ESSENTIAL DIMENSION OF CENTRAL SIMPLE ALGEBRAS
SANGHOON BAEK AND ALEXANDER S. MERKURJEV

ABSTRACT. Let p be a prime integer, 1 < s < r integers and F' a field
of characteristic different from p. We find upper and lower bounds for the
essential p-dimension ed,(Alg, ,.) of the class Alg,. .. of central simple
algebras of degree p” and exponent dividing p®. In particular, we show that
edy(Algg ) = 8 and ed,(Alg,2 ) = p® + p for p odd.

1. INTRODUCTION

Let F : Fields/F — Sets be a functor from the category Fields/F of field
extensions over F' to the category Sets of sets. Let E' € Fields/F and K C FE a
subfield over F'. An element o € F(F) is said to be defined over K (and K is
called a field of definition of «) if there exists an element § € F(K) such that
« is the image of § under the map F(K) — F(F). The essential dimension
of a, denoted ed” (a), is the least transcendence degree tr.degu(K) over all
fields of definition K of a. The essential dimension of the functor F is

ed(F) = sup{edf(a)},

where the supremum is taken over all fields £ € Fields/F and all « € F(F)
(see [B, Def. 1.2] or [B, Sec.1]). Informally, the essential dimension of F is the
smallest number of algebraically independent parameters required to define F
and may be thought of as a measure of complexity of F.

Let p be a prime integer. The essential p-dimension of «, denoted edf(a), is

defined as the minimum of ed” (ag/), where E’ ranges over all field extensions
of E of degree prime to p. The essential p-dimension of F is

ed,(F) = sup{ed; (a)},

where the supremum ranges over all fields F € Fields/F and all a € F(FE).
By definition, ed(F) > ed,(F) for all p.

For every integer n > 1, a divisor m of n and any field extension E/F, let
Alg, ..(E) denote the set of isomorphism classes of central simple E-algebras
of degree n and exponent dividing m. Equivalently, Alg,, ,,,(E) is the subset of
the m-torsion part Br,,(E) of the Brauer group of F consisting of all elements a
such that ind(a) divides n. In particular, if n = m, then Alg,,(E) := Alg,, ,,(E)
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is the set of isomorphism classes of central simple E-algebras of degree n. We
view Alg,, ., and Alg,, as functors Fields/F — Sets.

In the present paper we give upper and lower bounds for ed,(Alg,,,) for
a prime integer p. Let p" (respectively, p®) be the largest power of p divid-
ing n (respectively, m). Then ed,(Alg, ) = ed,(Alg, ,s) and ed,(Alg,) =
ed,(Alg,-) (see Section [f). Thus, we may assume that n and m are the p-
powers p" and p® respectively.

Using structure theorems on central simple algebras, we can compute the
essential (p)-dimension of Alg,. . for certain small values of 7, s or p as fol-
lows. As every central simple algebra A of degree p is cyclic over a finite field
extension of degree prime to p, A can be given by two parameters (see Section
B.1). In fact, ed,(Alg,) = 2 by [[3, Lemma 8.5.7].

By Albert’s theorem, every algebra in Alg, » is biquaternion and hence can
be given by 4 parameters. In fact, ed(Algs2) = ed2(Algs ) = 4 (see Remark
82).

The upper and lower bounds for ed,(Alg,.) can be found in [[3] and [I{]
respectively. In this paper (see Sections fj and []), we establish the following
upper and lower bounds for ed,(Algyr ps):

Theorem. Let F' be a field and p a prime integer different from char(F').
Then, for any integers r > 2 and s with 1 < s <r,

—1)2r-1 ifp=2ands=1
227’—2_ Tt > ed (Alg, ) > (T )
b prp = edy(Algyr ) 2 {(r— 1)p" +p"* otherwise.
Corollary. (cf. [H]) Let p be a prime integer and F a field of characteristic
different from p. Then

ed,(Alg,2) = p* + 1.

Corollary. Let p be an odd prime integer and F a field of characteristic
different from p. Then

ed,(Algp2 p) = P’ +p.
The corollary recovers a result in [BT] that for p odd, there exists a central
simple algebra of degree p? and exponent p which is not decomposable as a
tensor product of two algebras of degree p. Indeed, if every central simple

algebra of degree p? and exponent p is decomposable, then the essential p-
dimension of Alg,z , would be at most 4.

Corollary. Let F' be a field of characteristic different from 2. Then
edy(Algs ) = ed(Algs,) = 8.

The proof is given in Section §. The corollary recovers a result in [] that
there is a central simple algebra of degree 8 and exponent 2 which is not
decomposable as a tensor product of three quaternion algebras. Indeed, if
every central simple algebra of degree 8 and exponent 2 is decomposable, then
the essential 2-dimension of Algg» would be at most 6.
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2. CHARACTER, BRAUER GROUP AND ALGEBRAIC TORI

2.1. Character and Brauer group. Let F' be a field, Fi, a separable closure
of F, I'r = Gal(Fyp/F). For a (discrete) I'p- module M, we write H"(F, M)
for the Galois cohomology group H™"(I'p, M).

If S is an algebraic group over F, we let H'(F, S) denote the set H'(I'r, S(Fiep))
(see [19]).

The character group of F' is defined by

Ch(F) := Homeont (I'r, Q/Z) = HY(F,Q/Z) ~ H*(F, 7).

The n-torsion character group Ch,(F) is identified with H'(F,Z/nZ). For a
character y € Ch(F), set F(x) = (Fup)¥™. The field extension F(x)/F is
cyclic of degree ord(x). If ¥ C Ch(F) is a finite subgroup, we set

F(0) i= (Fuep) ™7,

where the intersection is taken over all x € W. The Galois group G =
Gal(F(¥)/F) is abelian and VU is canonically isomorphic to the character
group Hom(G,Q/Z) of G. Note that a character n € Ch(F) is trivial over
F(W) if and only if n € V.

We write Br(F') for the Brauer group H?(F, Fy5,) of F. If L/F is a field
extension and o € Br(F), we let o denote the image of o under the natural
map Br(F) — Br(L). We say that L is a splitting field of « if a, = 0. The
index ind(«) of « is the smallest degree of a splitting field of a. The exponent
exp(«) is the order of v in Br(F'). The integer exp(«) divides ind(«).

Let A be a central simple F-algebra. The degree of A in the square root of
dim(A). We write [A] for the class of A in Br(F'). The index of [A] divides
deg(A). If a € Br(F') and n is a positive multiple of ind(«), then there is a
central simple F-algebra A of degree n with [A] = a.

The cup-product

Ch(F)® F* = H*(F,Z) @ H°(F, F*

sep

) — H?*(F,F}

sep) = BI‘(F)
takes x®b to the class xU(b) in Br(F) that is split by F'(x). A class a € Br(F)
is called n-cyclic if a = x U (b) for a character y with nxy = 0. Such classes
belong to Br, (F). If n is prime to char(F), then Br,(F) ~ H*(F, j,), where
[ty is the I'p-module of all n-th roots of unity in Fip.

