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1. Introduction


Let k be a base field; all other fields will be assumed to be extensions of
k.


Given a central simple algebra A over a field K one can ask whether A
can be written as A = A0 ⊗K0


K where A0 is a central simple algebra over
some subfield K0 of K. In that situation we say that A descends to K0.
The essential dimension of A, denoted ed(A), is the minimal transcendence
degree over k of a field K0 ⊂ K such that A descends to K0. It can be
thought of as “the minimal number of independent parameters” required to
define A.


For a prime number p, the related notion of essential dimension at p of an
algebra A/K is defined as ed(A; p) = min ed(AK ′), where K ′/K runs over
all finite field extensions of degree prime to p.


2000 Mathematics Subject Classification. 16K20, 20C10.
Key words and phrases. Essential dimension, central simple algebra, projective linear


group, G-lattice.
† Aurel Meyer was partially supported by a University Graduate Fellowship at the


University of British Columbia.
†† Z. Reichstein was partially supported by NSERC Discovery and Accelerator Supple-


ment grants.


1







2 AUREL MEYER AND ZINOVY REICHSTEIN


We also define


ed(PGLn) := max { ed(A) } ,


and


ed(PGLn; p) := max { ed(A; p) } ,


where the maximum is taken over all fields K/k and over all central sim-
ple K-algebras A of degree n. The appearance of PGLn in the symbols
ed(PGLn) and ed(PGLn; p) has to do with the fact that central simple alge-
bras of degree n are in a natural bijective correspondence with PGLn-torsors.
In fact, one can define ed(G) and ed(G; p) for every algebraic k-group G in a
similar manner, using G-torsors instead of central simple algebras; see [Re2],
[RY] or [BF].


To the best of our knowledge, the problem of computing ed(PGLn) was
first raised by C. Procesi in the 1960s. Procesi and S. Amitsur constructed
so-called universal division algebras UD(n) and showed that UD(n) has var-
ious generic properties among central simple algebras of degree n. In par-
ticular, their arguments can be used to show that


ed(UD(n)) ≥ ed(A) and ed(UD(n); p) ≥ ed(A; p)


for any prime integer p; cf. [LRRS, Remark 2.8]. Equivalently,


ed(UD(n)) = ed(PGLn) and ed(UD(n); p) = ed(PGLn; p).


Since the center of UD(n) has transcendence degree n2 + 1 over k, we con-
clude that ed(PGLn) ≤ n2 +1. Procesi showed (using different terminology)
that in fact,


ed(PGLn) ≤ n2 ;


see [Pr, Theorem 2.1].
The problem of computing ed(PGLn) was raised again by B. Kahn in


the early 1990s. In particular, in 1992 Kahn asked the second author if
ed(PGLn) grows sublinearly in n, i.e., whether


ed(PGLn) ≤ an + b


for some positive real numbers a and b. To the best of our knowledge, this
question never appeared in print but it is implicit in [Ka, Section 2]. It
remains open; the best known upper bound,


(1) ed(PGLn) ≤


{


(n−1)(n−2)
2 , for every odd n ≥ 5 and


n2 − 3n + 1, for every n ≥ 4


(see [LR], [LRRS, Theorem 1.1], [Le, Proposition 1.6] and [FF]), is quadratic
in n and the best known lower bound,


ed(PGLpr) ≥ ed(PGLpr ; p) ≥ 2r ,


is logarithmic.
Note that if ps is the largest power of p dividing n then one easily checks,


using primary decomposition of central simple algebras, that ed(PGLn; p) =
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ed(PGLps ; p). Thus for the purpose of computing ed(PGLn; p) it suffices to
consider the case where n = ps. In this case we have showed that


ed(PGLps ; p) ≤ p2s−1 − ps + 1


for any s ≥ 2; see [MR, Corollary 1.2]. The main result of this paper is the
following stronger upper bound.


