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1. Introduction

The goal of this paper is twofold - first to give an introduction to the
method of field patching as first presented in [HH], and later used in
[HHKa], paying special attention to the relationship between factoriza-
tion and local-global principles and second, to extend the basic factor-
ization result in [HHKa] to the case of retract rational groups, thereby
answering a question posed to the author by J. L. Colliot-Thélène.

Throughout, we fix a complete discrete valuation ring T with field of
fractions K and residue field k. Let t ∈ T be a uniformizer. Let X/K
be a smooth projective curve and F its function field.

Broadly speaking, the method of field patching is a procedure for
constructing new fields Fξ which will be in certain ways simpler than
F , and to reduce problems concerning F to problems about the various
Fξ. Overall, there are two ways in which this is done. Let us suppose
that we are interested in studying a particular type of arithmetic object,
such as a quadratic form, a central simple algebra, etc.
Constructive Strategy (Patching) : This consists in showing that
under suitable hypotheses, algebraic objects defined over the fields Fξ
which are “compatible,” exactly correspond to objects defined over F
(see Theorem 3.2.3). One may then use this idea to construct new
examples and counterexamples of such objects by building them “lo-
cally.”
Deconstructive Strategy (Local-global principle) : We say that
a particular type of algebraic object satisfies a local global principle if
whenever an object defined over F becomes “trivial” when scalars are
extended to each Fξ, it must in fact have been trivial to begin with
(see Section 2.2).

In this paper, we will not focus on these applications, which are
discussed for example in [HH, HHKa, HHKb, CTPS09]. Instead, we
focus on elucidating and extending the underlying methods used.
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2. Patches and local-global principles

2.1. Fields associated to patches. The fields Fξ are not canonically
defined - they depend on a number of choices, beginning with the choice
of a model for X over T .

Definition 2.1.1 Models
A model for the scheme X/K is defined to be a connected normal

projective P1
T -scheme X̂ such that

(1) the structure morphism f : X̂ → P1
T is finite,

(2) considered as a T -scheme, the generic fiber X̂K is isomorphic
to X,

(3) The reduced closed fiber X̂red
k is a normal crossings divisor in

X̂,
(4) f−1(∞) contains all the singular points of the reduced closed

fiber X̂red
k .

Given a model X̂ (we will generally suppress the morphism f : X̂ →

P1
T from the notation), we let S(X̂) denote the set of closed points in

f−1(∞) and U(X̂) denote the set of connected (or equivalently, irre-

ducible) components of X̂red
k \ S(X̂). These sets play a critical role in

what follows.

Warning 2.1.2

In other sources such as [HH, HHKa, HHKb], X̂ is not given the struc-
ture of a P1

T -scheme, but rather the structure of a T scheme together
with a distinguished set of closed points S. In this context, one is al-
lowed more general sets S. The reader must keep in mind that a model

X̂ comes with the extra structure of a morphism to P1 throughout!

It is perhaps a bit odd to include the finite morphism to P1
T as

part of the definition of a model — by comparison, in [HH], it is only
assumed that one should start with a projective T -curve with a set S of
closed points such that there exists a finite T -morphism to a curve with
smooth reduced closed fiber and such that the set S is the inverse image
of a set of closed points under this morphism. We include the morphism
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to P1
T as part of our definition simply as a matter of convenience of

exposition. The following lemma shows that it is not much of an extra
assumption, however:

Lemma 2.1.3 [HH], Proposition 6.6

Suppose X̂ is a projective T -curve and S ⊂ X̂ a finite set of closed

points. Then there exists a finite morphism f : X̂ → P1 such that
S ⊂ f−1(∞).

For the remainder of the section, we will suppose that we are given

such a model X̂, and we let F = F (X̂) be its function field. Given any

nonempty subset of points Z ⊂ X̂, we define

RZ = {f ∈ F | ∀P ∈ Z, f ∈ O bX,P}

We will define fields associated to two particular types of subsets Z:

Definition 2.1.4 Fields associated to closed points

Let P ∈ X̂ be a closed point. We define RP = R{P}, R̂P its completion

with respect to its maximal ideal, and FP the field of fractions of R̂P .

Definition 2.1.5 Fields associated to open subsets of X̂red
k

Let U ⊂ X̂red
k be a nonempty irreducible Zariski open affine subset of

the reduced closed fiber which is disjoint from the singular locus of X̂red
k .

We let R̂U be the completion of RU with respect to the t-adic valuation,
and FU the field of fractions of R̂U .

Note that there are natural maps F ⊂ FU , FP for any such P and
U , as well as inclusions FU → FV and FU → FP , whenever V ⊂ U or
P ∈ U respectively.

2.2. Some local-global principles. We may now give some exam-
ples of local-global principles. For these, we assume that X/K is a
smooth projective curve where K a complete discretely valued field

with valuation ring T , and that we are given a model X̂ → P1. We let
F be the function field of X.

Theorem 2.2.1 Local-global principle for the Brauer group
(see [HH], Theorem 4.10)
The natural homomorphism

Br(F ) →




∏

P∈S( bX)

Br(FP )


 ×




∏

U∈U( bX)

Br(FU)
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is injective.

We give a proof of this result on page 5. In fact, we will see later, us-
ing patching, that this may be extended to a three term exact sequence
by adding a term on the right (see Theorem 3.3.1).

Theorem 2.2.2 Local-global principle for isotropy (see [HHKa],
Theorem 4.2)
Suppose q is a regular quadratic form of dimension at least 3, and
char(F ) 6= 2. If qFP

and qFU
are isotropic for every P ∈ S(X̂) and

U ∈ U(X̂) then q is also isotropic.

The proof of this is given on page 5. See also Theorem 3.3.2 for a
related result.

Both of these principles in fact, may be regarded as special cases of
either of the following results, the main new results of this paper:

Definition 2.2.3
SupposeH is a variety over F and G is an algebraic group which acts on
H. We say that G acts transitively on H if for every field extension
L/F , the group G(L) acts transitively on the set H(L).

The following result generalizes [HHKa], Theorem 3.7 by weakening
the hypothesis of rationality to allow for retract rational groups as well:

Theorem 2.2.4 Local-global principle for varieties with tran-
sitive actions
Suppose G is a connected retract rational algebraic group defined over
F , and H is a variety on which G acts transitively. Then H(F ) 6= ∅ if

and only if H(FP ), H(FU) 6= ∅ for all P ∈ S(X̂) and U ∈ U(X̂).

This theorem follows quickly from Theorem 5.1.1, and its proof may
be found just after the statement of this theorem on page 14. The proof
of this in the case of retract rationality will occupy a good portion of
this paper. Along the way, we will explore the connections between this
local global principles and the notion of “factorization” for the group
G. The following corollary is particularly useful.

