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Abstract. We prove isomorphism criteria for Witt rings and reduced Witt
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rings of hermitian forms over a quadratic extension of a real base field and for
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1 Introduction

Throughout, we will only consider fields of characteristic different from 2.
In [5], Harrison gave necessary and sufficient conditions for two fields to have
isomorphic Witt rings:

Theorem 1.1 (Harrison). Let K and L be two fields. Then the following are
equivalent:

(1) There is a ring isomorphism W (K) ≃ W (L).

(2) There is a group isomorphism t : K∗/K∗2 → L∗/L∗2 sending −1 to −1
such that the quadratic form 〈1,−x,−y, xy〉 is hyperbolic over K if and
only if the quadratic form 〈1,−t(x),−t(y), t(x)t(y)〉 is hyperbolic over L
for all x, y ∈ K∗.

Over global fields, in [10], Perlis, Szymiczek, Conner and Litherland showed
that the previous criterion can be expressed in terms of (nontrivial) places of
the considered fields:

Theorem 1.2 (Perlis, Szymiczek, Conner, Litherland). Let K and L be two
global fields and denote by ΩK (resp. ΩL) the set of nontrivial places over K
(resp. L). Then the following are equivalent:
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(1) There is a ring isomorphism W (K) ≃ W (L).

(2) There is a pair of maps (t, T ) with a group isomorphism t : K∗/K∗2 →
L∗/L∗2 and a bijection T : ΩK → ΩL such that we have the following
equality of Hilbert symbols

(x, y)P = (tx, ty)T (P )

for all x, y ∈ K∗/K∗2 and for all P ∈ ΩK .

If K is a field, denote by XK the topological space of all orderings in K.
The purpose of this paper is to prove isomorphism criteria for several types of
Witt rings or Witt groups over real base fields. It turns out that our results
can be stated in the same way as Theorem 1.2 by replacing the set of nontrivial
places by certain subspaces of XK and local conditions on Hilbert symbols by
local positivity conditions.

Before we state our first main result in the case of Witt rings of real fields,
let us recall that the u-invariant u(K) of a field is defined as

u(K) = sup{dim q | q is an anisotropic torsion quadratic form over K} ,

where q is said to be torsion if its Witt class is a torsion element in W (K).

Theorem 1.3. Let K and L be two real fields. Consider the following three
statements:

(1) There is a ring isomorphism W (K) ≃ W (L).

(2) There is a pair of maps (t, T ) with a group isomorphism t : K∗/K∗2 →
L∗/L∗2 and a homeomorphism T : XK → XL such that x is positive at
P if and only if t(x) is positive at T (P ), for all x ∈ K∗/K∗2 and for all
P ∈ XK .

(3) There is a pair of maps (t, T ) with a group isomorphism t : K∗/K∗2 →
L∗/L∗2 and a bijection T : XK → XL such that x is positive at P if and
only if t(x) is positive at T (P ), for all x ∈ K∗/K∗2 and for all P ∈ XK .

Then (1) =⇒ (2) ⇐⇒ (3). If, in addition, u(K), u(L) ≤ 2, then these state-
ments are equivalent.

A crucial ingredient in the proof is another result due to Harrison which asserts
that there is a bijection between the ideals of characteristic 0 in the spectrum of
the Witt ring of a field and the orderings of that field. This result and several
other facts and notations are recalled in the first part of Section 2, the second
part being dedicated to the proof of Theorem 1.3.

In Section 3, we further assume that the base fields are SAP fields, i.e. that
they have the strong approximation property, see Definition 3.2. Our second
main result is the following refinement of Theorem 1.3:

Theorem 1.4. Let K and L be two SAP fields such that u(K), u(L) ≤ 2. Then
the following are equivalent:

(1) There is a ring isomorphism W (K) ≃ W (L).
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(2) There is a homeomorphism XK ≃ XL and a group isomorphism σ̇(K)/K∗2

≃ σ̇(L)/L∗2.

Here, and in the sequel, σ(K) stands for the set of elements of K that can be
expressed as a sum of squares in K, and we write σ̇(K) for σ(K) \ {0} (which
is a subgroup of K∗). The proof of this result very much relies on a study of
the ring structure of the set of clopen subspaces of XK . This is done in the first
two parts of Section 3, with the last part containing the proof of Theorem 1.4
and a slight generalization of a result of Koprowski about the Witt equivalence
of real algebraic function fields over real closed fields, see Corollary 3.6.

In the last two sections, we adapt the ideas used in Section 2 and 3 to
other situations. In the case of reduced Witt rings, it turns out that analogs of
Theorem 1.3 and 1.4 can be proved: see Theorem 4.3 and Corollary 4.6. Section
4 is dedicated to the proof of these two results after recalling some elementary
facts about preorderings and reduced Witt rings.

In Section 5, we show how to generalize Theorem 1.3 in the case of the
Witt ring of hermitian forms over a quadratic extension of a real field endowed
with its nontrivial automorphism, and the Witt group of hermitian forms over
a quaternion division algebra central over a real field and endowed with its
canonical involution. The corresponding results are stated as Theorem 5.4 and
Theorem 5.9. As for usual Witt rings, an important step in the proof of each of
these results is to determine bijections between certain subspaces of the space
of orderings and certain subsets of the spectra of the Witt rings adapted to each
situation.

2 Witt rings

Before turning to the proof of Theorem 1.3, let us fix some terminology and
recall some basic facts about Witt rings and orderings. For further informations,
we refer to [9].

2.1 Notations and preliminary results

Let K be a field. The notation 〈a1, · · · , an〉 will refer to the diagonal
quadratic form a1X

2
1 + · · · + anX2

n where the ai’s belong to K∗. We shall
denote by W (K) the Witt ring of K and by I(K) its fundamental ideal. The
nth power of the fundamental ideal shall be denoted by In(K). It is additively
generated by the n-fold Pfister forms

〈〈a1, · · · , an〉〉 := 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉.

The signed discriminant of a (diagonal) quadratic form 〈a1, · · · , an〉 is defined
to be the following element of K∗/K∗2:

(−1)
n(n+1)

2 a1 · · ·an.K∗2.

It induces a group isomorphism d± : I(K)/I2(K) ≃ K∗/K∗2.
An ordering on K is a subset P ( K such that P + P ⊆ P , P.P ⊆ P ,

P ∪ −P = K. It follows that −1 /∈ P and that P ∩ −P = {0}. ¿From the very
definition, any ordering P contains σ(K). By Artin-Schreier theory, a field K
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has an ordering if and only if −1 6∈ σ(K), in which case K is called formally real,
or real for short. Furthermore, σ(K) =

⋂
P where P runs over all orderings of

K. If P is an ordering and x ∈ K∗, then x is said to be positive (resp. negative)
at P , denoted by x>

P
0 (resp. x<

P
0), if x ∈ P (resp. −x ∈ P ). Note that

we can talk about the positivity or the negativity of any square class, a square
being always positive at any ordering. The set XK of all orderings on K is a
topological space with a subbasis given by the clopen sets

H(a) := {P ∈ XK | a ∈ P},

where a ranges over K∗. This topology is known as the Harrison topology.
The signature of a quadratic form q at an ordering P shall be denoted by

sgnP (q). It induces a surjective ring homomorphism sgnP : W (K) → Z.
Recall that by Pfister’s local-global principle, the torsion quadratic forms

over a real field K are exactly the forms q with total signature zero, i.e. sgnP (q) =
0 for all P ∈ XK . Hence, u(K), if finite, is always even for a real field K.

