PURITY OF F,—TORSORS WITH TRIVIAL gz INVARIANT

VLADIMIR CHERNOUSOV AND IVAN PANIN

ABSTRACT. We prove that the functor R — Pf,(R) of n-fold Pfister
forms satisfies purity for regular local rings containing the field Q of
rational numbers. As an application we show that purity holds for Fy-
torsors with trivial g3 invariant.

1. MAIN RESULTS

In the present note we address to the purity conjecture for Fj-torsors.
The question on purity of torsors was raised in [CTS, Question 6.4, p. 124]
by J.-L. Colliot-Thélene and J.-J. Sansuc. Until recently for exceptional
groups the answer was known for type G9 only (see [ChP]) and our aim is
to consider the next open case of groups of type Fy with trivial g3 invariant.

Let us recall what the purity property for a functor is. Let F be a covariant
functor from the category of commutative rings to the category of sets,
and let R be a domain with field of fractions K. We say that an element
¢ € F(K) is unramified at a prime ideal  C R of height 1 if

¢ € Im|[F (Ry) — F(K)].

We say that & is unramified if it is unramified with respect to all prime ideals
in R of height 1. It is clear that

Im [F(R) — F (K)] € F(K)ur

where F (K),, is the set of all unramified elements. We say that the functor
F satisfies purity for a domain R if every £ € F (K )y, is in the image of
F(R), i.e. if

(| Im[F(Ry) - F(K)] = Im [F(R) — F(K)].
ht P=1

In what follows we assume that 2 is invertible in R. We say that a qua-
dratic space over R is an n-fold Pfister space if the corresponding quadratic
form is isomorphic to a form

<(a1,...,,an>>:<1,—a1>®---®(1,—an>
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where a1, ..., a, are units in R. We will consider the following two functors:
Pf,, (R) = {isomorphism classes of n-fold Pfister spaces over R }.

and
T(R) = HL(R,Go) = {isomorphism classes of Go-torsors over R }

where Gy is a split group of type Fy.

Recall that the set of isomorphism classes of group schemes of type Fj
over R (resp. over K) can be identified in a natural way with H} (R, Go)
(resp. H'(K,Gyp)). So abusing notation we will identify a group G of type
F, with the corresponding cocycle & and the isomorphism class [G] with
the equivalence class [£]. Given such a group G over a field K one can asso-
ciate [S93], [GMS], [PetRac], [Ro] the cohomological invariants f3(G), f5(G)
and g3(G) of G in H3(K, pi2), H?(K, ji2) and H3(K, Z/3Z) respectively. The
group G can be viewed as the automorphism group of a corresponding 27-
dimensional Jordan algebra J. The invariant g3(G) vanishes if and only if
J is reduced, i.e. J has zero divisors.

The main results of this paper are the following purity theorems:

1.1. Theorem. Let R be a regqular local ring containing the field Q of rational
numbers and let K be its field of fractions. Let [G] € T (K )y, be such that
93(G) = 0. Then [G] is in the image of T(R) — T (K).

1.2. Theorem. The functor R — Pf, (R) satisfies purity for regular local
rings containing Q.

1.3. Theorem. Let @, (resp. ¢, ) be an m-fold (resp. an n-fold ) Pfister
space over R. If @, i is a subform of the form ¢, i, then there exists an
(n —m)-fold Pfister space pp—_pm, over R such that ¢, = om @ @n_m over R.

1.4. Remark. For many groups of classical type the purity theorem is
known; more precisely it is known for split groups of type A,, (unpublished);
groups of the form SL; 4, where A is a central simple algebra over a field
[CTO]; split groups of type B,, [P]; split simply connected groups of type
C,, (obvious); certain split groups of type D,, (like the special orthogonal
group of a quadratic form) [P].

1.5. Remark. The characteristic restriction in the theorem is due to the fact
that we use the main result in [P] on rationally isotropic quadratic spaces
which was proven in characteristic zero only (the resolution of singularities
is involved in that proof).

2. RATIONALLY DIRECT SUMMANDS OF A QUADRATIC SPACE

Throughout the paper R denotes a regular local ring containing the field
Q of rational numbers. Note that R is a unique factorization domain ([Ma,
Theorem 48, page 142]).

For the definition and basic properties of quadratic spaces over a commu-
tative ring we refer to [K]. The aim of this section is to establish a criterion



PURITY OF F4-TORSORS 3

when one quadratic space over R can be realized as a direct summand of
the second one. That criterion is stated in Proposition 2.2.

Let (V, f) be a quadratic space over R. We denote by f(—, —) a symmetric
bilinear form on V' corresponding to f.