Corollary 2.2.5
Suppose G is a retract rational reductive group over F and H a homoge-
neous variety for G. Then H(F ) 6= ∅ if and only if H(FP ), H(FU) 6= ∅

for all P ∈ S(X̂) and U ∈ U(X̂).
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From these theorems (or even the versions assuming only rational-
ity of G from [HHKa]), we may prove the above local global results
concerning the Brauer group and quadratic forms.

proof of Theorem 2.2.1. Let α ∈ Br(F ) and suppose αFP
= 0 = αFU

for every P ∈ S(X̂), U ∈ U(X̂). We need to show that α = 0.
Let A be a central simple F algebra in the class α and let H be the

Severi-Brauer variety for A. Note that this is a homogeneous variety
for the group GL(A) which is rational, connected and reductive. Recall
that for a field extension L/F , H(L) is nonempty exactly when A⊗F L
is a split algebra — that is to say, αL = 0. But since αFP

, αFU
= 0,

we have H(FP ), H(FU) 6= ∅ for every U, P . Consequently, by Corol-
lary 2.2.5, it follows that H(F ) 6= ∅ and so α = 0 as desired. �

proof of Theorem 2.2.2. Let q be a quadratic form over F satisfying
the hypotheses of the Theorem. We wish to show that q is isotropic.
Let H be the quadratic hypersurface of projective space defined by
the equation q = 0. Recall that this is a homogeneous variety for
the group SO(q) which under the hypotheses is a rational, connected,
reductive group (see [KMRT98], page 209, excercise 9). As above,
we immediately see that since H(FP ), H(FU) are nonempty for each

P ∈ S(X̂) and U ∈ U(X̂), we have by Corollary 2.2.5, H(F ) 6= ∅ as
desired. �

3. Patching

The fundamental idea of patching is that defining an algebraic object
over the field F is equivalent to defining objects over each of the fields

FP for P ∈ S(X̂) and FU for U ∈ U(X̂), together with the data of how
these objects agree on overlaps. This will be stated in this section in
terms of an equivalence of categories. We will simply cite the results
of [HH] section 6 and 7 for the most part, but we focus more on the
equivalence of tensor categories, and explore how to produce other
examples of algebraic patching.

Suppose we are given a model X̂ for a curve X/K. Given a point

P ∈ S(X̂), the height 1 primes of RP which contain t correspond to

the components of X̂red
k incident to P . Each such component is the

closure of a uniquely determined element U ∈ U(X̂).

Definition 3.0.6 Branches, and their fields
Given such a height 1 prime P of RP , corresponding to an element

U ∈ U(X̂), a branch along U at P is an irreducible component of

the scheme R̂P/PR̂P . Alternately, these are in correspondence with the
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height one primes of R̂P containing PR̂P . Given such a height 1 prime

℘, we let R̂℘ be the t-adic completion of the localization of R̂P at ℘, and

F℘ its field of fractions. We let B(X̂) denote the set of all branches at

all points in S(X̂).

The fields FP and FU come equipt with natural inclusions into F℘
which we now describe. We note that the natural inclusion R̂P →
R̂℘ induces an inclusion of fields FP → F℘. Further, we note that

R̂℘ is a 1 dimensional regular local ring, and hence a DVR, whose
valuation is determined by considering order of vanishing along the
branch corresponding to ℘. In particular, considering the inclusion
F ⊂ FP ⊂ F℘, we find that all the elements of RU , having no poles
along U , can also not have poles along any branch lying along U , and

in particular, we see we have an inclusion RU ⊂ R̂℘. Since the t-adic

topology on R̂℘ is the same as the ℘-adic topology, we further find that

R̂℘ is t-adically complete, and we therefore have an induced inclusion
FU → F℘.

3.1. Patching finite dimensional vector spaces.

Definition 3.1.1 Patching problems
A patching problem is a collection Vξ for ξ ∈ S(X̂) ∪ U(X̂), where
Vξ is a finite dimensional Fξ vector space together with a collection of
isomorphisms φ℘ : VP ⊗FP

F℘ → VU ⊗FU
F℘ of F℘ vector spaces for

every branch ℘ at P on U . We denote this problem by (V, φ).
We define a morphism of patching problems f : (V, φ) → (W,ψ)
to be a collection of homomorphisms fξ : Vξ → Wξ such that whenever
℘ is a branch at P lying on U , the following diagram commutes:

VP ⊗FP
F℘

fP⊗F℘ //

φ℘

��

WP ⊗FP
F℘

ψ℘

��
VU ⊗FU

F℘
fU⊗F℘

// VP ⊗FP
F℘

We see then that patching problems naturally form a category, which

we denote by PP(X̂, S). In fact, this category has a ⊗-structure as well
defined by (V, φ)⊗(W,ψ) = (V ⊗W,φ⊗ψ) where (V ⊗W )ξ = Vξ⊗Fξ

Wξ

and

(φ⊗ ψ)℘ : (V ⊗W )P → (V ⊗W )U
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is given by φ℘ ⊗F℘ ψ℘ via the above identification. One may also ver-
ify that this monoidal structure is symmetric and closed (see [ML98],
VII.7).

Definition 3.1.2
If V is a vector space over F , we let (Ṽ , I) denote the patching problem

defined by ṼP = VFP
and ṼU = VFU

and where I℘ is induced by the
natural identifications

(V ⊗F FP ) ⊗FP
F℘ = V℘ = (V ⊗F FU) ⊗FU

F℘

Theorem 3.1.3
[[HH], Theorem 6.4] Consider the functor

Ω : Vectf.d.(F ) → PP(X̂, S)

from the category of finite dimensional F -vector spaces to the cate-
gory of patching problems defined by sending a finite dimensional vec-
tor space V to the patching problem (Ṽ , I). Then Ω is an equivalence
of categories.

3.2. Patching algebraic objects.

Definition 3.2.1
A type of algebraic object (generally abbreviated to simply a “type”)
is a symmetric closed monoidal category T . If T is a type and L a
field, then an algebraic object of type T over L is a strict symmetric
closed monoidal functor (see [ML98], §VII.1, §VII.7 and [Hov99] §4.1
for definitions) from the category T to the category of finite dimen-
sional vector spaces over L (with its natural symmetric closed monoidal
structure). Morphisms between algebraic objects of type T are defined
simply to be natural transformations between functors. We let T (L)
denote the category of such objects.

Note that T in fact defines a (pseudo-)functor from the category of
fields to the 2-category of categories (see [Gra74] for definitions).

Despite the formality of this definition, one may observe that one
may interpret an algebraic object of a given type T to be given by a
vector space, or a collection of vector spaces, together with extra struc-
ture encoded by perhaps a collection of morphisms between various
tensor powers of the vector spaces satisfying certain axioms, and where
morphisms between these objects are given by collections of linear maps
satisfying certain compatibilies with the extra structures given. For ex-
ample, we might consider:
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• Lie algebras,
• Alternative (or Jordan) algebras,
• Operads,
• Central simple algebras
• Quadratic forms, where morphisms are isometries,
• Quadratic forms, where morphisms are similarities,
• Separable commutative or noncommutative algebras,
• G-Galois extensions of rings in the sense of [DI71]
• and so on...

In these cases, the category T in question is simply given as the sym-
metric closed monoidal category generated by some set of objects (cor-
responding to the underlying vector spaces of the structure) and some
morphisms (defining the structure of the algebra or form), such that
certain diagrams commute which define the structure in question. For
example, a central simple algebra is a vector space A together with a
bilinear product A ⊗ A → A, and F -algebra structure F → A such
that the canonical “sandwich map” of algebras

A⊗ Aop → Hom(A,A)

is an isomorphism (see [DI71], Chapter 2, Theorem 3.4(iii)). In this
case, the category T is generated by a single element a, a morphism
a⊗ a→ a and 1 → a (where 1 is the unit for the monoidal structure),
and such that the natural map a⊗ a → Hom(a, a) (where the Hom is
defined by the closed structure) has an inverse.

To see quadratic forms and isometries in this way, one may simply
let the category T be generated by a single element v a morphism
v ⊗ v → 1, assumed to commute with the morphism switching the
order of the v’s. In the case of similarities instead of isometries, one
may add a new object ℓ, and replace v ⊗ v → 1 with a morphism
v ⊗ v → ℓ. To force ℓ to correspond to a 1-dimensional vector space,
one may then add to this category an inverse to the natural morphism1 → ℓ⊗ ℓ∗ ∼= Hom(ℓ, ℓ).

Definition 3.2.2 Patching problems
Let T be a type of algebraic object. A patching problem of objects

of type T is a collection Aξ for ξ ∈ S(X̂) ∪ U(X̂), where Aξ is an
object of type T over Fξ, together with a collection of isomorphisms
φ℘ : AP ⊗FP

F℘ → AU ⊗FU
F℘ in T (F℘). We denote this problem by

(A, φ).
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Just as with vector spaces, we may define morphisms of patching
problems of objects of type T , and again find that these form a ten-

sor category, which we denote PPT (X̂). Again as before, if A is an
algebraic object of type T over F , we may form a natural patching

problem (Ã, I), and obtain a functor from T (F ) to PPT (X̂).