A prime ideal I in a ring R is said to be of characteristic p where p is a
prime number (resp. 0) if the quotient ring R/I has characteristic p (resp. 0)
and we will say that char I = p (resp. 0). In the case where R = W (K), we
easily see that a prime ideal I has characteristic p (resp. 0) if and only if the
quotient W (K)/I is isomorphic (as a ring) to Z/pZ (resp. Z), see [9, Chapter
VIII]. Following [9, Chapter VIII], let

YK := {I ∈ Spec (W (K)) | char I = 0}.

Theorem 2.1 (Harrison). There is a bijection between XK and YK .

Proof. The bijection is defined as follows. To any P ∈ XK , we can associate
the ideal IP := ker sgnP ∈ YK . Conversely, from I ∈ YK , one can construct an
ordering by setting PI := {0} ∪ {a ∈ K∗ | 〈a〉 ≡ 1 mod I}. See [9, Chapter
VIII, Proposition 7.4] for more details.

2.2 Proof of Theorem 1.3

During the proof of Theorem 1.3, we will need the following Lemma:

Lemma 2.2. Let K and L be real fields. Suppose that there is a pair of maps
(t, T ) with a group isomorphism t : K∗/K∗2 → L∗/L∗2 and a bijection T :
XK → XL such that x is positive at P if and only if t(x) is positive at T (P ) for
all x ∈ K∗/K∗2 and for all P ∈ XK. Then there exists a pair (t, T ) with the
above properties and in addition t(−1) = −1.

Proof. By assumption, −t(−1) is positive at all orderings of L, so −t(−1) ∈
σ̇(L), say t(−1) = −∑n

i=1 ui
2. Now if

∑n
i=1 ui

2 6= 1 ∈ L∗/L∗2, then let
{−1,−∑n

i=1 ui
2, · · · } be a F2-basis of the F2-vector space L∗/L∗2. Let t̃ :

L∗/L∗2 → L∗/L∗2 be the F2-vector space automorphism which exchanges −1
and −

∑n
i=1 ui

2 but fixes all other basis vectors. Let t1 = t̃ ◦ t. Now, t1 is a
group isomorphism between K∗/K∗2 and L∗/L∗2 and t1(−1) = −1. Moreover,
by decomposing any element t(x) ∈ L∗/L∗2 in the previous F2-basis, we eas-
ily see that t(x) is positive at Q if and only if t1(x) is positive at Q for any
Q ∈ XL.
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Proof of Theorem 1.3: (1) ⇒ (2) We will use the notations of the proof
of Theorem 2.1. Let Φ be a ring isomorphism between W (K) and W (L). By
Theorem 1.1, there exists a group isomorphism t : K∗/K∗2 → L∗/L∗2 with
t(−1) = −1. More precisely, if a ∈ K∗/K∗2, t(a) is defined to be the signed
discriminant of Φ(〈1,−a〉): t(a) = d±(Φ(〈1,−a〉)) ∈ L∗/L∗2.

Now, we show how to construct T . As Φ is a ring isomorphism, it is easy to
see that I ∈ YK if and only if Φ(I) ∈ YL. Now, consider the following diagram:

XK

λK //

T

��

	

YK
µK

oo

Φ

��

XL

λL // YL
µL

oo

In this diagram, λ∗ : X∗ → Y∗ : P 7→ IP is the bijection in Theorem 2.1, and
µ∗ : Y∗ → X∗ : I 7→ PI is its inverse.

Define T = µL ◦ Φ ◦ λK : XK → XL. More precisely, if P ∈ XK , then
T (P ) := {0} ∪ {b ∈ L∗ | 〈b〉 ≡ 1 mod Φ(IP )}. In particular, q ∈ IP if and only
if Φ(q) ∈ IT (P ).

Next, we show the compatibility of (t, T ) with respect to the positivity at
each ordering. Let x ∈ K∗/K∗2 and P ∈ XK such that x>

P
0. This means

that 〈1,−x〉 ∈ IP , thus Φ(〈1,−x〉) ∈ IT (P ). By construction, t(x) is the signed
discriminant of Φ(〈1,−x〉). Let Φ(〈x〉) = 〈b1, · · · , b2n+1〉 (as a ring homomor-
phism, Φ sends the units of W (K) onto the units of W (L) which are necessarily
Witt classes of forms of odd dimension). We easily verify that

t(x) = (−1)nb1 · · · b2n+1.

As
0 = sgnT (P )(Φ(〈1,−x〉)) = sgnT (P )(〈1,−b1, · · · ,−b2n+1),

there are exactly n (resp. n+1) bi’s which are negative (resp. positive) at T (P ).
Therefore, t(x) is positive at T (P ). The converse is similar.

Lastly, we show that T is in fact a homeomorphism. To show that T is
continuous with respect to the corresponding Harrison topologies, it suffices to
show that T−1(H(b)) is open in XK for every b ∈ L∗. Let b ∈ L∗ and a ∈ K∗

be such that t(a) = b. Now for each P ∈ XK , we have that a is positive at P if
and only if b is positive at T (P ). This readily implies that T−1(H(b)) = H(a)
thus proving that the bijection T is continuous. Similarly, T−1 is continuous
and T is a homeomorphism.

(2) ⇔ (3) If (3) holds, then clearly T (H(a)) = H(t(a)) for all a ∈ K∗, and by
the definition of the Harrison topology, T is clearly a homeomorphism which
establishes (2). The converse is trivial.

Finally, assume that u(K), u(L) ≤ 2.
(3) ⇒ (1) The signature at an ordering of any n-fold Pfister form is 0 or 2n, so
we have

sgnP (〈〈x, y〉〉) = sgnT (P )(〈〈t(x), t(y)〉〉), (2.1)
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for all x, y ∈ K∗/K∗2 and for all P ∈ XK . If x, y ∈ K∗/K∗2, as u(K) ≤ 2,
the 2-fold Pfister form 〈〈x, y〉〉 is hyperbolic if and only if 〈〈x, y〉〉 is torsion which
in turn is equivalent to the fact that sgnP (〈〈x, y〉〉) = 0 for every P ∈ XK , by
Pfister’s local-global principle (see [9, Chapter VIII, Theorem 3.2]). Using (2.1),
Pfister’s local-global principle and the fact that u(L) ≤ 2, we obtain that the 2-
fold Pfister form 〈〈x, y〉〉 is hyperbolic over K if and only if the 2-fold Pfister form
〈〈t(x), t(y)〉〉 is hyperbolic over L. Now, we get condition (1) by using Lemma
2.2 and Theorem 1.1. �

Remarks 2.3. We have u(K) ≤ 2 if and only if I2(K) is torsionfree (see [9,
Chapter XI, Proposition 6.26 (2)]). For example, if K is an extension of tran-
scendence degree 1 over a real closed field k, then u(K) ≤ 2 (see [3, Theorems
E, I]).