2.1. Lemma. Letv € V' be a vector such that f(v) is a unit in R. Then we
have V =~ (v)1(v)*t.

Proof. Obviously we have (v) N {v)*+ = 0. So it suffices to show that every
vector w € V can be written in the form w = wy + wy where wy € (v)
and wy € (v)*. Let wy = f(w,v)f(v)"'v. Then we = w — wy is obviously
orthogonal to v, so the result follows. O

2.2. Proposition. Let (V, f) and (W, g) be two quadratic spaces over R.
Then g is a direct summand of f if and only if g is a subform of fx.

Proof. If g is a direct summand of f then obviously gx is a subform of fi.
Conversely, assume gg is a subform of fx. Let m = dimg and n = dim f.
We argue by induction on m. Consider first the case m = 1. Then g = (a)
where a € R* and fx represents a. By [P, Cor.2] there exists v € V
such that f(v) = a. Clearly that v is unimodular. By Lemma 2.1 we have
V = (v)L(v)* implying f can be decomposed as f = (a)Lf’.

Assume now that our statement is proven for all quadratic spaces of di-
mension m = i. Let (W, g) be a quadratic space of dimension i 4+ 1. Take a
decomposition g = (a)Lg’ where ¢’ is a quadratic form of dimension m — 1
and ¢ is a unit in R. By case m = 1, the quadratic form f can be decom-
posed as f = (a)Lf’. Since gx is a subform of fx, by Witt cancelation we
get gj is a subform of f.. By induction ¢’ is a direct summand of f’, so
the result follows. O

3. PROOFS OoF THEOREMS 1.2 AND 1.3

Proof of Theorem 1.2. Let K be a quotient field of R and let fx be an n-fold
Pfister form over K unramified with respect to every prime ideal in R of
height 1. If fx is isotropic, then fx is split over K and there is nothing to
prove. So we may assume that fx is anisotropic over K.

By [P, Cor.1] there exists a quadratic space f over R such that its
fiber at the generic point of Spec(R) is isomorphic to fx. Our aim is
to show by induction that f can be decomposed as f = g;Lh; where
gi = ((—ay, —ag,...,—a;)) is an i-fold Pfister form, h; is a quadratic space
over R and i = 1,...,n. In view of dimension argument, taking i = n we
have f = g, and Theorem 1.2 follows.

Let first ¢ = 1. Since fx represents 1 over K, by Proposition 2.2 we
may write f = (1)L f’ for a suitable quadratic form f' = (aj,...,ap—1)

over R. Denote g1 = (1,a1) = ({(—a1)). By our construction g¢; is a
direct summand of f as required. Assume now that f = g¢;1h; where
gi = ((—a1,...,—a;)) is an i-fold Pfister form and ¢ < n. Consider a

diagonalization h; = (bgi y,...,bon). Let gix1 = ((—a1,...,—a;, —aiy1))
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where a; 1 = byi ;. Clearly we have fx = ¢; k ® g for some (n — i)-fold
Pfister form ¢ over K so that h; k is isomorphic over K to g; k ® ¢’ where
¢’ is the pure subform of ¢. Since h; g represents a;41 so is g; k ® ¢'. Then
by [KMRT, Theorem 1.10], gj+1,k is a subform of fx. By Proposition 2.2
it follows g;11 is a direct summand of f and we are done.

Proof of Theorem 1.3. For m = n there is nothing to prove. Assume that
m < n. Write ¢, as ¢, = ({(—a1,...,—ay)). Write ¢, as @, = @mLhn.
Consider a diagonalization h,, = (bami1,...,ban). Arguing as in the proof
of Theorem 1.2 we see that the space @11 := ({ —a1,..., —am, —Qm+y1)) 1S
subspace of the space ¢,, where a,,11 = bom 1. Continuing this process we
get o, = ((—ay,...,—am,...,—ay,)) for certain units a,,41,...,a, in R as
required.

4. PROOF OF THEOREM 1.1

Let R be a regular local ring containing Q and let K be its field of
fractions. Consider a group G of type Fy over K unramified with respect to
all prime ideals P C R of height 1. It is a twisted form G = Gy i of a split
group G over R with some cocycle ¢ € Z1(K, Gg k).