Theorem 1.1. Let n = ps for some s ≥ 2. Then


ed(PGLn; p) ≤ 2
n2


p2
− n + 1


A. S. Merkurjev [Me2] recently showed that for s = 2 this bound is sharp,
i.e., ed(PGLp2; p) = p2 +1. We conjecture that this bound is sharp for every
s ≥ 2; this would imply, in particular, that ed(PGLn) is not sublinear in n.


Our upper bound on ed(PGLn; p) is a consequence of the following result.
Here n is not assumed to be a prime power.


Theorem 1.2. Let A/K be a central simple algebra of degree n. Suppose A
contains a field F , Galois over K and Gal(F/K) can be generated by r ≥ 1
elements. If [F : K] = n then we further assume that r ≥ 2. Then


ed(A) ≤ r
n2


[F : K]
− n + 1


Note that we always have [F : K] ≤ n. In the special case where equality
holds, i.e., A is a crossed product in the usual sense, Theorem 1.2 reduces
to [LRRS, Corollary 3.10(a)].


To deduce Theorem 1.1 from Theorem 1.2, let n = ps and A = UD(n).
In [RS1, 1.2], L. H. Rowen and D. J. Saltman showed that if s ≥ 2 then there
is a finite field extension K ′/K of degree prime to p, such that A′ := A⊗K K ′


contains a field F , Galois over K ′ with Gal(F/K ′) ≃ Z/p × Z/p. Thus, if
s ≥ 2, Theorem 1.2 tells us that


ed(PGLn; p) = ed(A; p) ≤ ed(A′) ≤ 2
n2


p2
− n + 1 .


This proves Theorem 1.1. �


The remainder of this paper will be devoted to proving Theorem 1.2. We
reduce the problem to a question about G-lattices, using the same approach
as in [LRRS, Sections 2–3], but our analysis is more delicate here, and the
results (Theorems 1.2 and 4.1) are stronger.


2. G/H-crossed products


Lemma 2.1. In the course of proving Theorem 1.2 we may assume without
loss of generality that F is contained in a subfield L of A such that L/K is
a separable extension of degree n = deg(A).
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Proof. Note that we are free to replace K by K(t), F by F (t) and A by
A(t) = A ⊗K K(t), where t is an independent variable. Indeed, edk A(t) =
edk(A); see, e.g., [LRRS, Lemma 2.7(a)]. Thus if the inequality of Theo-
rem 1.2 is proved for A(t), it will also hold for A.


The advantage of passing from A to A(t) is that K(t) if Hilbertian for
any infinite field K; see, e.g., [FJ, Proposition 13.2.1]. Thus after adjoining
two variables, t1 and t2 as above, we may assume without loss of generality
that K is Hilbertian. (Note that a subfield L ⊂ A of degree n over K may
not exist without this assumption.)


Let F ⊂ F ′ be maximal among separable field extension of F contained
in A. We will look for L inside the centralizer CA(F ′). By the Double
Centralizer Theorem, CA(F ′) is a central simple algebra with center F ′. The
maximality of F ′ tells us that CA(F ′) contains no non-trivial field extensions
of F ′. In particular, CA(F ′) = Mr(F


′), where r[F ′ : K] = n.
On the other hand, since K is Hilbertian, so is its finite separable ex-


tension F ′; cf. [FJ, 12.2.3]. Consequently, F ′ admits a finite separable
extension L/F ′ of degree r. (To construct L/F ′, start with the field ex-
tension Lr = F ′(t1, . . . , tr)[x]/(f(x)) of F ′(t1, . . . , tn) of degree r, where
f(x) = xr + t1x


r−1 + . . . + tn−1x + tn is the general polynomial of degree
r. Then specialize t1, . . . , tr in F ′, using the Hilbertian property, to obtain
a field extension L/F ′ of degree r.) Any such L/F ′ can be embedded into
Mr(F


′) via the regular representation of L on L = (F ′)r; cf. [Pi, Lemma
13.1a]. By the maximality of F ′, we conclude that L = F ′, i.e., r = 1 and
[L : K] = n, as desired. �


Let us now assume that our central simple algebra A/K has a separable
maximal subfield L/K, as in Lemma 2.1. We will denote the Galois closure
of L over K by E and the associated Galois groups by G = Gal(E/K),
H = Gal(E/L) and N = Gal(E/F ), as in the diagram below.