3 SAP fields

The purpose of this section is to prove isomorphism criteria for Witt rings
over SAP fields. We first study the space of orderings of such a field.

3.1 Homeomorphisms of spaces of orderings of real fields

Let X be a topological space that is boolean (= compact, totally discon-
nected and Hausdorff). Then the set of clopen subsets Clop(X ) is a boolean
ring with addition given by the symmetric difference △ and multiplication given
by the intersection ∩. It is clear that homeomorphic boolean spaces X and X ′

give rise to isomorphic boolean rings Clop(X ) and Clop(X ′).
Furthermore, if B is a boolean ring then Spec(B) becomes a boolean topo-

logical space under the Zariski topology, and again it is clear that isomorphic
boolean rings B and B′ give rise to homeomorphic boolean spaces Spec(B) and
Spec(B′).

It is a consequence of Stone duality that any boolean space X is homeomor-
phic to Spec(Clop(X )) (see [14]).

Since spaces of orderings of fields are boolean spaces under the Harrison
topology, we can apply the above to get

Corollary 3.1. Let K and L be real fields. Then the following are equivalent:

(1) There is a homeomorphism Φ : XK → XL.

(2) There is a ring isomorphism Ψ : (Clop(XK),△,∩) → (Clop(XL),△,∩).

3.2 The group structure of (K∗/σ̇(K),×) for SAP fields

Definition 3.2. A field K satisfies the Strong Approximation Property (we
also say that K is SAP for short) if one of the following equivalent conditions
holds:

(1) For any two disjoint closed subsets A, B of XK , there exists an a ∈ K∗

such that a is positive at every P ∈ A (i.e. A ⊂ H(a)) and negative at
every P ∈ B (i.e. B ⊂ H(−a)).
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(2) If A is a clopen subset of XK , then A = H(a) for some a ∈ K∗.

Note that a nonreal field may be called SAP as both conditions are empty. It
is known that algebraic number fields, fields of transcendence degree at most
1 over a real closed field or the field of Laurent series in one variable over any
uniquely ordered real field are SAP fields.

In the sequel, for any a ∈ K∗, we put

H−(a) := {P ∈ XK | − a ∈ P} .

Then H−(a) = H(−a) ∈ Clop(XK), and we have H−(a) △ H−(b) = H−(ab).
The purpose of this subsection is to give two descriptions of the multiplicative

group K∗/σ̇(K) in the case where K is an SAP field. For us, the more important
one is the following.

Lemma 3.3. Let K be real and SAP. Then the map

t : K∗/σ̇(K) → (Clop(XK),△) : a 7→ H−(a)

is a well-defined group isomorphism.

Proof. Clearly, t is well-defined, and it is surjective as K is SAP. Moreover
H−(a) = H−(b) if and only if ab is positive at all P ∈ XK if and only if
ab ∈ σ̇(K) by Artin’s Theorem. This proves that t is bijective. Also, H−(a) △
H−(b) = H−(ab), thus proving that t is a group isomorphism.

Remark 3.4. In general, one always has a group isomorphism K∗/σ̇(K) ≃
(H,△) as above (where H denotes the set of all H−(a)) as was first noticed by
Craven in [2]. In the case where K is SAP, we obviously have H = Clop(XK).

For n ∈ N, denote by In
t (K) the ideal of torsion forms in In(K), i.e. In

t (K) =
In(K) ∩ Wt(K). The following result (which won’t be used in the sequel) is
another way to describe the group K∗/σ̇(K) under a more restictive hypothesis.

Proposition 3.5. Let K be a field with with In
t (K) = 0 for some n ∈ N.

(1) The map

Φ : K∗/σ̇(K) → Hn(K, µ2) : a mod σ̇(K) → (a) ∪ (−1) ∪ · · · ∪ (−1)︸ ︷︷ ︸
n−1

is well defined and an injective group homomorphism.

(2) Φ is an isomorphism if and only if K is SAP.

Proof. (1) Let us for short write (a1, · · · , an) for the symbol (a1) ∪ · · · ∪ (an) ∈
Hn(K, µ2). Using the injectivity of the Milnor map en : InK/In+1K →
Hn(K, µ2) on n-fold Pfister forms, we get that

(a,−1, · · · ,−1) = (b,−1, · · · ,−1)

⇐⇒ 〈〈a,−1, · · · ,−1〉〉 ∼= 〈〈b,−1, · · · ,−1〉〉
⇐⇒ sgnP (〈〈a,−1, · · · ,−1〉〉 − 〈〈b,−1, · · · ,−1〉〉) = 0 (∀P ∈ XK)

⇐⇒ ab ∈ σ̇(K)
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(in the second equivalence, we use that 〈〈a,−1, · · · ,−1〉〉 − 〈〈b,−1, · · · ,−1〉〉 ∈
InK together with Pfister’s local-global principle and the fact that In

t K = 0).
This shows well-definition and injectivity of Φ. It is clear that Φ is then also a
group homomorphism.

(2) Suppose in addition that K is SAP. Since en is also surjective (by the
Milnor conjecture), to show surjectivity of Φ, it suffices to show that each n-fold
〈〈a1, · · · , an〉〉 is isometric to 〈〈a,−1, · · · ,−1〉〉 for some a ∈ K∗. Since In

t K = 0
and by Pfister’s local-global principle, it suffices to show that there exists a ∈ K∗

such that H−(a1)∩· · ·∩H−(an) = H−(a), but this clearly holds for SAP fields.
Conversely, suppose K is not SAP. Then there must exist a1, a2 ∈ K∗

such that for any a ∈ K∗, we have H−(a1) ∩ H−(a2) 6= H−(a). In particu-
lar, for any a ∈ K∗ there exists P ∈ XK with sgnP (〈〈a1, a2,−1, · · · ,−1〉〉 −
〈〈a,−1, · · · ,−1〉〉) 6= 0. By similar arguments as before, we conclude that
(a1, a2,−1, · · · ,−1) is not in the image of Φ.

3.3 Isomorphism criteria for the Witt ring of an SAP field

The purpose of this subsection is to prove two isomorphism criteria for the
Witt rings of certain SAP fields. We first begin by the proof of Theorem 1.4.

Proof of Theorem 1.4: (1) ⇒ (2) By Theorem 1.3, there is a pair of maps
(t, T ), where t is a group isomorphism t : K∗/K∗2 → L∗/L∗2 and T is a
homeomorphism T : XK → XL such that x is positive at P if and only if t(x) is
positive at T (P ), for all x ∈ K∗/K∗2 and for all P ∈ XK . By Artin’s Theorem,
it easily follows that x ∈ σ̇(K) if and only if t(x) ∈ σ̇(L), hence t induces a
group isomorphism σ̇(K)/K∗2 ≃ σ̇(L)/L∗2.