Let n be prime to char(F) and suppose that F' contains a primitive n-th
root of unity £. For any a € F*, let x, € Ch(F') be a unique character with

values in 17/7 C Q/Z such that

for all v € Gal(Fip/F). We write (a,b), for x, U (b). The symbol (a,b),
satisfies the following properties (see [[7, Chap. XIV, Prop.4]):

(a'a b)n + (a’, b)n = (aa'la b)n7

(a'a b)n = _(ba a’)na

(a,—a), = 0.
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For a finite subgroup ® C Ch(F') write Br(F((ID)/F)deC for the subgroup of
decomposable elements in Br(F(®)/F) generated by the elements xU(a) for all
x € ® and a € F*. The indecomposable relative Brauer group Br(F(@)/F) d
is the factor group Br(F(®)/F)/Br (F((I))/F)dec. Similarly, if ® C Ch,,(F) for
some n, then Br,,(F(®)/F) g 18 the indecomposable n-torsion relative Brauer

group defined as the factor group Br, (F(®)/F)/Br (F((I))/F)dec.

Let E be a complete field with respect to a discrete valuation v and K
its residue field. Let p be a prime integer different from char(K’). There is
a natural injective homomorphism Ch(K){p} — Ch(E){p} of the p-primary
components of the character groups that identifies Ch(K){p} with the charac-
ter group of an unramified field extension of E. For a character x € Ch(K){p},
we write X for the corresponding character in Ch(F){p}.

By [, §7.9], there is an exact sequence

0 — Br(K){p} > Br(E){p} 2 Ch(K){p} — 0.

If @ € Br(K){p}, then we write & for the element i(«) in Br(E){p}. For
example, if o = x U (a) for some x € Ch(K){p} and a unit u € E, then
a =Y U (u). In the case F' contains a primitive n-th root of unity, where n is
a power of p, if & = (@, b),, with @ and b units in E, then a = (a, b),,.

If 8 =a+ (YU (z)) for an element o € Br(K){p}, x € Ch(K){p} and
x € E* such that v(x) is not divisible by p, we have (cf. [[9, Prop. 2.4])

(1) ind(8) = ind (o) - ord(x).

2.2. Representations of algebraic tori. Let T' be an algebraic torus over
a field F', L/F a finite Galois splitting field for 7" with Galois group G.
The group G is called the decomposition group of T. The character group
T* := Homp (77, Gy, 1) has the structure of a G-module. The torus 7" can be
reconstructed from 7™ by

T = Spec(L[T*]%).

A torus P over F split by L is called quasi-split if P* is a permutation G-
module, i.e., if there exists a G-invariant Z-basis X for P*. The torus P
is canonically isomorphic to the group of invertible elements of the étale F-
algebra A = Map. (X, L). The torus P acts linearly by multiplication on the
vector space A over F' making A a faithful P-space (a linear representation
of P) of dimension dim(P). It follows that a homomorphism of algebraic tori
v:T — P with P a quasi-split torus yields a linear representation of T" of
dimension dim(P) that is faithful if v is injective.

Let P be a split torus over I, and P* its character group. As above, the
choice of a Z-basis X for P* allows us to identify P with the group of invertible
elements of a split étale F-algebra A and make A a faithful P-space over F'.
Let v : T' — P be a homomorphism of split tori over F'. Suppose a finite
group G acts on T" and P by tori automorphisms so that v is a G-equivariant
homomorphism. Then the map v* : P* — T™ is a G-module homomorphism.
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Suppose that there is a G-invariant Z-basis X for P*, i.e., P* is permutation.
Then G acts on the algebra A by F-algebra automorphisms. The torus T acts
linearly on A via v. It follows that the semidirect product 7' x G acts linearly
on A making A a T x G-space.

Let L be a Galois G-algebra over F' (for example, L/F is a Galois field
extension with Galois group G). Then 7 : Spec L — Spec F is a G-torsor.
Twisting the split torus T" by the torsor v, we get the torus

T, = (T x Spec L) /G = Spec(L[T*]%)
that is split by L and T is isomorphic to 7™ as G-modules.

By [, Prop. 28.11], the fiber of H*(F, T x G) — H'(F,G) over the class of
7 is naturally bijective to the orbit set of the group G, (F) in H'(F,T,), i.e.,

2) HY(F,T % G) ~ [[ H'(F.T,) /G, (F),
where the coproduct is taken over all [y] € H'(F, Q).

2.3. Generic torsors. Let T" be an algebraic torus split by a finite Galois
field extension L/F with G = Gal(L/F). Let P be a quasi-split torus split
by L and containing T as a subgroup. Set S = P/T. Then the canonical
homomorphism v : P — S is a T-torsor.

Proposition 2.1. The T-torsor v is generic, i.e., for every field extension
K/F with K infinite, every T-torsor v : E — Spec K and every nonempty
open subset W C S, there is a morphism s : Spec K — S over F' with Im(s) C
W such that the T-torsors ' and s*(v) = v xgSpec K over K are isomorphic.

Proof. As P is quasi-split, the last term in the exact sequence
P(K) 25 S(K) % HY(K,T) — H'(K, P)

is trivial. Then there is s € S(K) with d(s) = [y/]. As K is infinite, the
K-points of P are dense in P and we can modify s by an element in the image
of vk so that s € W(K), i.e., Im(s) C W. Then the T-torsor 7' over K with
the class 0(s) satisfies the required property. O

2.4. The algebraic tori P?, S®, T®, U® and V®. Let 1 < s < r be integers,
p a prime integer, F' a field with char(F') # p, ® a subgroup of Ch,(F) of rank r
and L = F'(®). Let G = Gal(L/F). Choose a basis x1, X2, - - -, X, for . Each
X: can be viewed as a character of G, i.e., as a homomorphism y; : G — Q/Z.

Let 01,09,...,0, be the dual basis for G, i.e.,
_J A/p)+2Z, ifi=j;
Xi(o7) = { 0, otherwise.

Let R be the group ring Z[G]. Consider the surjective G-modules homomor-
phism € : R — Z/p°Z, defined by &(x) = () + p°Z, where € : R — Z is the
augmentation homomorphism given by e(p) = 1 for all p € G. Set J := Ker(é),
thus, we have an exact sequence

0—J—R> Z/p°Z — 0.
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Moreover, the G-module J is generated by I and p°, where I := Ker(¢) is the
augmentation ideal in R.

Consider the G-module homomorphism % : R"*! — R taking the i-th canon-
ical basis element e; to o; — 1 for 1 < i < r and e, to p°. The image of h
coincides with J.

Set N := Ker(h) and write w; =1 +0; + 024 ---4+0"' € Rfor 1 <i <.
Consider the following elements in V:

eij = (0i —1)ej — (05 — Dei,  fi =wie;, and g = —p°e; + (00 — 1),
forall 1 <i4,5 <r.
Lemma 2.2. The G-module N is generated by e;;, fi and g;.