Theorem 3.2.3
Consider the functor

ΩT : T (F ) → PPT (X̂)

defined by sending an algebraic object A to the patching problem (A, I).
Then ΩT is an equivalence of categories.

Proof. Since we have an equivalence of categories Vectf.d.(F ) ∼= PP(X̂)
by Theorem 3.1.3, it is immediate that this equivalence also induces an
equivalence of functor categories

T (F ) = Fun(T ,Vectf.d.(F ) ∼= Fun(T ,PP(X̂)) ∼= PPT (X̂).

One may now check that this gives the desired equivalence. �

Remark 3.2.4
It would be interesting to know if one could extend this to equivalences of
other kinds of objects. In particular, infinite dimensional vector spaces,
finitely generated commutative algebras, or perhaps even to (some suit-
ably restricted) categories of schemes. None of these fall under the
definition of an algebraic object given above, and it is therefore not at
all clear if the conclusions of Theorem 3.2.3 will still hold.

3.3. Central simple algebras and quadratic forms. For the fol-
lowing results, we suppose we are given X̂ a normal, connected, projec-
tive, finite P1

T -scheme. The machinery of patching gives the exactness
of various exact sequences relating to field invariants derived from al-
gebraic objects.

Theorem 3.3.1 (see [HH], Theorem 7.2)
We have an exact sequence:

0 → Br(F ) →




∏

P∈S( bX)

Br(FP )


×




∏

U∈U( bX)

Br(FU)


 →

∏

℘∈B( bX)

Br(F℘)

Proof. Exactness on the left was noted in Theorem 2.2.1. To see
exactness in the middle, suppose we have classes αP , αU such that
(αU)F℘

∼= (αP )F℘ whenever ℘ is a branch at P on U . Since there are
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only a finite number of points and components, we may choose an in-
teger n such that each of the Brauer classes αU , αP may be represented
by central simple algebras AU , AP of degree n. Now, by hypothesis,
for each branch ℘ as above, we may find an isomorphism of central
simple algebras φ℘ : (AP )F℘ → (AU)F℘. But this gives the data of
a patching problem for central simple algebras, and therefore we may
find a central simple F -algebra A such that AFP

∼= AP and AFU
∼= AU

as desired. �

Theorem 3.3.2
We have an exact sequence:

W(F ) →




∏

P∈S( bX)

W(FP )


 ×




∏

U∈U( bX)

W(FU)


 →

∏

℘∈B( bX)

W(F℘)

Proof. The proof is very similar to the last one. Suppose we have Witt
classes αP , αU such that (αU)F℘

∼= (αP )F℘ whenever ℘ is a branch at P
on U . Since there are only a finite number of points and components,
we may choose an integer n such that each of the Witt classes αU , αP
may be represented by quadratic forms qU , qP of the same dimension
n. Now, by hypothesis, for each branch ℘ as above, we may find an
isometry φ℘ : (qP )F℘ → (qU)Fwp. But this gives the data of a patching
problem for quadratic forms, and therefore we may find a form q over
F such that qFP

∼= qP and qFU
∼= qU as desired. �

We note that exactness on the left is discussed in Theorem 2.2.2.

3.4. Properties of R̂P , R̂U , FP , FU . Let us now gather together some
fundamental facts which we will need in the sequel.

Lemma 3.4.1 [HH], Lemma 6.2

Suppose Ŷ → X̂ is a finite morphisms of projective, normal, finite
P1
T -schemes. Then the natural inclusions of fields yield isomorphisms:

FP⊗F ( bX)F (Ŷ ) ∼=
∏

FP ′ FU⊗F ( bX)F (Ŷ ) ∼=
∏

FU ′ F℘⊗F ( bX)F (Ŷ ) ∼=
∏

F℘′

where P ′ (resp. U ′, ℘′) range over all the points (resp. components,
branches) lying over P (resp. U , ℘).

Lemma 3.4.2 [HH], Lemma 6.3

Let X̂ be a projective, normal, finite P1
T -scheme. Then the natural
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inclusions of fields yield an exact sequence of F = F (X̂)-vector spaces:

0 → F →




∏

P∈S( bX)

FP


 ×




∏

U∈U( bX)

FU


 →

∏

℘∈B( bX)

F℘

Lemma 3.4.3
Suppose V,W ⊂ U are R̂0 modules, where t ∈ R̂0 and V,W,U are
all t-adically complete. Suppose further that V/tV + W/tW = U/tU.
Then V + W = U.

Proof. Suppose u ∈ U. Let v0 = w0 = 0. We will inductively construct
a sequence of elements vi ∈ V, wi ∈ W such that vi − vi+1 ∈ tiV, wi −
wi+1 ∈ tiW, vi + wi − u ∈ tiU. By completeness, these will converge to
elements v ∈ V, w ∈ W such that v + w = u.

Suppose we have constructed vi, wi satisfying the above hypotheses.
Since u− vi−wi ∈ tiU, we may write u− vi−wi = tir. By hypothesis,
we may write r = v′ +w′ + tr′ for some v′ ∈ V, w′ ∈ W, r′ ∈ U. Setting
vi+1 = vi + tiv′, wi+1 = wi + tiw′, completes the inductive step. �

Lemma 3.4.4
Considering P1

T , we have R̂A1 +R̂∞ = R̂℘, where ℘ is the unique branch
at ∞.

Proof. Using Lemma 3.4.3, we need only check that RA1 + R∞ = R℘,
where

RA1
∼= R̂A1/tR̂A1 , R∞

∼= R̂∞/tR̂∞, R℘
∼= R̂℘/tR̂℘

But, we may compute RA1 = k[A1
k], R∞ = ÔP1

k,∞
, R℘ = frac(ÔP1

k,∞
).

Writing x for the coordinate function on the affine part of the k-line,
we may explicitly identify

RA1 = k[x], R∞ = k[[x−1]], R℘ = k((x−1)),

and the result follows. �

4. Local-global principles, factorization and patching

Let X̂ → P1 be a model for X/K, and let G be an algebraic group
defined over F .

4.1. Local-global principles for rational points.

Definition 4.1.1
We say that factorization holds for G, with respect to X̂, if for
every tuple (g℘)℘∈B( bX), there exist collections of elements gP for each
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P ∈ S(X̂) and gU for each U ∈ U(X̂) such that whenever ℘ is a branch
at P on U we have

g℘ = gPgU
with respect to the natural embeddings FP , FU → F℘.

Definition 4.1.2
We say that the local-global principle holds for an F scheme V ,

with respect to a model X̂ if X(F ) 6= ∅ holds if and only if X(FP ), X(FU) 6=

∅ for every P ∈ S(X̂) and U ∈ U(X̂).

Definition 4.1.3
Let G be an algebraic group over F and H a scheme over F . We
say that H is a transitive G-scheme if G acts transitively on H (see
Definition 2.2.3).

Proposition 4.1.4
If factorization holds for a group G, then the local-global principle holds
for all transitive schemes over G.

Proof. See the proof of Theorem 3.7 in [HHKa]. �

4.2. Local-global principles for algebraic objects and torsors.

Definition 4.2.1
We say that the local-global principle holds for an algebraic
object A (of some given type) if for any algebraic object B (of the
same type), we have A ∼= B if and only if AFP

∼= BFP
and AFU

∼= BFU

for all P, U . We say that the local-global principle holds for a type of
algebraic object if it holds for every algebraic object of the type.