(2) ⇒ (1) Suppose that Φ : XK ≃ XL is a homeomorphism and that β :
σ̇(K)/K∗2 ≃ σ̇(L)/L∗2 is a group isomorphism. As K and L are SAP fields,
Φ induces a ring isomorphism Ψ : Clop(XK) ≃ Clop(XL) by Corollary 3.1.
Combining this with Lemma 3.3, we deduce that there is a group isomorphism
γ : K∗/σ̇(K) ≃ L∗/σ̇(L). We have the following diagram with exact rows
(where πK and πL are the canonical surjections):

0 // σ̇(K)/K∗2 //

β
��

K∗/K∗2 πK //

α
��

K∗/σ̇(K) //

γ
��

0

0 // σ̇(L)/L∗2 // L∗/L∗2 πL // L∗/σ̇(L) // 0

By the five-lemma, as β and γ are group isomorphisms, there exists a group
isomorphism α : K∗/K∗2 ≃ L∗/L∗2 such that the above diagram commutes.

Finally, we prove that (α, Φ) respects the positivity. Let x ∈ K∗/K∗2 be
such that x>

P
0 for a P ∈ XK . Then πK(x)>

P
0 so P /∈ H−(πK(x)). As

Ψ(H−(πK(x))) = H−(γ(πK(x))) we have γ(πK(x)) >
Φ(P )

0 hence α(x) >
Φ(P )

0.

The converse is similar. Now, we apply Theorem 1.3 to (α, Φ) to conclude. �

As a consequence, one obtains the following result essentially due to Ko-
prowski in [7]:
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Corollary 3.6. Let K(t) be the rational function field in one variable over a
real closed field K, and let L/K(t) be a finite extension. Then

W (L) ∼= W (K(t)) if L is real;
W (L) ∼= W (K(t)(

√
−1 )) if L is nonreal and

√
−1 ∈ L;

W (L) ∼= W (K(t)(
√

−(t2 + 1) )) if L is nonreal and
√
−1 /∈ L;

All these cases are mutually exclusive.

Proof. It is well known that u(L) = u(K(t)) = u(K(t)(
√
−1 )) = 2. Indeed,

K(t)(
√
−1 ) = K(

√
−1 )(t) and hence L(

√
−1 ) is C1 since K(

√
−1 ) is alge-

braically closed, so u(L(
√
−1 )) ≤ 2 and thus u(L) ≤ 2 (see, e.g., [11, Ch. 6,

Thm. 2.12]). Clearly, L∗2 6= σ̇(L), so u(L) = 2. Also, such fields L are always
SAP (see, e.g., [3, Theorem I]).

Now one readily observes that the irreducible polynomials t2 + a ∈ K[t],
a ∈ K∗2, are F2-independent in σ̇(K(t))/K(t)∗2 (considered as F2-vector space).
Thus, we get for the cardinalities that card(K(t)) = card(K) = card(K∗2) since
K is clearly infinite and Euclidean. It follows that card(σ̇(K(t))/K(t)∗2) =
card(K). Now if L is a finite algebraic extension of K(t), then clearly card(L) =
card(K(t)) = card(K). By Kummer theory, there exists a subset S ⊂ K∗2

(again with cardinality card(S) = card(K∗2) = card(K)) such that {t2 + a | a ∈
S} still forms a F2-independent subset in the F2-vector space σ̇(L)/L∗2, and we
immediately get that card(σ̇(L)/L∗2) = card(σ̇(K(t))/K(t)∗2).

Suppose first that L is nonreal. The above together with the fact that both
K(t)(

√
−1 ) and K(t)(

√
−(t2 + 1) ) are also nonreal shows that

L∗/L∗2 ∼= K(t)(
√
−1 )∗/K(t)(

√
−1 )∗2

∼= K(t)(
√
−(t2 + 1) )∗/K(t)(

√
−(t2 + 1) )∗2

(since for nonreal fields F we have F ∗ = σ̇(F )).
Since u(L) = u(K(t)(

√
−1 )) = u(K(t)(

√
−(t2 + 1) )) = 2, any 2-fold Pfister

form over any of these fields will be hyperbolic. Thus, in order to invoke Har-
rison’s criterion (Theorem 1.1), it suffices to check whether or not there exists
such an isomorphism between the square class groups that sends −1 to −1.

If −1 ∈ L∗2, then any isomorphism L∗/L∗2 ∼= K(t)(
√
−1 )∗/K(t)(

√
−1 )∗2

will do as in both fields, −1 = 1 modulo squares. Hence, by Harrison’s criterion,
W (L) ∼= W (K(t)(

√
−1)).

Suppose that −1 /∈ L∗2. One readily checks that −1 /∈ K(t)(
√
−(t2 + 1) )∗2.

Since the cardinalities of the square class groups are the same, it is now possi-
ble to choose an isomorphism between them that sends −1 to −1. Hence, by
Harrison’s criterion, W (L) ∼= W (K(t)(

√
−(t2 + 1) )).

If L is real, then we have u(L) = u(K(t)) = 2 and thus σ̇(K(t))/K(t)∗2 ∼=
σ̇(L)/L∗2 by the above. We also have XK(t)

∼= XL (see Proposition in the
Appendix). Hence, W (L) ∼= W (K(t)) by Theorem 1.4.

The fact that all these cases are mutually exclusive follows readily from
the fact that for the level s, we have s(K(t)) = ∞, s(K(t)(

√
−1)) = 1 and

s(K(t)(
√

−(t2 + 1) )) = 2, and that for any field F , the characteristic of W (F )
is either 0 (if s(F ) = ∞, i.e. F is real), or 2s(F ) (if s(F ) < ∞, i.e. F is
nonreal).

Remark 3.7. Koprowski [7, Prop. 2.2, Cor. 4.2] gives the above classification
in the case where the field of constants of L is real closed (i.e. K is the field
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of constants), which obviously corresponds to the cases where L is real or L is
nonreal and

√
−1 /∈ L. His proof does not explicitly make use of the fact that

in the case where L is real, XK(t)
∼= XL. Instead, his methods are based on the

use of real places and the notion of quaternion-symbol equivalence. In view of
Theorem 1.4 which works for all SAP fields of u-invariant ≤ 2, it seemed there-
fore natural to base our proof on the above homeomorphism of the respective
spaces of orderings, and it became desirable to have a self-contained proof of
this homeomorphism. Such a proof can be found in the Appendix.

4 Reduced Witt rings

In this section, we adapt Theorem 1.3 and 1.4 to the case of reduced Witt
rings. Before stating and proving our results, we recall some notations and basic
facts. For further details, see [8].

4.1 Notations and preliminary results

Let K be a real field. Recall that T is a preordering over K if T ( K, K2 ⊂
T , T+T ⊆ T and T.T ⊆ T . For a preordering T over K, we thus have σ(K) ⊆ T .
Note that σ(K) is the smallest preordering in K which is consequently called
the weak preordering of K. We write XK/T for the non-empty subset (see [8,
Corollary 1.4]) of XK consisting of all orderings P containing T . Note that
XK/T is a closed space of XK and is a topological space with the induced
topology. Note also that T ∗ = T \ {0} is a subgroup of K∗.