Proof. Consider the surjective morphism k : R" — [ taking e; to o0; — 1 and
set N’ := Ker(k). Then we have the following commutative diagram

N'c R —r 7

|

NC—> RT’+1 L>>J

bk

Ic R—>17

where R"*1 — R is the projection morphism to the last coordinate and &’ :
J — Zis given by €'(j) = (j)/p°.

By the exactness of the first column of the diagram, N is generated by N’
and the liftings g; of o; — 1 in N. The module N’ is generated by e;; and f;
by [0, Lemma 3.5]. This completes the proof. U

Let g; : R™' — Z be the i-th projection followed by the augmentation map
e. It follows from Lemma P.2 that ¢;(N) = pZ for every i = 1, ..., r. Moreover,
the G-homomorphism

qg:N—-7", x+— (61(37)/177 e ,5r(x)/p)

is surjective. Set M := Ker(q) and Q := R"™"' /M.

Let P®, S, T® U® and V?® be the algebraic tori over I with the character
G-modules R™', Q, M, J and N, respectively. The diagram of homomor-
phisms of G-modules with the exact columns and rows

(3) M=——M

|

N(—> RTJrl L»J

R

7' Q J
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yields the following diagram of homomorphisms of the tori

(4) T® —— T
Ve ~— pt [

L L]

(e S e

Let K/F be a field extension and set KL := K ®p L. The commutative
diagram

0 I R Z —— 0
0 J R 7/p°7 —— 0
induces the commutative diagram of homomorphisms of algebraic groups
I —— pps —— Rpp(Gpr) U 1
® | | |

1 — Gm — RL/F(Gm,L) U/(I> 1
and then the commutative diagram
0 —— HYK,U®) —— H*(K,p,s) —— H*KL,G,,)
© | | H
0 — HYK,U?®) — H*K,G,,) —— H*(KL,G,,).
Hence
(7)  HYK,U®)~Br,(KL/K) and H'(K,U®)~Br(KL/K).

Lemma 2.3. The map H'(K,U®) — HY(K,S?®) induces an isomorphism
HY(K, 5%) ~ Br,o(KL/K ).

Proof. Consider the following commutative diagram

1 Ue S? G, 1
[ |
1 Ue S G, 1,

where the bottom row is induced by the bottom row of the diagram (4) in [[[J].
This yields a commutative diagram

(K*) —— HY(K,U®) —— HY(K,5%) —— 0

| J !

(KX)T ;) H1<K,U@) - H1<K,S@) — 0
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with the exact rows. The homomorphism A takes (z1,...,2,) to >1_ ((xi)x U
(2;)) by [[0, Lemma 3.6], whence the result. O

3. ESSENTIAL DIMENSION OF ALGEBRAIC TORI

Let S be an algebraic group over F. The essential dimension ed(S) (re-
spectively, essential p-dimension ed,(S)) of S is defined to be the essential
(p-)dimension of the functor taking a field extension K/F to the set of iso-
morphism classes S-torsors(K) of S-torsors over K. Note that the functor
S-torsors is isomorphic to the functor taking K to the set H'(K,S).

Let S be an algebraic torus over F' split by L with G = Gal(L/F). We
assume that G is a group of order p”, where p is a prime integer and r > 2. Let
X be the G-module of characters of S. Define the group X := X/(pX + IX),
where [ is the augmentation ideal in R = Z[G]. For any subgroup H C
G, consider the composition X# «— X — X. For every k, let Vj, denote
the subgroup generated by images of the homomorphisms X — X over all
subgroups H with [G : H] < p*. We have the sequence of subgroups

0=V, ,cVyc---CcV,=X.

A p-presentation of X is a G-homomorphism P — X with P a permutation
G-module and finite cokernel of order prime to p. A p-presentation with the
smallest rank(P) is called minimal. The essential p-dimension of algebraic tori
was determined in [[], Th. 1.4] in terms of a minimal p-presentation P — X:

(8) ed,(S) = rank(P) — dim(S).

We have the following explicit formula for the essential (p-)dimension of S

(cf. [[0, Th. 4.3]):

Theorem 3.1. Let S be a torus over a field F' and p a prime integer different
from char(F). If the decomposition group G of S is a p-group, then
ed(S) =ed,(S) = Z(rank Vi — rank Vj,_1)p® — dim(S).
k=0

Proof. The second equality was proven in [[(, Th. 4.3]. Let v : P — X be
a minimal p-presentation. By definition, the index [X : Im(v)] is prime to
p. Let T and U be algebraic groups of multiplicative type split by L with
the character G-modules Im(v) and X/ Im(v), respectively, hence we have an
exact sequence

1-U—-5S—-T-—1.
Let K/F be afield extension. By assumption, the group U(K L) = Hom(X/ Im(v), KL*)
has order prime to p. We have an exact sequence

H'(G,U(KL)) — H'(G,S(KL)) — H (G, T(KL)) — H*(G,U(KL)).

As the order of U(K L) is prime to p and G is a p-group, the groups H* (G, U(KL))
are trivial for ¢ > 1, hence the homomorphism S — 7T induces an isomorphism
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of functors S-torsors — T-torsors. It follows that ed(S) = ed(T'). The surjec-

tion P — Im(v) yields a generically free representation of 7" by [[I, Lemma
3.3]. Hence, by [B, Prop. 4.11] and (§), we have

ed,(S) < ed(S) = ed(T") < rank(P) — dim(7) = rank(P) — dim(S) = ed,(.5),
therefore, ed(S) = ed,(95). O

Let F be a field, ® a subgroup of Ch,(F) of rank r > 2, L = F(®) and
G = Gal(L/F). In this section we compute the essential (p-)dimension of the
algebraic tori U? and S® defined by (f]). For any subgroup H of G, we write
ng =y ,.cxTin R=Z[G]. An element x € R is decomposable if x = yz with
Y,z € R, and £(y),e(z) € pZ.

Lemma 3.2. Let H C G be a nontrivial subgroup and x € R such that
e(ngz) € p*Z. Then ngx is decomposable.

Proof. 1f |H| = p, then ¢(z) € pZ and hence ngyx is decomposable. Otherwise
H = H' x H” for nontrivial subgroups H' and H”. As ny = ng - ny», the
element ny and therefore, nyx is decomposable. O

Lemma 3.3. If x € R is decomposable, then x = e(z) modulo pI + I*.

Proof. Let y = ¢(y) + v and z = (2) + v for some u,v € I. Then we have
yz —e(yz) = (e(y)v + e(2)u) + wv € pI + I O

Lemma 3.4. The group Vi is generated by
(1) the elements gz such that |H| > p™ % and e(nyx) € p°Z if r — k < s,
(2) the elements my such that |H| > p"~* if r —k > s.

