial.

Proof. Take a decomposition of G into indecomposable factors G = G1 ×G2 × · · · ×Gr.
Clearly, it suffices to check that for each index i the kernel

H1
ét(R,Gi) → H1

ét(K,Gi)

is trivial. We know that there exists a finite étale extension R′
i/R such that R′

i is a domain
and the Weil restriction RR′

i/R(G′
i) coincides with Gi.
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The Faddeev—Shapiro Lemma [D-G, Exp. XXIV Prop. 8.4] states that there is a
canonical isomorphism preserving the distinguished point

H1
ét

(
R,RR′

i/R(G′
i)
)
∼= H1

ét

(
R′, Gi

)
.

To complete the proof it only remains to apply Theorem 1.1 to the semi-local regular ring
R′

i, its quotient field Ki and the simple R′
i-group scheme G′

i.

Theorem 12.2. Let k be an infinite field. Let O be the semi-local ring of finitely many
points on a smooth irreducible k-variety X and let K be its field of fractions. Let G be
a semi-simple simply-connected group scheme G all of whose indecomposable factors are
isotropic. Then the map

H1
ét(R,G) → H1

ét(K,G)

induced by the inclusion of R into K has trivial kernel.

Proof. Use Theorem 1.2 and argue literally as in the proof of Theorem 12.1

Acknowledgments The authors are very grateful to Konstantin Pimenov and Vic-
tor Petrov for useful discussions on the subject of the present article.
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Math., vol 153.

[E] Eisenbud, D. Commutative Algebra, Graduate Texts in Mathematics 150,
Springer (1994).

[Gr1] Grothendieck, A. Torsion homologique et section rationnalles, in Anneaux de
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