Fix a preordering T over K. A T -form φ over K is an expression 〈a1, · · · , an〉T
where a1, · · · , an ∈ K∗. If P ∈ XK/T , the P -signature of φ is just the sum of
the signatures at P of the ai’s. Note that we can talk about the positivity of
an element of K∗/T ∗ at P ∈ XK/T , an element of T being always positive at
such an ordering. Two T -forms φ, φ′ are T -isometric and we write φ ≃T φ′

if they have the same dimension and the same signatures at every element of
XK/T . A T -form is T -hyperbolic if sgnP φ = 0 at every P ∈ XK/T . As in the
absolute theory, the set of the T -isometry classes with the orthogonal sum and
the tensor product is a semi-ring. By definition, the reduced Witt ring WT (K)
is the Grothendieck ring of the T -isometry classes of T -forms modulo the ideal
generated by T -hyperbolic forms.

By viewing a quadratic form 〈a1, · · · , an〉 as a T -form, we obtain a sur-
jective ring homomorphism W (K) → WT (K). The image of I(K) by this
homomorphism is IT (K) which is nothing but the ideal of T -isometry classes of
even-dimensional T -forms. The nth power of this ideal is denoted by In

T (K) and
is generated by the T -Pfister forms 〈〈a1, · · · , an〉〉T (with the obvious notation).
The signed discriminant dT,± of a T -form φ = 〈a1, · · · , an〉T is the following
element of K∗/T ∗:

(−1)
n(n+1)

2 a1 · · · an.T ∗.

Moreover, it induces a group isomorphism dT,± : IT (K)/I2
T (K) ≃ K∗/T ∗.

We say that two T -forms are chain T -equivalent if we can change one to
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another by a finite sequence of transformations of the three following types:

(A) 〈a1, · · · , an〉T → 〈t1a1, · · · , tnan〉T , t1, · · · , tn ∈ T ∗,

(B) 〈a1, · · · , ai, · · · , aj , · · · , an〉T →
〈a1, · · · , ai + aj , · · · , aiaj(ai + aj), · · · , an〉T (where ai + aj 6= 0).

(C) 〈a1, · · · , ai, · · · , aj , · · · , an〉T → 〈a1, · · · , aj , · · · , ai, · · · , an〉T

If two T -forms are chain T -equivalent, it is clear that they are T -isometric but
the converse also holds by Witt’s Chain Equivalence Theorem:

Theorem 4.1 ([8, Theorem 1.28]). If two T -forms are T -isometric then they
are chain T -equivalent.

We denote by Y T
K the set of prime ideals of characteristic 0 in WT (K). The

following is an analogue of Theorem 2.1.

Proposition 4.2. There is a bijection between XK/T and Y T
K .

Proof. The definition of the bijection is the same as in the proof of Theorem
2.1. If P ∈ XK/T , then IP := ker(sgnP ) is an element of Y T

K . Conversely, if
I ∈ Y T

K , then PI := {0} ∪ {a ∈ K∗ | 〈a〉T ≡ 1 mod I} is an element of XK/T ,
and these two maps are inverse to each other.

4.2 Statement and proof of the criterion

Theorem 4.3. Let T be a preordering over the real field K and S be a pre-
ordering over the real field L. Then the following are equivalent:

(1) There is a ring isomorphism WT (K) ≃ WS(L).

(2) There is a group isomorphism t : K∗/T ∗ → L∗/S∗ sending −1 to −1 such
that the T -form 〈1,−x,−y, xy〉T is T -hyperbolic over K if and only if the
S-form 〈1,−t(x),−t(y), t(x)t(y)〉S is S-hyperbolic over L for all x, y ∈ K∗.

(3) There is a pair of maps (t, D) with a group isomorphism t : K∗/T ∗ →
L∗/S∗ and a homeomorphism D : XK/T → XL/S such that x is positive
at P if and only if t(x) is positive at D(P ), for all x ∈ K∗/T ∗ and for all
P ∈ XK/T .

(4) There is a pair of maps (t, D) with a group isomorphism t : K∗/T ∗ →
L∗/S∗ and a bijection D : XK/T → XL/S such that x is positive at P
if and only if t(x) is positive at D(P ), for all x ∈ K∗/T ∗ and for all
P ∈ XK/T .

Proof. The equivalence of (1) and (2) is the “reduced” version of Harrison’s Cri-
terion. It can be proved by readily adapting the proofs of Harrison’s criterion
found, for example, in [9, Ch. XII, Theorem 1.8] or [10] to the reduced setting,
using chain T-equivalence (Theorem 4.1) instead of the usual chain equivalence,
dT,± instead of d±, etc. We leave the details to the reader.

(1) ⇒ (3) Let Φ be a ring isomorphism between WT (K) and WS(L). The
signed discriminant induces a group isomorphism t : K∗/T ∗ ≃ L∗/S∗ defined by
t(a) := d±(Φ(〈1,−a〉T )) for a ∈ K∗/T ∗. By Proposition 4.2, we get the desired
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bijection D between XK/T and XL/S. The implication can now be shown by
applying the “reduced” analogs of the arguments used in the proof of (1) ⇒ (2)
in Theorem 1.3.

(3) ⇒ (4) is clear.

(4) ⇒ (2) First note that (4) implies that t(−1) = −1. Indeed, −t(−1)>
P

0

for each P ∈ XL/S thus

−t(−1) ∈
⋂

Q∈XL/S

Q = S,

(see [8, Theorem 1.6]).
Note also that the compatibility between (t, D) and the positivity readily

implies that the 2-fold T -Pfister form 〈〈a, b〉〉T is T -hyperbolic if and only if the
2-fold S-Pfister form 〈〈t(a), t(b)〉〉S is S-hyperbolic.

Remarks 4.4. (1) If T and S are the corresponding weak preorderings and if
K, L are pythagorean, Theorem 4.2 is nothing but Theorem 1.1 in this particular
case.
(2) If T and S are the corresponding weak preorderings, then we have the
following ring isomorphism WT (K) ≃ W (K)/Wt(K), WS(L) ≃ W (L)/Wt(L)
(see [8, Chapter 1]) where Wt denotes the torsion subgroup of the corresponding
Witt ring. Hence Theorem 4.2 can be viewed as Harrison’s criterion for W/Wt

in this case.

If K and L are two fields such that W (K) ≃ W (L) as rings, then, by
the preceding remark, WT (K) ≃ WS(L) as rings if T (resp. S) is the weak
preordering of K (resp. of L). The following example shows that the converse
is false:

Example 4.5. Let K and L be any uniquely ordered fields with weak preorder-
ings T and S, respectively. Since every element of K (resp. L) is a sum of squares
or the negative of a sum of squares, one clearly has WT (K) ≃ WS(L) ≃ Z. But
W (K) and W (L) need not be isomorphic. For example, R and Q are uniquely
ordered but obviously W (R) 6≃ W (Q).