Proof. The statement follows from the equality J? = RENJ =nygRNJ. O
Lemma 3.5. If k <r — s, then Vj, = 0.
Proof. By Lemma B4(2), V; is generated by ny with |[H| > p"*. As ng is

decomposable and [H| > p®, in view of Lemma B.3, we have ny = e(ny) =
|H| =0 as |H| € pJ. O
Lemma 3.6. If s >2 andr —s <k <r—1, then dim(V}) = 1.

Proof. By Lemma B.4, V}, is generated by gz with H nontrivial and e(ngyz) €

p°Z. As s > 2, the element nyz is decomposable by Lemma B.2. In view of
Lemma B3, npx = e(nyx), hence V is generated by ps. O

Lemma 3.7. If s =1 and p is odd, then dim(V,_;) = 1.

Proof. We claim that V,_; is generated by p. By Lemma B.4(2), V,_; is gener-
ated by my with |H| > p. If |H| > p?, then by Lemma B.2, ny is decomposable
and in view of Lemma B3, ng = e(ny) = 0.

Suppose |H| = p and let 0 € H be a generator. We have ny —p = (6 —1)m,
where m = Y72 (p — 1 —i)o?, so e(m) = p(p — 1)/2. As p is odd, £(m) € pZ.
Hence, m € pR + I, therefore, ng —p € pI + I? and iy =P in J. O
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Lemma 3.8. If s=1 and p =2, then V,_; = J.

Proof. By Lemma B.4(2), V,_; is generated by my with |H| > 2. Take non-
trivial elements 0 # 7 in G. Then 2= (1+o07) —o(1+7)+ (1 +0) € V,_;.

Also, for any 0 € G, 0 —1=1+0 —2 € V,_;. The group J is generated by
2and o — 1 over all 0 € G. O

Proposition 3.9. We have
—1)2r-t fp=2and s=1
ed(UCI)) —_ edp(Uq)) — (T ) B pr . ana s )
(r—1)p"+p"~° otherwise.
Proof. Note that V, = J, rank(J) = rank(V,) =7 + 1 and dim(U®) = p".
Case 1: pis odd or p =2 and s > 2. By Lemmas B.5, B.§ and B.7, we have

r+1 ifk=r,
rankV, =<1 ifr—s<k<r,
0 fo<k<r-—s.

Since the decomposition group G of U? is a p-group, by Theorem 1],
ed(U®) = ed,(U®) = rp" +p 5 —dim(U®) = rp"+p" 5 —p" = (r—1)p" +p" "
Case 2: p =2 and s = 1. By Lemmas B.5 and B.§, we have

r+1 iftk=r—1lork=r,

k p—
rank Vi {0 FO<k<r—o2

Again by Theorem B.1],
ed(U®) = edy(U®) = (r +1)2"' —dim(U®) = (r — 1)2"", O

Remark 3.10. One can construct a surjective minimal p-presentation v :
P" — J as follows.

Case 1: pis odd or p=2 and s > 2. Let H be a subgroup of G of order p*

and P’ := R" ® Z|G/H]|. We define v by
V@1, y) = S (00— Vi + nry.
i=1

The image of v contains I and ng. As ng = p® modulo I, we have p°® € Im(v),
hence v is surjective. Note that e;; = (0; — 1)e; — (0; — 1)e; € Ker(v). As
oie;; # e;j for every j # i, the group G acts faithfully on Ker(v).

Case 2: p=2 and s = 1. Let H; be the subgroup of G generated by o; and
H = (0109). Set P' =11,_, Z|G/H;] ® Z[G/H]. We define v by

V(xla cee 7$nay) = Z(Uz + 1)1‘1 + (0102 + 1)y
i=1

The image of v contains 0;+ 1 and 2 = (6109 + 1) —01(02+ 1)+ (01 + 1), hence
v is surjective. Note that h;; := (0;+1)e; —(0;+1)e; € Ker(v). As o,hij # hij
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for distinct i, 7 and k, the group G acts faithfully on Ker(v) if r > 3. In fact,
G acts trivially on Ker(v) if r = 2.

Corollary 3.11. We have

(r—1)2"t—r ifp=2ands=1,

d(S?) = ed,(S®) =
ed(S57) = ed,(57) {(T_l)pr+pr—8—r otherwise.

Proof. By (§) and Proposition B.9, there is a minimal p-presentation v : P — .J
such that

(r+1)27! ifp=2ands=1,
rp” 4+ p"~°  otherwise.

9) rank(P) = {

The exact sequence
0—-72"—-Q—J—0

in the bottom row of (B) yields an exact sequence
Home (P, Q) — Homg (P, J) — Exty(P,Z").

As P and 7Z" are permutation G-modules, Ext};(P, Z") = 0, hence the homo-
morphism v factors through a morphism v/ : P — Q.

Recall that we write X = X/(pX + IX) for a G-module X. As Z" ~
(Z/pZ)" — @ is zero map, the natural homomorphism Q — J is an iso-
morphism, hence v/ is a minimal p-presentation of (). Note that G is the
decomposition group of S® and dim(S?®) = p” +r. By Theorem B.], ed(S%) =
ed,(S?) = rank(P) — dim(S*), hence the result follows by (). O

4. DEGENERATION

In this section we relate the essential p-dimensions of Alg, ,s and of the
torus S? by means of the iterated degeneration (Proposition [.1]). The latter
is a method of comparison of the essential p-dimension of an object (a central
simple algebra in our case) over a complete discrete valued field and of its
specialization over the residue field.

4.1. A simple degeneration. Let F' be a field, p a prime integer different
from char(F) and ® C Ch,(F) a finite subgroup. For integers & > 0, s > 1
and a field extension K/F, let

(10) Be(K) ={aeBr(K){p} | ind(axe)<p" exp(a)<p}.

We say that two elements o and o in B,‘is(K ) are equivalent if « — o/ €

Br(K(®)/K),,. Write g,is([() for the set of equivalence classes in By (K).
To simplify notation, we shall write a for the equivalence class of an element
a € B (K) in By (K). We view Bg, and By, as functors from Fields/F' to
Sets.
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In particular, if k = 0, then B§,(K) and g(fs(K) are bijective to Br,s (K (®)/K)
and Brys (K (®)/K )ind, respectively. Hence, by () and Lemma P.3,

(11) ngs ~ U®- torsors  and ’BV(CJI),S ~ S®- torsors .
Moreover, if ® = 0, then
(12) B, = g,is ~ Alg ps.

Let ®" C ® be a subgroup of index p and n € ®\ &', hence & = (¥, 7). Let
E/F be a field extension such that ng ¢ ®% in Ch(F). Choose an element
a € BE,(E), ie., a € Br(E){p} such that ind(ap@)) < p* and exp(a) < p°.

Let E’ be a field extension of F' that is complete with respect to a discrete
valuation v" over F' with residue field £ and set

(13) o :==a+ (Mp U (z)) € Br(E'),

for some z € E'™ such that v'(x) is prime to p. As ng@) # 0, it follows from
(@) that

ind(ap o)) = p - ind(ap@) <P and  exp(e’) = lem (exp(a), p) < ',
hence o/ € BY,, (E").