E


���������������


H


y
�


�
�


�
�


� N


�


�


�


�


�


�


�


G


'
%


#
 


�
�


�
�


�
�


�
�


�
�


�


A


@@@@@@@@


L


F


K


In the terminology of [LRRS], A/K is a G/H-crossed product; cf. also [FSS,
Appendix]. Note that since E/K is the smallest Galois extension containing
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L/K, we have


(2) CoreG(H) =
⋂


g∈G


Hg = {1} .


where Hg := gHg−1. We will assume that this condition is satisfied when-
ever we talk about G/H-crossed products.


Using the notation introduced above and remembering that [G : H] =


[L : K] = deg(A) = n, and
n


[F : K]
= [L : F ] = [N : H], we can restate


Theorem 1.2 as follows.


Theorem 2.2. Let A be a G/H-crossed product. Suppose H is contained
in a normal subgroup N of G and G/N is generated by r elements. Further-
more, assume that either H 6= {1} or r ≥ 2. Then


ed(A) ≤ r[G : H] · [N : H] − [G : H] + 1 .


3. G-lattices


In the sequel H ≤ G will be finite groups. Given g ∈ G we will write g
for the left coset gH of H. We will denote the identity element of G by 1.


Recall that a G-lattice M is a (left) Z[G]-module, which is free of finite
rank over Z. In particular, any finite set X with a G-action gives rise to a G-
lattice Z[X]; G-lattices of this form are called permutation. For background
material on G-lattices we refer the reader to [Lo].


Of particular interest to us will be the G-lattice ω(G/H), which is defined
as the kernel of the natural augmentation map Z[G/H] → Z, sending n1g1 +
· · · + nsgs to n1 + · · · + ns.


The starting point for our proof of Theorem 2.2 (and hence, of Theo-
rem 1.2) will be the following result from [LRRS].


Theorem 3.1. ([LRRS, Theorem 3.5]) Let P be a permutation G-lattice
and


0 → M → P → ω(G/H) → 0


be an exact sequence of G-lattices. If the G-action on M is faithful then


ed(A) ≤ rank(M) − n + 1


for any G/H-crossed product A. �


The condition that G acts faithfully on M is not automatic. However,
the following lemma shows that it is satisfied for many natural choices of P .


Lemma 3.2. Let G 6= {1} be a finite group H ≤ G be a subgroup of G,
H1, . . . ,Hr be subgroups of H and


(3) 0 → M → ⊕r
i=1Z[G/Hi] → ω(G/H) → 0


be an exact sequence of G-lattices. Assume that H does not contain any
nontrivial normal subgroup of G (i.e., H satisfies condition (2) above). Then
the G-action on M fails to be faithful if and only if s = 1 and H1 = H.
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Here we are not specifying the map ⊕r
i=1Z[G/Hi] → ω(G/H); the lemma


holds for any exact sequence of the form (3). We also note that in the case
where H1 = · · · = Hr = {1}, Lemma 3.2 reduces to [LRRS, Lemma 2.1].


Proof. To determine whether or not the G-action on M is faithful, we may
replace M by MQ := M⊗Q. After tensoring with Q, the sequence (3) splits,
and we have an isomorphism


(4) ω(G/H)Q ⊕ MQ ≃ ⊕r
i=1Q[G/Hi] .