Proposition 4.2.2
The local-global principle holds for an algebraic object A′ if and only
for every patching problem (A, φ) of algebraic objects such that AP ∼=
(A′)FP

, AU ∼= (A′)FU
for all P, U , the isomorphism class of (A, φ) is

independent of φ.

Proof. Suppose that the local-global principle holds for A′, and let
(A, φ), (A,ψ) be two patching problems, such that AP ∼= (A′)FP

and
AU ∼= (A′)FU

for each P, U . Since we may patch algebraic objects, we
may find algebraic objects B1, B2 over F whose patching problems are
equivalent to (A, φ), (A,ψ) respectively. Since (B1)FU

∼= AFU
∼= (B2)FU

and similarly for FP , we find that by the local-global principle, B1
∼=

B2. But therefore their associated patching problems are isomorphic,
implying (A, φ) ∼= (A,ψ) as desired.
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Conversely, suppose that (A, φ)’s isomorphism class is independent of
φ for every patching problem. Suppose we are given A′, B′ be algebraic
objects over F with associated patching problems (A, φ) and (B,ψ)
respectively. Suppose further that (A′)FU

∼= (B′)FU
and similarly for

FP . Since AU ∼= (A′)FU
∼= (B′)FU

∼= BU and AP ∼= (A′)FP
∼= (B′)FP

∼=
BP for all U, P by definition, we may change ψ via these isomorphisms
to find (B,ψ) ∼= (A,ψ′) for some ψ′. But therefore by hypothesis,
(A, φ) ∼= (A,ψ′) ∼= (B,ψ). Since patching gives an equivalence of
categories, we further conclude A′ ∼= B′, completing the proof. �

Remark 4.2.3
Let T be a type of algebraic object, and A is a particular object of
type T . Let TA denote the subclass of objects which are isomorphic to
A (more precisely, TA is the sub-pseudofunctor of T which associates
to every field extension L/F the category of algebraic objects of type
T over L which are isomorphic to the object AL). Then TA satisfies
the hypotheses of patching — i.e. we have an equivalence of categories
between the category PPTA

(X̂) and TA(F ) — if and only if the local-
global principle holds for A. Note that in general TA is not a “type
of algebraic object,” described by some monoidal category in the sense
described above.

Definition 4.2.4
Let G be an algebraic group over F . We say that the local-global
principle holds for G if for α ∈ H1(F,G), with αFP

, αFU
trivial for

each P, U we have α trivial.

Note that since elements of H1(F,G) correspond to torsors for G, we
see immediately that the local-global principle will hold for G if and
only if the local-global principle holds for all G-torsors, in the sense of
Definition 4.1.2. From this observation and from Proposition 4.1.4, we
immediately obtain:

Proposition 4.2.5
Suppose G is a linear algebraic group defined over F , and suppose that

factorization holds for G with respect to X̂. Then the local global prin-
ciple holds for G as well.

Proposition 4.2.6
Suppose A is an algebraic object of some type T , whose automorphism
group is the linear algebraic group G. Then the following are equivalent:

(1) the local-global principle holds for A,
(2) the local-global principle holds for G.
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(3) factorization holds for G,

Proof. Since G is the automorphism group of A, by descent (see [Ser79],
X.§2, Proposition 4), we may identify H1(L,GL) = Forms(AL), the
pointed set of twisted forms of AL. In particular, it is immediate from
the definition that the local global principle for A is equivalent to the
local global principle for G.

Suppose we have a local-global principle for A, and consider a col-
lection of elements g℘ ∈ G(F℘). Consider the patching problem (B, φ)
where BP = AFP

, BU = AFU
, and φ℘ = g℘. By the local-global prin-

ciple, this is isomorphic to the patching problem (Ã, I). By definition,
we may find an isomorphism h : (B, I) → (B, φ). Let gP = h−1

P and
gU = hU . By definition of a morphism of patching problems, we find
that g℘ = gPgU , and that gP ∈ Aut(BP ) = G(FP ), gU ∈ Aut(BU) =
G(FU) as desired.

Conversely, suppose we have factorization for G. In this case it is
immediate from Proposition 4.2.5 that the local global principle must
hold for G, completing the proof. �

Remark 4.2.7
Theorem 4.2.6 raises the question of whether it would be possible to
show the equivalence of the local global principle for a group G and
factorization for this group without the presence of an algebraic ob-
ject with G as its automorphism group. This would give a converse to
Proposition 4.2.5. In turn since G-torsors are, in particular, transitive
G-schemes, one would then also obtain a converse to Proposition 4.1.4.

5. Factorization for retract rational groups

5.1. Overview and preliminaries. The goal of this section will be
to prove the following theorem:

Theorem 5.1.1
Suppose X̂ is a connected normal finite P1

T -scheme, with function field
F and let G be a connected retract rational algebraic group over F .

Then factorization holds for G with respect to X̂.

Using this theorem, we may easily proceed to the proof of the lo-
cal global principle for schemes with transitive action stated earlier in
Theorem 2.2.4: If G is a connected retract rational group over F , then
by the theorem, factorization holds for G with respect to X̂. But then
by Proposition 4.1.4, the local global principle must hold for transitive
G schemes, as desired.
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The proof of this theorem will occupy the remainder of the section.
Our strategy will be to reduce this to a more abstract factorization

problem, arising from the case when X̂ = P1
T . Overall, the proof stategy

is roughly parallel to that followed in [HHKa], where retractions of open
subsets of affine space take the place of open subsets of affine space.

Definition 5.1.2
Suppose we have commutative rings F ⊂ F1, F2 ⊂ F0, and an algebraic
group G over F . We will say that factorization holds with respect
to G,F, F1, F2, F0 if for every g0 ∈ G(F0) there exist g1 ∈ G(F1) and
g2 ∈ G(F2) such that g0 = g1g2.

Note that here we are omitting from the notation the homomorphism
G(Fi) → G(F0) for i = 1, 2. We are particularly interested in this in the

following case. Suppose X̂ is a connected, normal, finite P1
T -scheme.

In this case, we set F = F (X̂), and we let

F1 =
∏

P∈S( bX)

FP , F2 =
∏

U∈U( bX)

FU , F0 =
∏

℘∈B( bX)

F℘

Remark 5.1.3
It follows immediately from the definitions that factorization holds for
the group G with respect to X̂ in the sense of Definition 4.1.1 if and only
if factorization holds for G,F, F1, F2, F0 in the sense of Definition 5.1.2
where F, F1, F2, F0 are as above.

Back to the somewhat more abstract setting, suppose that F is some
field, and let L/F be a finite algebra. Recall that if G is a linear
algebraic group scheme, we may define its Weil restriction, also referred
to as its corestriction or transfer, as the linear algebraic group with the
functor of points defined by:

RL/F G(R) = G(R⊗F L)

where R ranges through all F -algebras ([Gro62], Exp. 195, p. 13 for
the definition and Exp. 221, p. 19 for proof of existence). We note that
the corestriction in fact comes from a Weil restriction functor from
the category of quasi-projective L-schemes to the category of quasi-
projective F -schemes, and that this functor takes open inclusions to
open inclusions, and takes affine space to affine space (of a different
dimension). In particular, it follows that the corestriction of a rational
(or retract rational) variety is itself rational (resp. retract rational).

We note the following Lemma, which is an consequence of the defini-
tion of the corestriction in terms of the functor of points given above.
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Lemma 5.1.4
Let F be a field, and suppose we are given rings F ⊂ F1, F2 ⊂ F0, and
an finite algebra L/F . Let G be a linear algebraic group over L. Then
factorization holds for G,L, L ⊗F F1, L⊗F F2, L ⊗ F0 if and only if it
holds for RL/F G,F, F1, F2, F0.

Lemma 5.1.5
Suppose that we are given a morphism of connected projective normal
finite P1

T -schemes f : Ŷ → X̂. Let L be the function field of Ŷ and F

the function field of X̂. Then factorization holds for G, Ŷ if and only

if it holds for RL/F G, X̂.