In the case the condition exp(a) < p® in ([[d) is dropped, the following
proposition was proved in [I(, Prop. 5.2]:

Proposition 4.1. Suppose that for any finite field extension N/E of degree
prime to p and any character p € Ch(N) of order p* such that pp € Oy \ Dy,
we have ind(aN(q)/m) > pF. Then
3o 3P
edf'““’s(o/) > ed,l,g’“’s(oz) + 1.
Proof. The proof of [0, Prop. 5.2] still works with the following modification.
Let M/E'" be a finite field extension of degree prime to p, My C M a

subfield over F' and af € BS;I,S(MO) such that (af)y = o) in glf;l’s and

.y
tr.degp(Moy) = edf’““’s(o/). We extend the discrete valuation v" on E’ to a
(unique) discrete valuation v on M and let N be its residue field. Let ng be
the residue field of the restriction of v on My. It was shown in the proof of [I0,
Prop. 5.2] that there exist ag € Br(No){p} with ind(ao)ny@) < p*, a prime
element g in My, and 79 € Ch,(Ny) such that

(14) (ap)sz, = Go + (o U (m)) in Br(Mp)
and
(15) N — (Oéo)N € Br(N(q))/N)deC.

By ([4), we have

exp(ap) = exp(ap) < lem(exp(ag) g, p) < lem(exp(ag), p) < p°,
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hence ag € By (No). Therefore, the class of ay in g,is(N) is defined over Ny
by ([3). It follows that

S

RO
edf“l’s(o/) = tr.deg (M) > tr.degp(No) + 1 > edskys(a) +1 =

4.2. A technical lemma. In this subsection we prove Lemma [.J that will
allow us to apply Proposition [.]].

Until the end of this subsection we assume that the base field F' contains a
primitive p?-th root of unity.

Let x1, X2, - - -, X, with r > 2 be linearly independent characters in Ch,(F)
and ® = (x1, x2,---,Xr). Let E/F be a field extension such that rank(®g) = r
and let a € Br(E){p} be an element that is split by £(®) and exp(«a) < p®.

Let Ey = E, Ei,...,E, be field extensions of F' such that for any k =
1,2,...,r, the field E, is complete with respect to a discrete valuation vy
over F' and Ej_; is its residue field. For any k = 1,2,...,r, choose elements
xy, € B} such that vy () is prime to p and define the elements oy, € Br(Ey){p}
inductively by g := a and

—

o = gy + ((Xk)Ek_l U (zk))-

Let &, be the subgroup of ® generated by xxi1,...,xr. Thus, &, = b,
¢, = 0 and rank(®;) = r — k. Note that the character (xx)g, ,(@,) is not
trivial. It follows from ([]) that

ind<ak‘)Ek(q’k) =p- ind<ak*1)Ek—l(¢'k—l)

for any k =1,...,r. As ind ag@) = 1, we have ind(ay) g, (@,) = p* for all k =
0,1,...,7. Moreover, as exp(a) < p®, we have exp(ay) = lem(exp(ag_1),p) <
p°. Therefore, a;, € By (Fy).

The followings lemma assures that under a certain restriction on the element
«a, the conditions of Proposition [L.1] are satisfied for the fields Ej, the groups
of characters @, and the elements ay. This lemma is similar to [0, Lemma
5.4].

Lemma 4.2. Suppose that for any subgroup ¥ C ® with [® : U] = p* and
any field extension L/E(V) of degree prime to p, the element ay is not p>-
cyclic . Then for every k = 0,1,...,r — 1, and any finite field extension
N/Ey, of degree prime to p and any character p € Ch(N) of order p* such that

pp € (<I>k)N \ (@kH)N, we have
(16) ind (k) N (@, 1,0 = Pk

Proof. Let k, N and p satisfy the conditions of the lemma. We construct a new
sequence of fields Ey, F, ..., E, such that each E; is a finite extension of E;
of degree prime to p as follows. We set Ej, = N. The fields Ej with j < k are
constructed by descending induction on j. If we have constructed Ej as a finite
extension of £ of degree prime to p, then we extend the valuation v; to E]-
and let Ej,l to be its residue field. The fields Em with m > k are constructed
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by ascending induction on m. If we have constructed E,, as a finite extension
of E,, of degree prime to p, then let Em+1 be an extension of E,,; of degree
[Em : E,,] with residue field E,.. Replacing E; by E; and a; by (i) g,, we may
assume that N = Ej,.

We proceed by induction on r. The case r = 1 is obvious.

(r — 1) = r: First suppose that k& < r — 1. Consider the fields F' =
F(x.), E' = E(x,), E! = E;(x,), the sequence of characters x; = (x;)r/, and
the sequence of elements a; := (a;)p; € Br(E]) for i = 0,1,...,7 — 1. Let
' = (X1, X -y Xo—1) C Ch(F"), let @) be the subgroup of &' generated by
Xis1s- - Xp—1 and p = ppy.

We check the conditions of the lemma for the new datum. Let ¥’ be a
subgroup of ® of index p?. Then the pre-image ¥ of ¥ under the map
Ch(F) — Ch(F") is a subgroup of ® of index p* and E'(¥') = E(¥). Let
L'/E'(¥') be a field extension of degree prime to p. By assumption, the ele-
ment oy, = ay is not p?-cyclic. We also have pp’ = ppE;, € (@k)E; = (@;)E;.
Suppose that pp’ € (Q);H)E;g, ie., ppr, = pp’ = ng, for some n € (CIDkH)Ek.
It follows that pp —n € Ker(Ch(E;) — Ch(E})) = ((x,)r,) and therefore,
pp € (@kH)Ek, a contradiction, hence pp’ € (<I>§§)E;c \ ((I);chl)Elg'

By the induction hypothesis, the inequality ([L6) holds for o, i.e,

ind(a;)El/ﬂ(%H?pl) > pk.
As
(k) Ep@y, ) = (%) B(@ry1.0);
the inequality ([[@) holds for ax. Therefore, it remains to show the inequality
([6) in the case k = r — 1. Note that is this case pp is a nonzero multiple of
(Xr)B._, and Py = @, = 0.

Case 1: The character p is unramified with respect to v,_y, i.e., p = u for
a character u € Ch(FE,_5) of order p?. Note that pu is a nonzero multiple of

(XT’)ET72'

By @),
(17) ind(a,—2), (v, 1.m) = MA(Q1) B, 1)/

Consider the fields F' = F(x,-1), F' = E(x,-1), E! = Ei(xr—1), the new
sequence of characters x| = (x1)r, .-y Xog = (Xr—2)F, X0y = (Xr)Fr, the

group of characters ® = (x}, X5, .-.,X,—;) and the elements o € Br(E))
for i = 0,1,...,7 — 1 defined by o] = (a;)p for i < r—2 and a;_; =
Or—2+ (Xr U (z,-1)) over E!_,, and the character yu. The new datum satisfy
the conditions of the lemma. By the induction hypothesis, the inequality ([[G)
holds for a._,, i.e,
ind(a;ﬁ)ELQ(u) > pr 2.