4.3 An isomorphism criterion for the reduced Witt ring
of an SAP field

Let K be a real field and T be a preordering on K. If we denote by
C(XK/T, Z) the ring of continuous functions from XK to Z (we endow Z with
the discrete topology), then the signatures induce a ring monomorphism

sgn : WT (F ) →֒ C(XK/T, Z) : q 7→ (P 7→ sgnP (q)),

see [8, §1]. In fact, we can be more precise. Denote by 1 the element of
C(XK/T, Z) which sends every ordering to 1. The fact that sgnP (q) ≡ dim q
mod 2 for every P ∈ XK and every q ∈ W (K), implies that the previous map
induces a ring monomorphism

ΦT : WT (K) →֒ Z.1 + C(XK/T, 2Z).
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In the case of SAP fields, we have the following criterion for reduced Witt
rings:

Corollary 4.6. Let K (resp L) be a SAP field and T (resp. S) be a preordering
over K (resp. L). Then the following are equivalent:

(1) There is a ring isomorphism WT (K) ≃ WS(L).

(2) There is a homeomorphism XK/T ≃ XL/S.

(3) There is a ring isomorphism Z.1 + C(XK/T, 2Z) ≃ Z.1 + C(XL/S, 2Z).

Proof. (1) ⇒ (2) This is obvious by Theorem 4.3.
(2) ⇒ (1) Let D : XK/T ≃ XL/S be a homeomorphism. Then it induces a ring

isomorphism D̃ : Clop(XK/T ) ≃ Clop(XL/S). Define

θK :

{
K∗/T ∗ → Clop(XK/T )

a 7→ H−

T (a) := {P ∈ XK/T | a /∈ P} .

It is easy to see that θK is well-defined, surjective as K is a SAP field and injec-
tive as H−

T (a) = H−

T (b) if and only if ab ∈ T ∗. Now we define the group isomor-

phism t := θL
−1 ◦ D̃◦θK : K∗/T ∗ ≃ L∗/S∗ (where θL is defined in an analogous

way as θK). Finally, let x ∈ K∗/T ∗. We have t(x) = θL
−1(D̃(H−

T (x))) = y

where D̃(H−

T (x)) = H−

S (y). Let P ∈ XK/T . Then

x is positive at P ⇐⇒ P /∈ H−

T (x)

⇐⇒ D(P ) /∈ H−

S (y)

⇐⇒ y = t(x) is positive at D(P ).

Now we apply Theorem 4.3 to conclude.
(1) ⇐⇒ (3) This is an immediate consequence of the fact that for any

SAP field K and any preordering T on K, we have that the above map ΦT :
WT (K) → Z.1 + C(XK/T, 2Z) is an isomorphism (see [8, Theorem 16.2]).

5 Isomorphism criteria for Witt groups of her-
mitian forms

The ideas of the proof of Theorem 1.3 can be adapted to two particular
situations involving Witt groups of hermitian forms. First, we are interested in
finding such a criterion for the Witt ring of hermitian forms over a quadratic
field extension with its nontrivial automorphism. In the second situation, we
deal with the Witt group of hermitian forms over a quaternion division algebra
endowed with its canonical involution. In each of these two cases, we have to
recall some notations and notions and we refer to [13, Chapter VII, Chapter X]
for further details.

5.1 Witt rings of hermitian forms over quadratic field ex-
tensions

Let k be a field, K/k be a quadratic field extension and σK be the nontrivial
k-automorphism of K. Every nondegenerate hermitian form over (K, σK) can
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be diagonalized and we will use the usual notation 〈a1, · · · , an〉, ai ∈ k, for such
a diagonalization. We denote by W (K, σK) the Witt ring of nondegenerate
hermitian forms over (K, σK) and by I(K, σK) its fundamental ideal. The signed
discriminant of a hermitian form 〈a1, · · · , an〉 is defined to be the following
element of K∗/NK/k(K∗) (where NK/k(K∗) denotes the usual norm group of
K/k):

(−1)
n(n+1)

2 a1 · · ·anNK/k(K∗).

It induces a group isomorphism d± : I(K, σK)/(I(K, σK))
2 ≃ K∗/NK/k(K∗).

In [4, Theorem 1.3], the first author has proved the following analogue of
Theorem 1.1 for Witt rings of hermitian forms over quadratic field extensions:

Theorem 5.1 (Grenier-Boley). Let k and l be two fields. Let K = k(
√

a) (resp.
L = l(

√
b)) be a quadratic field extension of k (resp. l). Then, the following are

equivalent:

(1) There is a ring isomorphism W (K, σK) ≃ W (L, σL).

(2) There is a group isomorphism t : k∗/NK/k(K∗) → l∗/NL/l(L
∗) sending

−1 to −1 such that the quadratic form 〈〈a, x, y〉〉 is hyperbolic over k if
and only if the quadratic form 〈〈b, t(x), t(y)〉〉 is hyperbolic over l for all
x, y ∈ k∗.

Suppose now that k is a real field and that K = k(
√

a) is a quadratic field
extension of k. Let

Xa
k := {P ∈ Xk | a <

P
0} = H(−a).

Note that, if P ∈ Xa
k and if x ∈ NK/k(K∗) then x is positive at P . Consequently,

we can talk about the positivity or the negativity of any norm class at an
ordering in Xa

k .
To each hermitian form (V, h) over (K, σK) one can associate a k-quadratic

form defined by qh(x) := h(x, x) for x ∈ V , where V is considered as a k-vector
space. Recall that if, over K, h ≃ 〈a1, . . . , an〉 (where ai ∈ k), then, over k,
qh ≃ 〈〈a〉〉 ⊗ 〈a1, . . . , an〉. The signature of the hermitian form h at P ∈ Xa

k is
then defined by sgnP (h) := 1

2 sgnP (qh) which is an integer. For each P ∈ Xa
k ,

we thus get a surjective ring homomorphism sgnP : W (K, σK) → Z.
We will also need the following notation:

Za
k := {I ∈ Spec (W (K, σK)) | char I = 0}.

As a first step toward Theorem 5.4, we can prove the following analogue of
Theorem 2.1 and Proposition 4.2:

Theorem 5.2. There is a bijection between Xa
k and Za

k .

Proof. The bijection is defined in the same way as in the proof of Theorem
2.1. We will sketch some of the details in this hermitian setting for the reader’s
convenience.

First of all, a prime ideal I of W (K, σK) has characteristic 0 if and only if
W (K, σK)/I is isomorphic (as a ring) to Z. If P ∈ Xa

k , the ring homomorphism
sgnP : W (K, σK) → Z is onto, hence IP := ker(sgnP ) is an element of Za

k .
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If I ∈ Za
k , we put

PI := {0} ∪ {c ∈ k∗ | 〈c〉 ≡ 1 mod I},

(here, the notation 〈c〉 refers to a one-dimensional hermitian form). This is in
fact an element of Xa

k . If c ∈ k∗ such that 〈c〉 6≡ 1 mod I then 〈c〉 ≡ −1
mod I and hence PI ∪ −PI = k. We clearly have PI .PI ⊆ PI and PI ( k. Let
c, d ∈ PI . Then the hermitian forms 〈c, d〉 and 〈c + d, (c + d)cd〉 are isometric.
Now e := c + d 6= 0 and 2 ≡ 2〈e〉 mod I. As char I 6= 2, this implies that
e ∈ PI . Now the hermitian form 〈1, a〉 is hyperbolic since the quadratic form
〈〈a〉〉 ⊗ 〈1, a〉 ≃ 〈1,−a〉 ⊗ 〈1, a〉 is clearly hyperbolic. This implies that a is
negative at PI , i.e. PI ∈ Xa

k .
Finally, one readily checks that the map P 7→ IP gives the desired bijection

whose inverse is I 7→ PI .