Case 1: r ≥ 2. Then Hr is a subgroup of H, we have a natural surjective
map Q[G/Hr] → Q[G/H]. Using complete irreducibility over Q once again,
we see that Q[G/H] (and hence ω(G/H)) is a subrepresentation of Q[G/Hr].
Thus (4) tells us that Q[G/Hr−1] is a subrepresentation of MQ. The kernel
of the G-representation on Q[G/Hr−1] is a normal subgroup of G contained
in Hr−1 (and hence, in H); by our assumption on H, any such subgroup is
trivial. This shows that G acts faithfully on Q[G/Hr−1] and hence, on M .


Case 2: Now assume r = 1. Our exact sequence now assumes the form


0 → MQ → Q[G/H1] → ω(G/H)Q → 0 .


If H = H1 then M ≃ Z, with trivial (and hence, non-faithful) G-action.
Our goal is thus to show that if H1 ( H then the G-action on MQ is


faithful. Denote by Q[1] the trivial representation (it will be clear from the
context of which group). Observe that


Q[G/H1] ≃ IndG
H1


Q[1] ≃ IndG
H IndH


H1
Q[1] ≃ IndG


H Q[H/H1]


≃ IndG
H(ω(H/H1)Q ⊕ Q[1])


≃ IndG
H ω(H/H1)Q ⊕ Q[G/H]


≃ IndG
H ω(H/H1)Q ⊕ ω(G/H)Q ⊕ Q[1]


and we obtain


MQ ≃ IndG
H ω(H/H1)Q ⊕ Q[1] .


If H1 ( H then the kernel of the G-representation IndG
H ω(H/H1)Q is a


normal subgroup of G contained in H1 (and hence, in H). By our assumption
on H, this kernel is trivial. �


4. An upper bound


In this section we will prove the following upper bound on the essential
dimension of a G/H-crossed product.


We will say that g1, . . . , gs ∈ G generate G over H if G = 〈g1, . . . , gs,H〉.


Theorem 4.1. Let A be a G/H-crossed product. Suppose that


(i) g1, . . . , gs ∈ G generate G over H, and


(ii) if G is cyclic then H 6= {1}.


Then ed(A) ≤
∑s


i=1[G : (H ∩ Hgi)] − [G : H] + 1.
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Remark 4.2. The index [G : (H ∩ Hgi)] appearing in the above formula
can be rewritten as


[G : H] · [H : (H ∩ Hgi)] = [G : H] · [(H · Hgi) : H] ;


see, e.g., [Ro, 1.3.11(i)]. Note H · Hg := {hh′ |h ∈ H, h′ ∈ Hg} is a subset


of G but may not be a subgroup, and [(H · Hg) : H] is defined as
|H · Hg|


|H|
.


If H is contained in a normal subgroup N of G then clearly H · Hg lies
in N , each [H · Hg : H] ≤ [N : H] and thus Theorem 4.1 yields


ed(A) ≤ s[G : H] · [N : H] − [G : H] + 1 .


This is a bit weaker than the inequality of Theorem 2.2, even though the two
look very similar. The difference is that we have replaced r in the inequality
of Theorem 2.2 by s, where G is generated by s elements over H and by r
elements over N . A priori r can be smaller than s. Nevertheless in the next
section we will deduce Theorem 2.2 from Theorem 4.1 by a more delicate
argument along these lines.


Our proof of Theorem 4.1 will rely on the following lemma.


Lemma 4.3. Let V be a Z[G]-submodule of ω(G/H). Then


GV := {g ∈ G | g − 1 ∈ V }


is a subgroup of G containing H.


Proof. The inclusion H ⊂ GV is obvious from the definition.
To see that GV is closed under multiplication, suppose g, g′ ∈ GV . That


is, both g − 1 and g′ − 1 lie in V . Then


gg′ − 1 = g · (g′ − 1) + (g − 1)


also lies in V , i.e., gg′ ∈ GV , as desired. �


Proof of Theorem 4.1. We claim that the elements g1−1, . . . , gs−1 generate
ω(G/H) as a Z[G]-module.