As

(@ 2)Er ) = (W —2)B (e 1)
the inequality (L) holds for a,._; in view of the equality ([[7).
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Case 2: The character p is ramified. Assume that inequality ([[d) does not
hold for «a,_1, i.e., we have

ind(ar—1)p, 1) <P

By [10, Lemma 2.3(2)], there exists a unit u € E,_; such that E, »(x,) =
E,_5(u'/?) and

ind(ar72 - (erl U (al/p)))ET_2(XT) = ind(&rﬂ)&_l(p) < pr72.

By descending induction on j = 0,1,...,7 — 2 we show that there exist an
element u; in EjX and a subgroup ¥; C @ of rank r — j — 2 such that

<X17 sy X Xr—1, XT> N \I,j = 07 E](XT> = EJ(“;/I)) and
. 1/ ;
(18) lnd(aj - (XT—l U (uj p)))Ej(@j) < p]7

where ©; := (¥;, x,). We set ¥,_ =0 and u,_» = .

j = (j —1): The field Ej(u;/p) = FE;(x,) is unramified over E;, hence
v;(u;) is divisible by p. Modifying u; by a p>-th power, we may assume that
uj = vzy” for a unit v € Ej, x; € Ef and an integer m. Then

(@5 = (o1 U)oy = B+ (U () o

J
where n = x;—myx,—1 and § = (O‘J'*l_(XT*1U<U;/—p1>))Ej,1(@j)’ where uj_; = 0.

As 7 is not contained in ©;, the character NE;_1(0;) 18 not trivial. Set W;_; =
(W;,n). It follows from ([) and the induction hypothesis that

ind(Bg,_y(0,-1)) = ind(ay — (1 U (4;") o /P <P
Applying the inequality ([§) in the case j = 0, we have
ape) = (Xr-1U (wl/p))E(@O)
for an element w € E* such that F(w'/?) = E(x,). Hence

. 2
Uy wi/n?) = (QE©0)) piog)wis?) = 0 1n Br(E(T)(w'/P7)).

Since gy is split by a cyclic extension F(¥o)(w'/?")/E(Wy) of degree p?,
apwy) 18 pP-cyclic. As [® : Wy] = p?, this contradicts the assumption. Hence,
the inequality ([[§) holds for «,._;. O

5. NON-CYCLICITY OF THE GENERIC ELEMENT

The aim of this section is the technical Lemma [.4 that will allow us to
apply later Lemma [[.7 and Proposition (1.

In this section we assume that the base field F' contains a primitive p3-th
root of unity. The choice of a primitive p?-th root of unity ¢ allows us to define
the symbol (a,b),> as in Section PJ. As —1 is a p*-th power in F*, we have
(a,—1),2 = 0, hence (a,a),2 = 0 for all a € F*. We shall write (a,b), for

pla,b),2 = (a”,b),e.
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Lemma 5.1. Let E be a field extension of F' that is complete with respect to
a discrete valuation v with residue field K and o € Br(K). Set § = a+ (a,x),
for a unit a € E and x € E* such that a ¢ K*? and v(x) is prime to p. If
is p*-cyclic, then o = (a, z),2 in Br(K) for some z € K*.

Proof. Suppose that 8 = (ur’,wn?),2 and write x = ¢7* for a prime element
7, integers 4, j, k = v(x) and units v, w,t in E. Then we have

a+ (aP,wrh),e = B = (ur', on?) 2 = (u,v),e + (W /0, )2
Applying the residue map 9,, we get a?* = @ /o" in K*/K>*?* and
a=(4,0),2 — (a,0),.

Suppose that i/j is a p-integer (the other case is similar). As k is not
divisible by p and @ is not a p-th power in K*, j is not divisible by p?. It
follows that @ € (@, ) in K*/K*?* and then @ € a"7* K*¥* for some r and s.
Hence a = (a,v" /wP),2. O

Corollary 5.2. Let z,y be independent variables over F' and a,b € F*. If
(a,b), # 0 in Br(F), then for any field extension M/F(x,y) of degree prime
to p, the element (a,x), + (b,y), in Br(M) is not p*-cyclic.

Proof. Let M/F(x,y) be a field extension of degree prime to p and 5 = (a, z),+
(b,y), over M. As the degree of M/F(z,y) is prime to p, by [§, Lemma 6.1],
there exists a field extension F of the fields F'(y))(x)) and M over F such that
the degree of E/F((y))((z)) is finite and prime to p. The discrete valuation v,
on the complete field F'(y))((z)) extends uniquely to a discrete valuation v of
E. The ramification index of E/F((y))((x)) is prime to p, hence v(x) is prime
to p. The residue field K of v is an extension of F'((y)) of degree prime to p.

Let v" be the valuation on K extending the discrete valuation v, on F((y)).
The ramification index €’ of K/F((y)) is prime to p. The residue field N of v/
is a finite extension of F' of degree prime to p.

Let o = (b,y), over K, so Bg = @+ (a,z),. Suppose that § is p*-cyclic
over M. Then (g is also p*-cyclic. By Lemma [p.1], applied to 3g over E, we
have o = (a, 2),2 for some z € K*, hence (b,y),2 = (a, 2),2. Taking the cup
product with (a),: € K*/K*?*, we get

(@)p2 U (BP,y)p2 = (a)p2 U (a,2),2 = (a,a),2 U (2),2 = 0.

Applying the residue map 0,/, we find that €'(a,b), = €'(a,b”),2 = 0 over N,
hence (a,b), = 0 in Br(/N). Taking the corestriction map Br(N) — Br(F), we
see that (a,b), = 0 in Br(F'), a contradiction. O

Lemma 5.3. For any integer r > 2, there exist a field extension F'/F and a
subgroup ® C Chy,(F") of rank r such that for any subgroup ¥ C ® of index
p?, there is an element 3 € Br, (F’((I))/F’) with the property that any field
extension M/F' (V) of degree prime to p, the element B3y is not p*-cyclic.
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Proof. Let ay,as,...,a,, x,y be independent variables over F and set F’ :=
F(ay,ag,...,a.,2,y). For every i = 1,...,7, let x; € Ch,(F") be a char-
acter such that F'(y;) = F’(ail/p) and set & = (x1,x2,-..,Xr). Let U
be a subgroup of ® of index p?. Choose a basis ny,ns,...,n, for ® such
that U = (ny,m9,...,m—2) and the elements by,bs,...,b, in F’ such that

F(n) = F(bl/p) for all i = 1,...,7 and F(by,bs,...,b,) = F(ay,as,...,a,).

Clearly, by, by, . . ., b, are algebraically independent over F and F'(V) = L(z,y),
where L := F(b}/p, VN bi/_pQ, b,_1,b,) with the generators algebraically indepen-
dent over F'.