Remark 5.3. As a consequence of the previous result, one can determine
the spectrum of the ring W (K, σK). It consists of the fundamental ideal of
W (K, σK) (which is the unique maximal ideal of characteristic 2 in W (K, σK)),
ker(sgnP ) where P ∈ Xa

k (which are exactly the prime ideals of characteristic 0
in W (K, σK)) and ker(sgnP ) mod p where p is a prime number and P ∈ Xa

k .
The proof of this fact can easily be adapted from the determination of the
spectrum of the usual Witt ring, see, e.g., [9, Ch.VIII, Theorem 7.5].

The analogue of Theorem 1.3 in the hermitian context is the following:

Theorem 5.4. We keep the notations of Theorem 5.1 and we suppose further
that k and l are two real fields such that u(k), u(l) ≤ 6. The following are
equivalent:

(1) There is a ring isomorphism W (K, σK) ≃ W (L, σL).

(2) There is a pair of maps (t, T ) with a group isomorphism t : k∗/NK/k(K∗)
→ l∗/NL/l(L

∗) such that t(−1) = −1, and a homeomorphism T : Xa
k →

Xb
l such that, for all x ∈ k∗/NK/k(K∗) and for all P ∈ Xa

k , x is positive
at P if and only if t(x) is positive at T (P ).

(3) There is a pair of maps (t, T ) with a group isomorphism t : k∗/NK/k(K∗)

→ l∗/NL/l(L
∗) such that t(−1) = −1, and a bijection T : Xa

k → Xb
l such

that, for all x ∈ k∗/NK/k(K∗) and for all P ∈ Xa
k , x is positive at P if

and only if t(x) is positive at T (P ).

Proof. (1) ⇒ (2) Let Φ be a ring isomorphism between W (K, σK) and W (L, σL).
By Theorem 5.1, the map t of condition (2) exists and satisfies t(−1) = −1
(more precisely, if a ∈ k∗/NK/k(K∗), t(a) is defined to be the (hermitian) signed
discriminant of Φ(〈1,−a〉)).

As in the proof of Theorem 1.3, using Theorem 5.2, we construct a bijection
T between Xa

k and Xb
l . We also get the compatibility of (t, T ) with respect to

the positivity at each ordering in the same manner.
Lastly, Xa

k is a topological space with its topology induced by Harrison’s
topology over Xk. An open subbasis of Xa

k is given by

Ha(c) := {P ∈ Xa
k | c ∈ P} = H(c) ∩ H(−a),
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where c ranges over k∗. T is then readily seen to be a homeomorphism for the
induced topologies.

(2) ⇒ (3) This is clear.

(3) ⇒ (1) Condition (3) and the fact that u(k), u(l) ≤ 6 implies that
the quadratic form 〈〈a, x, y〉〉 is hyperbolic over k if and only if the quadratic
form 〈〈b, t(x), t(y)〉〉 is hyperbolic over l. Now we apply Theorem 5.1 to deduce
condition (1).

Remark 5.5. Fields whose u-invariant is at most 6 include global fields and
fields of transcendence degree at most 2 over a real closed field (see, e.g., [11,
Ch.8, Theorem 2.12]).

5.2 The Witt group of a quaternion division algebra with
its canonical involution

Let Q be a quaternion division algebra over a field K with canonical invo-
lution γ. We denote by W (Q, γ) the Witt group of nondegenerate hermitian
forms over (Q, γ). It is easy to see that W (Q, γ) is in fact a W (K)-module. The
goal of this Subsection is to find an isomorphism criterion for Witt modules of
quaternion division algebras over the same real base field K. For this purpose,
we have to find the object corresponding to the spectrum of the Witt ring in
the case of this particular Witt module. This object is in fact nothing but a
subset of the support of this module.

Let A be a commutative ring and let M be an A-module. If I ∈ Spec(A),
we denote by MI the localized module of M at I. The support of M is a subset
of Spec(A) defined as follows:

Supp(M) = {I ∈ Spec(A) | MI 6= 0}.

Suppose now that A = W (K), and that M = W (Q, γ) as above. Then M is an
A-module and we set:

Supp0(M) = {I ∈ Supp(M) | char I = 0}.

When K is a real field and a, b ∈ K∗, we define

Xa,b
K = {P ∈ XK | a <

P
0 and b <

P
0} = H(−a) ∩ H(−b).

We have the following description which is similar to the description obtained
in Theorem 2.1 and 5.2:

Proposition 5.6. Let Q = (a, b)K be a quaternion division algebra endowed
with its canonical involution γ over a real field K and M be the Witt group of
(Q, γ). Then there is a bijection between Supp0(M) and Xa,b

K .

Proof. Recall that any nondegenerate hermitian form h over (Q, γ) can be diag-
onalized as h ≃ 〈a1, . . . , an〉 with ai ∈ K∗. Similarly as in the case of hermitian
forms over quadratic extensions, we can define the signature of h at P for every
P ∈ Xa,b

K using the fact that for any P ∈ Xa,b
K and any x ∈ NrdQ/K(Q∗) we
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have x ∈ P . For each P ∈ Xa,b
K , we thus get a surjective ring homomorphism

sgnP : W (Q, γ) → Z.

To each P ∈ Xa,b
K we associate IP = ker(sgnP ). We have to show that

IP ∈ Supp0(M), that is MIP
6= 0. Now MIP

6= 0 if and only if there exists
h ∈ M such that for every s ∈ W (K) \ IP , s.h 6= 0. We choose h = 〈1〉 and
we let s ∈ W (K) \ IP . If s.h is hyperbolic as a hermitian form over (Q, γ) then
the quadratic form 〈〈a, b〉〉 ⊗ s is hyperbolic as a quadratic form over K. Now
the hypotheses imply that sgnP (〈〈a, b〉〉 ⊗ s) 6= 0 which is a contradiction. This
means that IP ∈ Supp0(M).

Conversely, to each I ∈ Supp0(M) we associate

PI := {0} ∪ {x ∈ K∗ | 〈x〉 ≡ 1 mod I} .

We have to show that PI ∈ Xa,b
K . Suppose otherwise, i.e. PI /∈ Xa,b

K . Without
loss of generality, we may assume that a is positive at PI . This means that the
quadratic form 〈1, a〉 is in W (K)\ I. Let h ∈ M and s = 〈1, a〉. We are going to
show that s.h = 0. We may assume that rank(h) = 1 and therefore it suffices to
show that the quadratic form 〈〈a, b〉〉⊗s ≃ 〈1,−a〉⊗〈1,−b〉⊗〈1, a〉 is hyperbolic
which is obvious. This implies that MI = 0 which is a contradiction. Thus,
PI ∈ Xa,b

K .
Finally, one readily verifies that the above defined maps P 7→ IP and I 7→ PI

yield bijections between Xa,b
K and Supp0(M) that are inverse to each other.