Indeed, let V be the Z[G]-submodule of ω(G/H) generated by these ele-
ments. Lemma 4.3 and condition (i) tell us that V contains g − 1 for every
g ∈ G. Translating these elements by G, we see that V contains a − b for
every a, b ∈ G. Hence, V = ω(G/H), as claimed.


For i = 1, . . . , s, let


Si := {g ∈ G | g · (gi − 1) = gi − 1}


be the stabilizer of gi − 1 in G. We may assume here that gi is not in H,
otherwise it could be removed since it is not needed to generate G over H.
Then clearly g ∈ Si iff ggi = gi and g = 1. From this one easily sees that
Si = H ∩ Hgi . Thus we have an exact sequence


0 → M → ⊕s
i=1Z[G/Si]


φ
−→ ω(G/H) → 0


where φ sends a generator of Z[G/Si] to gi − 1 ∈ ω(G/H). By Theorem 3.1
it remains to show that G acts faithfully on M .
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By Lemma 3.2 G fails to act faithfully on M if and only if r = 1 and
S1 = H = Hg1. But this possibility is ruled out by (ii). Indeed, assume that
s = 1 and S1 = H = Hg1 . Then G = 〈g1,H〉 and H = Hg1 . Hence, H is
normal in G. Condition (2) then tells us that H = {1}. Moreover, in this
case G = 〈g1,H〉 = 〈g1〉 is cyclic, contradicting (ii). �


5. Proof Theorem 1.2


As we saw above, it suffices to prove Theorem 2.2.
Let t1, . . . , tr ∈ G/N be a set of generators for G/N . Choose g1, . . . , gr ∈


G representing t1, . . . , tr. and let H ′ := 〈H,Hg1 , . . . ,Hgr〉. Since H ≤ N
and N is normal in G, H ′ ≤ N . The group H ′ depends on the choice of
g1, . . . , gr ∈ G, so that giN = ti. Fix t1, . . . , tr and choose g1, . . . , gr ∈ G
representing them, so that H ′ has the largest possible order or equivalently
the smallest possible index in N . Denote this minimal possible value of
[N : H ′] by m. In particular


(5) m = [N : H ′] ≤ [N : (Hgig · H)]


for any i = 1, . . . , r and any g ∈ N . Here [N : (Hgig · H)] =
|N |


|Hgig · H|
, as


in Remark 4.2.
Choose a set of representatives 1 = n1, n2, . . . , nm ∈ N for the distinct


left cosets of H ′ in N . We claim that the elements


{ginj | i = 1, . . . , r; j = 1, . . . ,m}


generate G over H. Indeed, let G0 be the subgroup of G generated by these
elements and H. Since n1 = 1, G0 contains g1, . . . , gr. Hence, G0 contains
H ′. Moreover, G0 contains nj = g−1


1 (g1nj) for every j; hence, G0 contains
all of N . Finally, since t1 = g1N, . . . , tr = grN generate G/N , we conclude
that G0 contains all of G. This proves the claim.


We now apply Theorem 4.1 to the elements {ginj}. Substituting


[G : H] · [H : (H · Hginj)] for [G : (H ∩ Hginj )],
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as in Remark 4.2, we obtain


ed(A) ≤


r
∑


i=1


m
∑


j=1


[G : (H ∩ Hginj )] − [G : H] + 1


= [G : H] ·
r


∑


i=1


m
∑


j=1


[(H · Hginj) : H] − [G : H] + 1


= [G : H] ·


r
∑


i=1


m
∑


j=1


[N : H]


[N : (H · Hginj )]
− [G : H] + 1


≤ (by (5)) [G : H] ·


r
∑


i=1


m
∑


j=1


[N : H]


m
− [G : H] + 1


= r[G : H] · [N : H] − [G : H] + 1


as desired. This completes the proof of Theorem 2.2 and thus of Theo-
rem 1.2. �
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