Proof. This follows immediately from the universal property of the Weil
restriction, together with Lemma 3.4.1. �

Lemma 5.1.6
Let F be the function field of P1

T , which we consider as a P1
T -scheme

via the identity map. Suppose that for every connected retract rational
group G over F , factorization holds for G with respect to P1

T (as in

Definition 4.1.1). Then for every normal finite P1
T -scheme X̂ with

function field L, and every connected retract rational group H over L,

factorization holds for H with respect to X̂.

Proof. This follows immediately from Lemma 5.1.5. �

As a consequence of this, in order to prove Theorem 5.1.1, we may
restrict to the setting where F is the function field of P1

T , and where
F1 = F∞, F2 = FA1

k
, and where F0 = F℘ is the field associated to the

unique branch ℘ along A1
k at ∞. We let R̂0 = R̂℘,V = R̂∞,W =

R̂A1

k
. For convenience, in the sequel we will often refer to the following

hypothesis for factorization.

Hypothesis 5.1.7 see [HHKa], Hypothesis 2.4

We assume that the complete discrete valuation ring R̂0 contains a
subring T which is also a complete discrete valuation ring having uni-
formizer t, and that F1, F2 are subfields of F0 containing T . We fur-

ther assume that V ⊂ F1 ∩ R̂0, W ⊂ F2 ∩ R̂0 are t-adically complete

T -submodules satisfying V + W = R̂0.

Lemma 5.1.8
With respect to the scheme P1

T consider F = F (P1
T ), F0 = F℘, F1 = F∞,
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F2 = FA1

k
, R̂0 = R̂℘, V = R̂∞,W = R̂A1

k
. Then these rings and modules

satisfy the Hypothesis 5.1.7.

Proof. The completeness of V,W is satisfied by definition. The fact

that V + W = R̂0 follows from Lemma 3.4.4. �

5.2. Retractions – basic definitions and properties. Before at-
tacking the problem of factorization directly, it is necessary to collect
some facts concerning retractions and retract rational varieties.

Definition 5.2.1
We say that a variety Y is a retraction of a variety U if there exist
morphisms i : Y → U and p : U → Y such that pi = idY . We say that
it is a closed retraction if i is a closed embedding.

Remark 5.2.2
In the case of a closed retraction, we will occasionally abuse notation
by simply regarding i as an inclusion.

Lemma 5.2.3 Retractions are open
Suppose we are given topological spaces Y , U and continuous maps
i : Y → U and p : U → Y such that pi = idY . Then p is an open map
(i.e. for V ⊂ U open, p(U) is open).

Proof. This follows immediately from the fact that p(V ) = i−1(V ) and
the continuity of i. �

Definition 5.2.4
We say that Y is a rational retraction of U if there are rational
maps i : Y 99K U and p : U 99K Y such that pi = idY on some open
set on which pi is defined.

Definition 5.2.5
We say a variety Y is retract rational if it is a rational retraction
of An for some n.

Lemma 5.2.6 Rational retractions shrink to retractions
Suppose Y is a rational retraction of U via rational maps i, p. Then we
may find dense open subsets Y0 ⊂ Y and U0 ⊂ U such that i, p make
Y0 a retraction of U0.
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Proof. We may find open subsets Ỹ ⊂ Y and Ũ ⊂ U such that i, p
restrict to morphisms on these sets, i.e. we have:

Y //___ An //___ Y

Ỹ

OO
i

>>
~

~
~

~
~

~
~

~

Ũ

OO
p

>>
~

~
~

~
~

~
~

~

Ỹ

OO

We choose Y ′ = i−1p−1Ỹ ⊂ Ỹ . We note that pi is defined on Y ′ and
so by definition, we may find Y0 ⊂ Y ′ such that pi|Y0

= idY0
. Let

U = p−1(Y0). Then we have pi(Y0) ⊂ Y0 and so i(Y0) ⊂ p−1(Y0) =
U . Since p(U) ⊂ Y0 by definition, we have constructed the desired
morphisms. �

Lemma 5.2.7 Retractions shrink to closed retractions
Suppose Y is a retraction of U via morphisms i, p. Then we may find
dense open subvarieties Y0 ⊂ Y and U0 ⊂ U such that Y0 is a closed
retraction of U0 via the restrictions of i, p.

Proof. Since we may identify Y with the image of p it follows that Y
is locally constructible in U [EGA 4-1, p. 239 (Chevalley’s thm)]. By
[EGA 3-1, p. 12], it follows that Y is the intersection of a closed and
an open set in U . By setting U0 to be this open set, and Y0 = Y ∩U0 it
follows that Y0 is closed in U0. Now it is easy to see that the restrictions
of i, p exhibit Y0 as a retraction of U0. �

Corollary 5.2.8 Rational retractions shrink to closed retrac-
tions
Suppose Y is a rational retraction of U via rational maps i, p. Then we
may find dense open subsets Y0 ⊂ Y and U0 ⊂ U such that i, p make
Y0 a closed retraction of U0.

Proof. This follows immediately from Lemmas 5.2.6 and 5.2.7. �

The following lemma gives us a first hint that retractions inherit
some of the geometry of the larger spaces.

Lemma 5.2.9 Retractions of smooth schemes are smooth
Suppose Y is a retraction of a smooth scheme U . Then Y is smooth.

Proof. This follows from the formal criterion for smoothness (see for
example [Gro67] §17 or [Ill96] §2). From this formulation, in the lan-
guage of [Ill96], we must show that if S0 → S is a thickening, and
f : S0 → Y is a morphism, then we must be able to find a cover {Vi}
of S and morphisms gi : Vi → Y extending f |S0∩Vi

. To see this, we first
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use the smoothness of U to find g̃i : Vi → U extending i ◦ f |S0∩Vi
. Now

we set gi = p ◦ g̃i. We then have

gi|S0∩Vi
= p ◦ g̃i|S0∩Vi

= p ◦ i ◦ f |S0∩Vi

= f |S0∩Vi

as desired. �

Lemma 5.2.10 Standard position for retractions
Suppose Y is a smooth d-dimensional variety which is a closed retrac-
tion of an open subscheme U ⊂ An. We also suppose that with respect
to the inclusion of Y in An, that 0 ∈ Y . Then we may shrink U and
choose coordinates on U so that Y is the zero locus of polynomials
f1, . . . , fn−d with

fi = xi + Pi

where the xi’s are the coordinate functions on An and Pi is a polynomial
in the xj’s, each of whose terms is of degree at least 2.

Further, we may alter i and p defining the retraction so that the
morphism ip : U → Y → U is given by

(x1, . . . , xn) 7→ (M1 +Q1, . . . ,Mn +Qn)

where

Mi =

{
0 if 1 ≤ i ≤ n− d
xi if n− d < i ≤ n

and Qi is a rational function in the variables xi, regular on U , such

that ∂
∂xj
Qi

∣∣∣
0

= 0 for all i, j.

Proof. For purposes of skimmability, we have placed this proof at the
end of the section. �

5.3. Adic convergence of Taylor series. The basic strategy for fac-
torization will be to produce closer and closer approximations to a
particular factorization. In order to carry this out, it is necessary to
discuss notions of convergence and approximations in the adic setting,
paralleling the discussion of [HHKa], Section 2.

Suppose F0 is a field complete with respect to a discrete valuation
v with uniformizer t, and let |a| = e−v(a) be a corresponding norm.
Let A = F0[x1, . . . , xN ], m the maximal ideal at 0, Am the local ring

at 0 and Â = F0[[x1, . . . , xN ]] the complete local ring at 0. For I =
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(i1, . . . , iN) ∈ NN , we let |I| =
∑

j ij . Define for r ∈ R, r > 0

Âr =

{
∑

I

aIx
I

∣∣∣∣∣ lim
|I|→∞

|aI |r
|I| = 0

}

and for f =
∑
aIx

I ∈ Âr, we set

|f |r = sup
I

|aI |r
|I|.