Remark 5.7. With the above notations, the support of W (Q, γ) consists of

I(K), ker(sgnP ) where P ∈ Xa,b
K , ker(sgnP ) mod p where p is a prime number

and P ∈ Xa,b
K . Again, the proof is similar to the determination of the spectrum

of W (K) and is omitted.

For quaternion division algebras over the same base field, the first author
has proved the following criterion in [4, Corollary 1.4]:

Proposition 5.8 (Grenier-Boley). Let Q1 = (a, b)K (resp. Q2 = (c, d)K) be
a quaternion division algebra over K endowed with its canonical involution γ1

(resp. γ2). Then, the following are equivalent:

(1) There is a W (K)-module isomorphism W (Q1, γ1) ≃ W (Q2, γ2).

(2) There is a group isomorphism t : K∗/ NrdQ1/K(Q1
∗) ≃ K∗/ NrdQ2/K(Q2

∗)
with t(−1) = −1 such that the quadratic form 〈〈a, b, u, v〉〉 is hyperbolic over
K if and only if the quadratic form 〈〈c, d, t(u), t(v)〉〉 is hyperbolic over K
for all u, v ∈ K∗, where NrdQi/K(Qi

∗) denotes the group of reduced norms
from the quaternion algebra Qi for i = 1, 2.

We are now able to state:

Theorem 5.9. Let K be a real field with u(K) ≤ 14. Let Q1 = (a, b)K , Q2 =
(c, d)K be quaternion division algebras over K endowed with their respective
canonical involutions γ1 and γ2. Then the following are equivalent:

(1) There is a W (K)-module isomorphism W (Q1, γ1) ≃ W (Q2, γ2).

(2) There is a pair of maps (t, T ) with a group isomorphism t : K∗/ NrdQ1(Q
∗
1)

→ K∗/ NrdQ2(Q
∗
2) such that t(−1) = −1, and a homeomorphism T :

Xa,b
K → Xc,d

K such that, for all x ∈ K∗/ NrdQ1(Q
∗
1) and for all P ∈ Xa,b

K ,
x is positive at P if and only if t(x) is positive at T (P ).
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(3) There is a pair of maps (t, T ) with a group isomorphism t : K∗/ NrdQ1(Q
∗
1)

→ K∗/ NrdQ2(Q
∗
2) such that t(−1) = −1, and a bijection T : Xa,b

K → Xc,d
K

such that, for all x ∈ K∗/ NrdQ1(Q
∗
1) and for all P ∈ Xa,b

K , x is positive
at P if and only if t(x) is positive at T (P ).

Proof. The proof is similar to the proofs of Theorem 1.3 and 5.4 by using Propo-
sition 5.6 and Proposition 5.8. We leave the details to the reader.

Appendix:

The space of orderings of a one-dimensional
function field over R

Claus Scheiderer

Let R be a real closed field. We are going to show here that the space
of orderings of a real one-dimensional function field K over R depends (up to
homeomorphism) only on R, but not on K. This is an easy application of
general and well-known techniques from real algebra.

As in the preceding text we denote the topological space of all orderings of
a field K by XK . Let R(t) be the field of rational functions in one variable
over R. Let S ⊂ R be a semi-algebraic set, i.e., a finite union of open intervals
and singletons. By Ŝ we denote the set of all orderings P of R(t) for which

there exist a, b ∈ R∪ {±∞} with a <P t <P b and ]a, b[ ⊂ S. The sets Ŝ, for S
running through the semi-algebraic subsets of R, are precisely the open-closed
subsets of the boolean topological space XR(t). The operator S 7→ Ŝ commutes

with the finite boolean set-theoretic operations, and Ŝ1 = Ŝ2 holds if and only

if the set-theoretic difference of S1 and S2 is finite. In particular, Ŝ = Ŝ.
It is convenient to consider the affine real line A1(R) = R as contained in

the projective real line P1(R) = R ∪ {∞}. The semi-algebraic subsets of P1(R)
are the subsets which intersect R in a semi-algebraic set. For any such set S we
define Ŝ to be (S − {∞})̂.

We remark that the above description of the constructible sets in XR(t) via
semi-algebraic sets extends naturally to more general situations. In particular,
given any integral algebraic variety V over R and any semi-algebraic subset S
of V (R), one defines an open-closed subset Ŝ of XR(V ) in a similar and natural
way. (See any of the standard references like [1], [6] or [12].) The open-closed

subsets of XR(V ) are precisely these sets Ŝ, and Ŝ1 = Ŝ2 holds if and only if the
set-theoretic difference of S1 and S2 is not Zariski dense in V .

For the purpose of this appendix, only the case V = P1 is needed, as ex-
plained above. The notation Ŝ is not standard and has been chosen ad hoc
here.

We denote the topological (disjoint) sum of two topological spaces X and Y
by X ∐ Y , and write X ≈ Y to indicate that X and Y are homeomorphic.

Lemma. Let I1, . . . , Ir (r ≥ 1) be any finite number of non-degenerate intervals

in R. Then XR(t) ≈ Î1 ∐ · · · ∐ Îr.

Here, an interval I in R is called non-degenerate if it contains more than one
point.
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Proof. It is convenient to extend the concept of intervals from R to P1(R) in
the obvious way. For the proof of the lemma we may restrict to closed intervals.
Any two nonempty closed intervals in P1(R), different from P1(R), are conjugate

under the action of PGL2(R). From this it follows that Î1 ≈ Î2 holds for any two

such intervals I1, I2, and also that Î ≈ XR(t) − Î for any such interval I. Since

clearly [−1, 1]̂ ≈ [−1, 0]̂∐ [0, 1]̂, and since XR(t) ≈ [0, 1]̂∐
(
XR(t) − [0, 1]̂

)
,

the assertion of the lemma follows.

Proposition. Let R ⊂ K be a finitely generated field extension of transcendence
degree one. If the field K is real then XK is homeomorphic to XR(t).

Proof. Choose t, x ∈ K with t transcendental over R and K = R(t, x), and
let r : XK → XR(t) be the restriction map. The discriminant of the minimal
polynomial of x over R(t) is a nonzero element of R(t). Its real poles and
zeros, together with ∞, divide the real t-line into finitely many open intervals
I1, . . . , Ir . For each index i = 1, . . . , r, the restriction r−1(Îi) → Îi of r is
topologically a trivial di-sheeted covering, where 0 ≤ di ≤ [K : R(t)] is some

integer. Therefore, XK is homeomorphic to a topological sum
∐r

i=1

∐di

j=1 Îi,
and so the above Lemma shows that XK is homeomorphic to XR(t).

Corollary. Let R ⊂ K be a finitely generated field extension of transcendence
degree one. Given any finite number of nonempty open-closed subsets U1, . . . , Ur

of XK (r ≥ 1), there is a homeomorphism XR(t) ≈ U1 ∐ · · · ∐ Ur.

Proof. This follows from a combination of the two previous results.
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