Let 3 = (by_1,2),+ (b, y), in Br, (F'(®)/F’) and M/F'(¥) a field extension
of degree prime to p. As 9, ((br,l, br)p) = b,_1, where v is the discrete valuation
on L associated with b,, is nontrivial, we have (b,_1,b,), # 0 in Br(L). The

result follows from Corollary p.2. O

Let F'/F be the field extension and ® C Ch,(F") the subgroup of rank r as
in Lemma [.J. Consider the algebraic tori P®, S®, T®, U?® and V? over F’
defined in Section P-4. The morphism v : P® — V?® in the diagram () is a
U®-torsor. Denote by d the image of the class of v under the composition

He}t(v<1>’ UCI)) - He}t(véa U@) - Hegt(VCDaGm)a

induced by the diagram (f). We write 04, for the image of ¢ under the
homomorphism

H;(V® G,) — H*(F(V®),G,) = Br(F'(V?))

induced by the generic point morphism Spec(F’'(V®)) — V®. It follows from
(B) that dge, € Bry: (F'(V'®)).

Lemma 5.4. Let K = F'(V®) and ¥V C ® a subgroup with [® : ¥] = p*>. Then
for any field extension M/K (V) of degree prime to p, the element (dgen)ns 15
not p*-cyclic.

Proof. Suppose that there exist a subgroup ¥ C @ with [® : ¥] = p? and
a field M/K(¥) of degree prime to p such that (0ge,)ns = x U (a) for some
X € H*(M,Z) = Ch(M) with p*>y = 0 and a € H*(M,G,,) = M*. Choose
an integral scheme X over F’ such that F'(X) = M together with a dominant
F’-morphism
[ X = V) = (V®)

of degree prime to p that induces the embedding of the function field K (V)
into M. Let h: X — V® be the composition of f with the natural morphism
g:V®(¥) — V2 Replacing X by a nonempty open set, we may assume that
h*(8) = xoU (ag) for some xo € HZ(X,Z) with p*xo = 0 and ag € HY,(X, G,,).

By [B, Lemma 6.2], there is a nonempty open set W' C V*(¥) such that
for every 2’ € W’ there exists a point z € X with f(z) = 2’ and the degree
[F'(x) : F'(2')] prime to p. Let Z = V®(W)\ W’. As g is finite, g(Z) # V?,
hence the open set W := V?®\ ¢g(Z) is not empty. We have g~1(W) C W".
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Consider the element § € Br,(F'(®)/F’) constructed in Lemma 3. Let
v € HYF',U?) be the corresponding class of U®-torsors over F’ under the
isomorphism H'(F’,U®) ~ Br,«(F'(®)/F') by (@). As v is a generic U®-
torsor, there exists an F’-morphism v : Spec F' — V® such that v*(y) = +'
and Im(v) C W (see Section R.3). From the commutativity of the diagram

*

HL(V*,U®) —— HY(F',U®)

J J

H2(V®, Gy) —2— H2(F',Gyp)

we find that v*(6) = S.

Let v' : Spec F'(¥) — V®(¥) be the morphism vg/(y). Note that Im(v") C
gt (W) cw'.

By the definition of W’ there is a point x € X such that the degree of the
field extension F”’(z) over the residue field of (the only) point in Im(v’) is prime
to p. By [B, Lemma 6.1], there exist a field extension M/F’(V) of degree prime
to p and a morphism w : Spec(M) — X such that the diagram

Spec(M) —— Spec(F'(V)) —— Spec(F)
X L ovew L ype
is commutative. It follows that
By = v*(0)y = w*h* () = w* (XO U (ao)) = w*(xo0) Uw*(ap),

i.e., By is p*-cyclic. This contradicts Lemma .3 O

6. A LOWER BOUND FOR ed,(Alg, )

Let n > 1 be an integer, m a divisor of n and p a prime integer. Let p"
(respectively, p®) be the largest power of p dividing n (respectively, m). If
A € Alg, ,(K) for some field extension K/F, then there is a finite field ex-
tension E/K of degree prime to p such that ind(Ag) is a p-power. Hence
ind(Ag) divides p" and exp(Ag) divides p°® as it divides m and ind(Ag), i.e.,
Ap € Alg, ,+(E). It follows that the embedding functor Alg,. . — Alg, .,
is p-surjective and hence ed,(Alg,,,) < ed,(Alg, ) by [B, Sec. 1.3]. Con-
versely, if A € Alg,, ,,(K), then the p-primary component A, of A satisfies
Ay € Alg,r s (K), hence the morphism of functors Alg,, ,,, — Alg, s, taking A
to A, is surjective and therefore, ed,(Alg,, ,,) > ed,(Alg,: ,+). We proved that

ed,(Alg, ) = edy(Alg,r ,s).
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Theorem 6.1. Let F' be a field and p a prime integer different from char(F').
Then, for any integers r and s with 1 < s <r,

(r—1)2r-1 ifp=2ands=1,

ed,(Alg,r ) >
p Eprp )2 {(T —1)p" +p"* otherwise.

Proof. By B, Prop.1.5], we can replace the base field by any field extension.
Hence we may assume that I contains a primitive p3-th root of unity. More-
over, we can replace F' by the field F’ in Lemma f.d. Let V?® be the alge-
braic torus constructed in Section 4. Set E = F(V?) and let a := dgen €
Br,s(E(®)/FE) be the element defined in Section . Let Ej be the fields and
ap € B;f’;(Ek) the elements constructed in Section .2, so that Ey = E and
ap = a. By Lemma [.4, ajs is not p*-cyclic for any subgroup ¥ C ® with
[® : U] = p? and any field extension M/E(¥) of degree prime to p, hence a
satisfies the condition of Lemma [I.7. It follows that we can apply Proposition
1. By the iterated application of this proposition, we have

(19) dA/gpnps o dg?’g > dgfil_’i 1 >
edp (ar)—ep (ar) > edy (p—1) +12> ...
. .

gf); 802 BOs
>edy " (ay) + (r—1) > edp ™ (ag) + 7 = edp”* () + 7.

Consider the commutative diagram with exact rows:

] — U —— P® SR V4 SN |

l J |

1—>S¢—>P¢XG;L>V¢—>1,

where P® — P® x G], takes x to (z,1) and S* — P® x G/ is the product of
S? — P® and S* —» G/ .

The element « considered in B(?, s(F) corresponds to the generic fiber of the
U®-torsor v under the bijection Bf (E) ~ U®- torsors(E) in ([l). Hence, by
the diagram, the class of a in gg’, s(E) corresponds to the generic fiber v, of
the S®-torsor o/ under the bijection gf)b’s(E) ~ S® torsors(E). As P® x G/ is

a quasi-split torus, 7' is a generic S®-torsor by Proposition P1], hence

gq)s - torsors
(20) e, (@) = edS" 5 () ) = ed,(S®)

by [B, Th. 2.9]. The essential p-dimension of S® was calculated in Corollary
BI1. From ([[9),(B0) and this corollary, we have

Algyr s (r—1)2r-1 if p=2and s =1,
ed, (A/gp’,PS) > edp o (o) > edp(ScI’)—l—'r’ - {(T —1)p" +p'~* otherwise

This concludes the proof. O
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7. AN UPPER BOUND FOR ed,(Alg, )

Lemma 7.1. Let F' be a field and p a prime. Then, for any integers r and s
with 1 < s <,

edy(Alg,r ps) < edy(Alg,) +p° — 1.