We give An(F0) a norm via the supremum of the coordinates

|(a1, . . . , aN)| = max
i

{|ai|}

and we let D(a, r) be the closed disk of radius r about a ∈ An(F0)
with respect to the induced metric. We note that since the values of
the metric are discrete, this disk is in fact both open and closed in the
t-adic topology.

We note the following elementary lemma:

Lemma 5.3.1
Suppose a ∈ D(0, r), and f, g ∈ Âr. Then

(1) f + g, fg ∈ Âr,
(2) |f + g|r ≤ max{|f |r, |g|r},
(3) the group

{a ∈ Âr | |a|r < M} ⊂ Âr

is complete with respect to the filtered collection of subgroups

m
i ∩ Âr,

(4) |f |r is finite,
(5) |fg|r ≤ |f |r|g|r,
(6) if r′ < r, then |f |r′ ≤ max{|f(0)|, r

′

r
|f |r},

(7) f(a) is well defined (i.e. is a convergent series), and
(8) |f(a)| ≤ |f |r, and if f(0) = 0 then |f(a)| ≤ |f |r|a|r

−1.

Lemma 5.3.2
Suppose f ∈ Am. Then for all ε ≥ |f(0)| with ε > 0, there exists r > 0

such that f ∈ Âr and |f |r < ε. Further, for any δ > 0 we may choose
r < δ.

Proof. Write f = g/h, g, h ∈ A with h 6∈ m. Since A/m is a field, we

may find h′ ∈ A with hh′ − 1 = −b ∈ m. Therefore, in Â, we have
f = gh′(

∑
bi). Since g, h′, b are polynomials, they are in Ar for any r.

Further, by Lemma 5.3.1(6), we may reduce r so that |gh′|r ≤ |f(0)|,
and since b(0) = 0, we may also ensure |b|r < 1. In doing this, note
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that we may also ensure that r < δ. We note that by Lemma 5.3.1(5),
|bi|r < 1. Now, by Lemma 5.3.1(3), it follows that |

∑
bi|r < 1. But

therefore |f |r = |gh′
∑
bi|r < ε as desired. �

Lemma 5.3.3
The t-adic topology on AN(F0) is finer than the Zariski topology.

Proof. It suffices to show that if p ∈ AN(F0) and f is a polynomial not
vanishing on p, we may find a disk about p on which f is nonvanishing.
Without loss of generality, we may apply a translation and assume
that p = 0. Let g = f − f(0). By Lemma 5.3.2, since g(0) = 0,

we may find an r > 0 such that f ∈ Âr and such that |g|r < |f(0)|
(using ε = |f(0)|). In particular, if a ∈ AN(F0) with |a| < r, we have
|g(a)| ≤ |g|r < |f(0)| by Lemma 5.3.1(8). Therefore, for such an a,
f(a) = g(a) + f(0) 6= 0. Therefore f does not vanish on a disk of
radius r about the origin as desired. �

Proposition 5.3.4 Linear approximations and error term
Suppose f ∈ Âr for r ≤ 1. Write

f = c0 + L+ P where P (~x) =
∑

|ν|≥2

cνx
ν ,

where L is a linear form with coefficients in F0 and all cν ∈ F0. Suppose
|L + P |r ≤ 1. Let 0 < ε ≤ |t|r2, and suppose a, h ∈ AN (F0) with
|h|, |a| ≤ ε. Then

|f(a+ h) − f(a) − L(h)| ≤ |t||h|

.

Proof. This proof is a very slight modification of Lemma 2.2 in [HHKa].
Choose a real number s so that we may write |h| = ε|t|s. We may
rearrange the quantity of interest as:

f(a+ h) − f(a) − L(h) =
∑

|ν|≥2

cν ((a+ h)ν − aν) .

Since the absolute value is nonarchimedean, it suffices to show that for
every term m = cνx

ν with |ν| ≥ 2 we have

|m(a + h) −m(a)| ≤ ε|t|s+1.

For a given ν with |ν| ≥ 2, consider the expression (x + x′)ν − xν ,
regarded as a homogeneous element of degree j = |ν| in the polyno-
mial ring F0[x1, . . . , xN , x

′
1, . . . , x

′
N ]. Since the terms of degree j in

x1, . . . , xN cancel, the result is a sum of terms of the form λℓ where λ
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is an integer and ℓ is a monomial in the variables x, x′ with total degree
d in x1, . . . , xN and total degree d′ in x′1, . . . , x

′
N , such that d + d′ = j

and d < j. Hence d′ ≥ 1. Consequently, for each term of this form,

|λℓ(a, h)| ≤ |ℓ(a, h)| ≤ εd(ε|t|s)d
′

= εj|t|sd
′

≤ εj|t|s.

Since (a + h)ν − aν is a sum of such terms, and the norm is nonar-
chimedean, we conclude |(a+ h)ν − aν | ≤ εj|t|s.

Since m = cνx
ν , it follows that

|m(a+ h) −m(a)| ≤ |cν |ε
j|t|s ≤ r−jεj|t|s.

Now ε ≤ |t|r2, so εj−1 ≤ |t|j−1r2j−2. Since |t| < 1, r ≤ 1, and j ≥ 2,
we have

εj−1 ≤ |t|j−1rj+j−2 ≤ |t|rj.

Rearranging this gives the inequality (ε/r)j ≤ ε|t| and so (ε/r)j|t|s ≤
ε|t|s+1. Therefore

|m(a + h) −m(a)| ≤ r−jεj|t|s ≤ ε|t|s+1 = |t||h|,

as desired.
�

Lemma 5.3.5 Local bijectivity
Suppose f : U → V is a morphism between Zariski open subschemes
of Ad

F0
containing the origins and such that f(0) = 0. Suppose further,

that after writing the coordinates of f as elements of Â, we have f =
(f1, . . . , fd) with fi = xi + Qi and Qi consisting of terms of degree
higher than 2. Then we may find t-adic neighborhoods U ′ ⊂ U(F0) and
V ′ ⊂ V (F0) of 0 such that f maps U ′ bijectively onto V ′. Further, we
may assume that U ′ and V ′ are disks about the origin of equal radii.

Proof. By Lemma 5.3.2, since f(0) = 0, we may find 0 < r ≤ 1 such

that f ∈ Âr and |f |r ≤ 1. Choose ε ≤ |t|r2 as in the statement of
Proposition 5.3.4 and such that D0(ε) ⊂ V (F0) and D0(ε) ⊂ U(F0).
Let V ′ = D0(ε) ⊂ V (F0) and U ′ = D0(ε) ⊂ V (F0). We claim that
for b ∈ U ′, we have |f(b)| ≤ ε and so f(b) ∈ V ′. To see this, we note

that Qi ∈ Âr and |Qi|r ≤ 1, and hence we may apply Proposition 5.3.4
(with 0 linear and constant term) to see that |Qi(b)| ≤ |t||b| < |b| =
max{|bi|}. By the nonarchimedean property, this gives

|f(b)| = max{|fi(b)|} = max{|bi +Qi(b)|} ≤ max{|bi|, |Qi(b)|}

= max{|bj |} = |b|

We consider first surjectivity. Note that both U ′ and V ′ are both
closed and open. Since they are closed in a complete metric space,
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they contain all limits of their Cauchy sequences. Let a ∈ V ′, and
let b0 = 0. We will inductively construct elements bi ∈ U ′ such that
|f(bi) − a| ≤ ε|t|i. In particular, since |a| ≤ ε, we have |f(b0) − a| =
|a| ≤ ε. Assuming we have constructed bi−1, we let h = a − f(bi−1),
and note |h| ≤ ε|t|i−1 by hypothesis, and |bi−1| ≤ ε since bi−1 ∈ U ′.
Therefore, by Proposition 5.3.4, we have

|f(bi−1 + h) − f(bi−1) − h| ≤ |t||h| ≤ ε|t|i

and so setting bi = bi−1 +h, we find that since f(bi−1)+h = a, we have

|f(bi) − a| = |f(bi−1 + h) − a|

= |f(bi−1 + h) − f(bi−1) − h + f(bi−1) + h− a|

=
∣∣(f(bi−1 + h) − f(bi−1) − h

)
+ f(bi−1) − a+ a− f(bi−1)

∣∣

= |f(bi−1 + h) − f(bi−1) − h| ≤ |t||h| ≤ ε|t|i

as desired. Since bi is a Cauchy sequence, using the completeness of
U ′, we may set b = lim bi ∈ U ′ and we find by continuity that f(b) = a
as desired.