If Ty C Gy is a maximal K-split torus we denote by ¢ € Aut(Gp) = Gy
an element such that ¢ = 1 and ¢(t) = t~! for every ¢t € Ty (it is known
that such an automorphism exists, see e.g. [DG], Exp. XXIV, Prop. 3.16.2,
p. 355). Let ¥ = X(Gq,Tp) be a root system of Gy with respect to Tj.
Fix its basis { aq, as,a3,a4 }. Denote by a; : G, — Ty, i = 1,...,4, the
cocharacters dual to aq,...,a4. Clearly, Ty can be decomposed as a direct
product Ty = Hl Ty, where Ty, is the image of d;.

Let v € R be a unit which is not a square in K. Let S = R(y/u) be
the corresponding étale quadratic extension of R. Denote the nontrivial
involution of S/R by 7.

4.1. Lemma. Lett = [, &;(u;) € To(R) where uy,ug, ug, us are units in R
and let a; = ct. Then X\ = (a,) is a cocycle in Z*(S/R,Go(L)).

Proof. We need to check that a,7(a;) = 1. Indeed, we have
a;7(ar) =ctr(ct) =ctet =t 't =1
as required. O

To complete the proof of Theorem 1.1 we are going to find the parameters
w, U1, U2, uz, us such that the twisted group scheme H = *Gy has generic
fiber isomorphic to G. With this purpose we first remind a criterion when
two groups of type Fy over K are isomorphic. Note that both H and G have
trivial g3 invariant. Then by a result of Springer [Sp] (see also [Ch, Theorem
7.1]) we have G and Hg are K-isomorphic if and only if f3(G) = f3(Hk)
and f5(G) = f5(Hg). This criterion suggests that the required parameters
u, uy, u2, us, us must be given in terms of f3(G) and f5(G).
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4.2. Proposition. Let G be as above. Then f3(G) and f5(G) are unramified
with respect to all prime ideals B C R of height 1.

Proof. The invariants f3, f5 are symbols given in terms of the trace quadratic
form of the Jordan algebra J corresponding to G and hence we may associate
to them the 3-fold and 5-fold Pfister forms. Abusing notation we denote
these Pfister forms by the same symbols f3(G) and f5(G).

Let B C R be a prime ideal of height 1 and let v = vy be the corre-
sponding discrete valuation on K. We need to show that f3(G), f5(G) are
in the images of Pf3 (Ryp)) — Pf3 (K) and Pf5 (Ry)) — Pf5 (K) where Ry
is the localization of R at B. Equivalently, f3(Gg,), f5(Gk,) are in the
images of Pf3 (R,) — Pf3(K,) and Pfs (R,) — Pf5 (K,) where R, and K,
are completions of R and K with respect to v.

To see this, we consider a simple group scheme H,, of type Fy over R, such
that its fiber at the generic point of Spec (R,) is isomorphic to Gk,. Note
that such a scheme do exists because G is unramified at B and hence Gk,
is also unramified. Since R, is a regular local ring containing Q by [Ch,
Theorems 6.1, 6.6, Remark 8.4] we have f3(Gk,) and f5(Gk,) are of the
form (v1) U (v2) U (v3) and (v1) U (ve) U (v3) U (vs4) U (us) respectively where
v1,...,U5 are units in R,. U

4.3. Proposition. There exist units vi,...,v5 € R* such that f3(G) =
((v1,v2,v3)) and f5(G) = ((v1,v2,v3,04,05 ).

Proof. By Theorem 1.2 and Proposition 4.2 there exist Pfister spaces g =
((v1,v2,v3)) and h = ((w1, wa, w3, ws,ws)) over R such that f3(G) = gx
and f5(G) = hg. Here v1,v9,v3,w1,...,ws are units in R. Since f3(G) is
a subform of f5(G) Theorem 1.3 shows that there are units vs,v4 in R such
that h = ((v1, v2,v3,v4,v5)). We are done.

O

We are now in position to complete the proof of Theorem 1.1. Take the
cocycle A from Lemma 4.1 with the parameters u = vy, u; = va,...,uq4 = U5
and the twisted group scheme H = *Gg over R. Let 7 be the nontrivial
automorphism of S = R(y/u) over R. Let

{(Hy ... ,Hoy Xo, a €3}

be a Chevalley basis of the Lie algebra of H over S with respect to Ty. The
twisted action of 7 on X,, is given by

T(Xai) = Ct(Xai)(Ct)il = CHdJ(uj)(Xai) de(uj_l)cil = u; X_q,

so that in the terminology of [Ch] the structure constants of H are uq, ..., u4.
By [Ch, Theorem 6.1 and Theorem 6.6] the f3 and f5 invariants of Hx are
({(u,ur,uz)) and ((u,uy,uz,ug,uq)). Thus Hg and G have the same f3, f5
invariants, hence they are isomorphic. Theorem 1.1 is proven.
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