Proof. Let A € Alg,. ,«(K) C Alg,-(K) for a field extension K/F. There exist
a field extension K'/K of degree prime to p, a subfield Ky C K’ over F' and
B € Alg,-(Ko) such that tr.degz(Ko) < ed,(Alg,-) and A®x K' ~ B®g, K.

By [[[6, Lemma 5.6], ind(B®?") divides p"~*. Choose a central simple algebra
C of degree p"~* over Kj in the Brauer class of B¥P" in Br(K;) and consider the
Severi-Brauer variety X := SB(C') of C. Since exp(A) divides p®, the algebra
C' is split over K’ hence X (K’) # (). This implies that there exists z € X
such that Ko(z) C K’ and X (Ko(z)) # 0. Therefore, Cr, () is split, hence
exp(Bry(x)) divides p*, i.e., Bry@) € Alg,r s (Ko(z)). Since dim(X) = p"*—1,
we have

odp 77" (A) < tr. degp(Ko(z)) = tr. deg(Ko) + tr. degy, (Ko(z)) <
edy(Alg,) + dim(z) < edy(Alg,.) + (p" " —1). O

By [[2, Th.1.1],
edy(Alg,.) < 2p” 2 —p" + 1,
if 7 > 2, therefore, by Lemma [/.T], we have the following upper bound for
ed,(Alg,r ps):

Theorem 7.2. Let F be a field and p a prime integer. Then, for any integers
r>2ands withl <s<r,

ed,(Alg,r ) < 222 — " 4 p o

8. ESSENTIAL DIMENSION OF Alg;/r, Algec AND ALGg.

Let G be an elementary abelian group of order p” and K/ F a field extension.
Consider the subset Algg(K) of Alg,r p<(K) consisting of all classes that have
a splitting Galois K-algebra F with Gal(E/K) ~ G.

Let L/F be a Galois field extension with Gal(L/F) ~ G. Consider the
subset Alg;/r () of Alge(K) consisting of all classes split by the field extension
KL/K. We have the subfunctors of Algyr ps:

Alg/r C Alge C Algy ps.

We write ALGg(K) for the set of pairs (A, E), where A € Algg(K) and E is
a Galois G-algebra splitting A. We have an obvious surjective morphism of
functors ALGg — Algg.

Theorem 8.1. Let F' be a field, p a prime integer different from char(F), G
an elementary abelian group of order p" with r > 2, and L/F a Galois field
extension with Gal(L/F) ~ G. Let an integer s satisfy 1 < s < r. Suppose
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thatr > 3 if p=2 and s = 1. Let F be one of the three functors: Alg,/r, Alge
or ALGg. Then

ed,(F) = ed(F) = {(T -2t ifp=2ands =1,

(r—1)p"+p"=* otherwise.

Proof. Let ® be a subgroup of Ch,,(F') of rank r such that L = F(®). By ([0),
we have Alg;/r ~ U®-torsors. It follows from Proposition B.9 that

(r—1)271! ifp=2and s=1,

edp(A/gL/F) = ed(A/gL/F) = dp,;s = {(r —1)p" +p~* otherwise

Let ;. € Br(E,) be as in the proof of Theorem [.1. By construction, . is split
by E,(®), hence o, € Algg(E,). Note that edf(ﬁ) < edz){(ﬁ) for any subfunctor
H of a functor B and any 3 € H(K). Hence, by the proof of Theorem B.1], we
have

od,(Alge) > ed8¢ (o) > edp™ ™ (o) > ..

Let J be the G-module defined in the Section .4 and T := Spec F[J] the
split torus with the character group J. Consider the minimal surjective p-
presentation v : P’ — J as in Remark B.I0. As explained in Section P.3, a
choice of a G-invariant basis of P yields a linear T'x G-space V with dim(V') =
rank(P’). By Remark BI0, G acts faithfully on Ker(v). It follows from [IT],
Lemma 3.3] that the action of T'x G on V is generically free in this case, hence,
by [B, Prop. 4.11],

ed(T x G) < dim(V) —dim(T x G)
nk(P") — rank(J)
= rank(Ker )

- dp,T,S'

Let v € HY(F,G) and let L be the corresponding Galois G-algebra over F'.
Since G is an abelian group, we have G = G,. The G-action on Ry/p(Gm, 1)
restricts to the trivial action on the subgroup pps. As T = Ry /p(Gpy )/ tps,
the connecting map

HY(F, T,) — H*(F, fips) = Brys(F)
is injective, hence the group G, (F) = G acts trivially on H'(F,T,). By (@),
HY(F,TxG)= [] Bry(E/F),
Gal(E/F)=G
where the disjoint union is taken over all isomorphism classes of Galois G-

algebras E//F. Hence we have a surjective morphism of functors 7'x G- torsors —
ALGg. As ALGg surjects on Algg, we have

ed,(Algs) < (ed,(ALGg) or ed(Algs)) < ed(ALGg) < ed(T x G) < dp,s. O
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Remark 8.2. Suppose that p =7 = 2 and s = 1 and F' is a field of charac-
teristic different from 2. By [13, Th.1] or [J}, Sec.2.4], there exists a nontrivial
cohomological invariant of degree 4 for Algg over F(i), where i is a primitive
4-th root of unity. Hence, edy(Algs) > edy(Alge)r@) = 4 by [[3, Lemma 6.9].
Moreover, by the structure theorem on central simple algebras split by a bi-
quadratic field extension [P{, Cor.2.8], every (A, E) € ALGg(K) is of the form
E = K(a'?,b"?) and [A] = (a,x)s + (b,y), for some a,b,x,y € K*. Hence
ed(ALGg) < 4. As ALGg surjects on Algg, we have

4 < edy(Algs) < (ed2(ALGg) or ed(Algs)) < ed(ALGg) < 4,
hence the essential (2)-dimension of Algg and ALGg is equal to 4.
Corollary 8.3. Let F be a field of characteristic # 2. Then
edy(Algg,) = ed(Algg,) = 8.

Proof. As any central simple algebra of degree 8 and exponent 2 has a tri-
quadratic splitting field by [[4], we have Algg, = Algg for the elementary
abelian group G of order 8, hence the statement follows from Theorem [R.1].
Note that the inequality edy(Algg,) > 8 is also proven in Theorem 6.1 and the
opposite inequality ed(Algg,) < 8 was shown in [}, Th.2.12]. O
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