Next, we consider injectivity. Suppose a, b ∈ U ′, let h = b − a and
suppose h 6= 0. We need to show that f(a) 6= f(b). Since the valuation
is nonarchimedean we have a, h ≤ ε. Let E = f(a+h)−f(a)−h. Then
we find |E| ≤ |h||t| by Proposition 5.3.4. But this means in particular
that |E+h| = |h| by the nonarchimedean triangle inequality. Therefore

|f(b) − f(a)| = |f(a+ h) − f(a)| = |E + h| = |h| 6= 0

so f(b) 6= f(a) as desired. �

Lemma 5.3.6
Suppose that Y is a closed retraction of an open subscheme U ⊂ An

in the standard form of Lemma 5.2.10 with respect to morphisms i, p.
Then we may find a t-adic neighborhood V ′ of 0 ∈ Y (regarding Y as
a subscheme of U via i) such that the composition V ′ → An(F0) →
Ad(F0) is bijective onto a t-adic disk, where the last map is given by
projection onto the last d coordinates.

Proof. As in Lemma 5.2.10, we suppose that Y is the zero locus of
polynomials f1, . . . , fn−d with

fi = xi + Pi

where Pi is a polynomial in the xj ’s of degree at least 2. Using

Lemma 5.3.2, we may choose 0 < r ≤ 1 such that fi ∈ Âr and |fi|r ≤ 1
for each of the finitely many functions fi. Choose ε ≤ |t|r2 as in Propo-
sition 5.3.4. Let U ′ ∈ An(F0) be the disk about the origin of radius ε,
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and let V ′ be the intersection of the inverse image of U ′ in Y (F0) with
the disk of radius ε in An(F0). Let g : V ′ → U ′ be the composition
map in the statement.

First, suppose a, b ∈ V ′ with a 6= b, and let h = b−a. If g(a) = g(b),
then by definition of g, the last d coordinates of a and b must match.
Since a 6= b, we therefore know that xi(h) 6= 0 for some i = 1, . . . , n−d
where xi is the i’th coordinate function on Ad. We may therefore choose
i such that |xi(h)| has the largest possible value, and in particular,
we then would have |xi(h)| = |h|. But, estimating |fi(b) − fi(a)| =
|fi(a+ h) − fi(a)| using Proposition 5.3.4, we find

|fi(a+ h) − fi(a) − xi(h)| ≤ |t||h|.

We claim that |fi(a + h) − fi(a)| ≥ |h| and in particular that fi(a) 6=
fi(b). To see this must hold, assume by contradiction that |fi(a+ h)−
fi(a)| < |h|. In this case, we have

|fi(a+ h) − fi(a) − xi(h)| = |xi(h)|

since |xi(h)| = |h|. But therefore we have |h| ≤ |t||h| which is a
contradiction since |t| < 1. Therefore, fi(b) 6= fi(a) as claimed, forcing
g to be injective.

For surjectivity, consider a ∈ U ′, and consider its image b ∈ Ad.
Using the form for the retraction in Lemma 5.2.10, we may apply
Lemma 5.3.5 to the composition (shrinking ε if necessary)

Ad ∩ U // U
p // Y //

g

((
U //

Ad

By Lemma 5.3.5, we may find an inverse image b′ of b in Ad of norm
less than ε. Consequently, by definition, the image of b′ in Y must
actually live in V ′, and this is an inverse image for a as desired. �

Corollary 5.3.7
In the notation of the previous lemma, we may choose t-adic neigh-
borhoods of the origin U ′ ∈ Ad and V ′ ∈ Y such that the compo-
sition U ′ → U → Y takes U ′ bijectively to V ′ and the composition
V ′ → Y → U → An → Ad takes V ′ bijectively to U ′.

Proof. By Proposition 5.2.10 and Lemma 5.3.5, we may find U ′ ⊂ Ad,
V ′ ⊂ Y so that the composition U ′ → V ′ → U ′ is bijective. By
Lemma 5.3.6, we may find V ′′ ⊂ V ′ such that V ′′ → U ′ in bijective
onto a t-adic disk U ′′ ⊂ U ′. But now again the composition U ′′ → U ′′

is bijective, and since V ′′ → U ′′ is also bijective, we find U ′′ → V ′′ is
bijective as well. �
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5.4. Factorization.

Theorem 5.4.1
Under Hypothesis 5.1.7, let f : Ad

F0
× Ad

F0
99K Ad

F0
be an F0-rational

map that is defined on a Zariski open set U ⊆ Ad
F0

× Ad
F0

containing
the origin (0, 0). Suppose further that we may write:

f = (f1, . . . , fd), fi ∈ k̂[x1, y1 . . . , xd, yd]m

where fi = xi + yi +
∑

|(ν,ρ)|≥2

cν,ρ,ix
νyρ.

Then there is a real number ε > 0 such that for all a ∈ Ad(F0) with
|a| ≤ ε, there exist v ∈ Vd and w ∈ Wd such that (v, w) ∈ U(F0) and
f(v, w) = a.

Proof. The proof of this theorem is exactly as in [HHKa], Theorem 2.5,
wherein in the first paragraph, the problem is reduced to exactly the
hypotheses which we assume. �

Theorem 5.4.2
Under Hypothesis 5.1.7, let m : Y × Y → Y be a rational F -morphism
defined at (0, 0), and suppose that m(y, 0) = y = m(0, y) where it is
defined. Suppose that Y is a closed retraction of an open subscheme of
An. Then there exists ε > 0 such that for y ∈ Y (F0) ⊂ An(F0), |y| ≤ ε,
there exist yi ∈ Y (Fi), i = 1, 2 such that y = m(y1, y2).

Proof. We consider as in Corollary 5.3.7, t-adic neighborhoods of 0
U ′ ⊂ Ad(F0) and V ′ ⊂ Y (F0) such that we have bijections U ′ → V ′

and V ′ → U ′ defined by algebraic rational morphisms p′ : Ad
99K Y

and i′ : Y 99K Ad. We consider

V ′ × V ′
m|V ′×V ′

// V ′

i′

��
U ′ × U ′

p′

OO

// U ′

By hypothesis, the composition in the bottom U ′ × U ′ → U ′ is given
as the restriction of an algebraic rational morphism µ : Ad×Ad → Ad.
By Corollary 5.3.7, it is sufficient to show that µ is surjective when
restricted to a sufficiently small t-adic neighborhood.

We first shrink V ′, U ′ if necessary to make them contained in Zariski
neighborhoods V, U as in Lemma 5.2.10. Now, we note that the rational
map µ|Ad×{0} is just ip, since m|Y×{0} = idY . By Lemma 5.2.10, we find

m|Ad×{0}(x1, . . . , xd) = (x1 +Q1, . . . , xd +Qd)
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where Qi is a rational function in the variables xi, regular on U , such

that ∂
∂xj
Qi

∣∣∣
0

= 0 for all i, j. But now we are done, using Theorem 5.4.1.

�

Theorem 5.4.3 Factorization for retract rational groups
Under Hypothesis 5.1.7, assume that F = F (P1

T ), F1 = FA1

k
, F2 = F∞,

and F0 = F℘, where ℘ is the unique branch at ∞. Let G be a retract
rational connected linear algebraic group defined over F . Then for any
g0 ∈ G(F0) there exist gi ∈ G(Fi), i = 1, 2, such that g1g2 = g0

— that is to say, factorization holds for G with respect to P1
T (see

Definition 4.1.1).

Proof. Using Lemma 5.2.7, we may find an open subscheme Y ⊂ G
which is a retraction of an open subscheme U of affine space. In partic-
ular, Y must contain an F -rational point y ∈ Y (F ), and after replacing
Y by y−1Y if necessary, we may assume Y contains the identity ele-
ment of G. Using 5.4.2, where m is the multiplication map, we find
that there exists ε > 0 such that factorization holds for g0 ∈ G(F0)
provided that |g0| < ε. Fix such an epsilon, and suppose g0 ∈ G(F0)
is an arbitrary element. Since G is retract rational, it follows that
G(F ) is Zariski dense in G(F0). Therefore, we have the existence of
an element g′ ∈ G(F ) such that g′−1g0 ∈ Y . Since Y is a retrac-
tion of affine space, it follows that Y (F2) is t-adically dense in Y (F0).
Therefore we may find g′′ ∈ Y (F2) such that |g′−1g0g

′′−1| < ε. Writing
g′−1g0g

′′−1 = g1g2 where gi ∈ G(Fi), we conclude that g0 = (g′g1)(g2g
′′).

Since g′g1 ∈ G(F1) and g2g
′′ ∈ G(F2), we are done. �

By Lemma 5.1.5 and the comments just following, we conclude that
Theorem 5.1.1 holds.

5.5. Proof of Lemma 5.2.10.

Lemma 5.5.1
Suppose f = g/h for g, h ∈ k[x1, . . . , xn] with h(0) 6= 0, g(0) = 0 and
(∂f/∂xi)|0 = 0 for all i. Then if R is a k-algebra with h(0) ∈ R∗ and
containing and element ǫ ∈ R, ǫ2 = 0 then f(ǫv) = 0 for v ∈ kn.

Proof. Since g(0) = 0, we may write g = L + Q where L is a linear
polynomial, and Q is a sum of homogeneous terms of degree at least 2.
Now we simply note that

∂f

∂xi
=
h(∂L/∂xi + ∂Q/∂xi) − (L+Q)(∂h/∂xi)

h2
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and in particular since h(0) 6= 0, we find (∂f/∂xi)|0 = 0 implies that
h(0)(∂L/∂xi(0)) = 0, which implies that all the coefficients of the linear
form L are 0 and so L = 0. Since h(0) 6= 0, it follows that h(ǫv) is
a unit, and we therefore may note that f(ǫv) = Q(ǫv)/h(ǫv) is well
defined and ǫ2 = 0 implies Q(ǫv) = 0, showing that f(ǫv) = 0 as
desired. �

We now proceed with the proof of Lemma 5.2.10. To begin, choose
f1, . . . , fr which are regular on a neighborhood of 0 ∈ U and which cut
out Y . Writing fi = gi/hi, for gi and hi with no common factors, we
see that since the hi don’t vanish at 0, after shrinking U so that the hi
don’t vanish on U , we may ensure that the hi are units, and hence Y
is cut out by the gi. Therefore we may assume (after replacing fi by gi
and shrinking U), that the fi are polynomials. Next, we write

fi = Li + Pi

where Li is a linear polynomial and Pi has degree at least 2. Note
that fi has no constant term since it must vanish at 0. Since Y is
smooth of dimension d, by the Jacobian criterion, the Li’s (which we
may identify with the gradient of fi at 0), span a n − d dimensional
space. After relabelling, we may assume that L1, . . . , Ln−d give a basis

for this space. Let Ỹ be the zero locus of f1, . . . , fn−d. Since Y ⊂ Ỹ we

have the codimension of Ỹ at 0, codim0(Ỹ ) ≤ codim(Y ) = n − d. By

construction, the Jacobian matrix of the defining equations for Ỹ at 0

has rank n − d, and so by [Eis95], page 402, n − d ≤ codim(Ỹ ). But
then

n− d 6= codim0(Ỹ ) ≤ codim(Y ) = n− d

so codim0(Ỹ ) = n− d and also by the Jacobian criterion, we conclude

that Ỹ is smooth at 0. We may therefore, after shrinking U assume

that Ỹ is smooth, irreducible, and of the same dimension as Y . But

Y ⊂ Ỹ therefore implies Y = Ỹ , and in particular we may assume
r = n− d, and the Li are independent.

After choosing a new basis for An, it is clear that we may assume
Li = xi while preserving our hypotheses.

Finally, consider the morphism γ = ip : U → U (where i and p are as
in the definition of the retraction), and write γ(~x) = (γ1(~x), . . . , γn(~x)),
where each γi is a regular function on U . Since γi(0) = 0, we may write
γi = Mi +Qi for the linear function

Mi =
∑ ∂

∂xi
γi

∣∣∣∣
~x=0

xi
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and have all the partial derivatives of the Qi vanishing. Let T =
Spec k[ǫ]/(ǫ2), and consider a T-valued point τ : T → U given by
~aǫ = (a1ǫ, . . . , anǫ) ∈ An(k[ǫ]/(ǫ2)). We note that τ maps T into Y if
and only if fi(~aǫ) = 0 for each i. But we have

fi(~aǫ) = Li(~aǫ) = ǫLi(~a).

In particular, this occurs exactly when ai = 0 for 1 ≤ i ≤ n− d. Since
γ(~aǫ) ∈ Y , we therefore haveMi = 0 for 1 ≤ i ≤ n−d. Since γ|Y = idY ,
looking on T-valued points of Y under γ, we find Mi = M ′

i + xi for
n− d < i ≤ n where M ′

i is a linear function of x1, . . . , xn−d. Consider
the linear function An → An given by

φ : (x1, . . . xn) 7→ (y1, . . . , yn)

where

yi =

{
xi if 1 ≤ i ≤ n− d

xi −Mi n− d < i ≤ n

Define rational maps i′ = i ◦ φ : Y 99K An and p′ = φ−1 ◦ p : An
99K Y .

We then have p′ ◦ i′ = φ−1piφ = idY as rational maps, and therefore
define a rational retraction. By Lemma 5.2.7 we may shrink U and Y
to make this a closed retraction. Note also that i′p′ = ip = γ.

As before, let τ : T → U be given by~aǫ = (a1ǫ, . . . , anǫ) ∈ An(k[ǫ]/(ǫ2)),
where ~a ∈ An(k). We consider the morphism i′p′ : U → Y → U , which
we write as

(x1, . . . , xn) 7→ (M ′
1 +Q′

1, . . . ,M
′
n +Q′

n)

withM ′
i linear and the first derivatives of the Q′

i vanishing at the origin.
Computing using Lemma 5.5.1 applied to functions Q′

i, we then find

i′p′(τ) = ǫ(M ′
1(~a), . . . ,M

′
n(~a))

and also, using the linearity of φ and the fact that i′p′ = ip = γ =
M +Q,

i′p′(τ) = ǫφ−1(M1(φ(~a), . . . ,Mn(φ(~a)))

= ǫ(0, . . . , 0, an−d+1, . . . , an),

and so

M ′
i =

{
0 if 1 ≤ i ≤ n− d
xi if n− d < i ≤ n

Therefore, upon replacing p, i by p′, i′, we obtain the desired conclusion.
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traits du Séminaire Bourbaki, 1957–1962.]. Secrétariat mathématique,
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