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Abstract. Let p be a prime integer, 1 ≤ s ≤ r integers and F a field
of characteristic different from p. We find upper and lower bounds for the
essential p-dimension edp(Alg

pr ,ps) of the class Alg
pr ,ps of central simple

algebras of degree pr and exponent dividing ps. In particular, we show that
ed2(Alg

8,2
) = 8 and edp(Alg

p2,p
) = p2 + p for p odd.

1. Introduction

Let F : Fields/F → Sets be a functor from the category Fields/F of field
extensions over F to the category Sets of sets. Let E ∈ Fields/F and K ⊂ E a
subfield over F . An element α ∈ F(E) is said to be defined over K (and K is
called a field of definition of α) if there exists an element β ∈ F(K) such that
α is the image of β under the map F(K) → F(E). The essential dimension

of α, denoted edF(α), is the least transcendence degree tr. degF (K) over all
fields of definition K of α. The essential dimension of the functor F is

ed(F) = sup{edF(α)},

where the supremum is taken over all fields E ∈ Fields/F and all α ∈ F(E)
(see [3, Def. 1.2] or [8, Sec.1]). Informally, the essential dimension of F is the
smallest number of algebraically independent parameters required to define F
and may be thought of as a measure of complexity of F .

Let p be a prime integer. The essential p-dimension of α, denoted edF

p (α), is

defined as the minimum of edF(αE′), where E ′ ranges over all field extensions
of E of degree prime to p. The essential p-dimension of F is

edp(F) = sup{edF

p (α)},

where the supremum ranges over all fields E ∈ Fields/F and all α ∈ F(E).
By definition, ed(F) ≥ edp(F) for all p.

For every integer n ≥ 1, a divisor m of n and any field extension E/F , let
Algn,m(E) denote the set of isomorphism classes of central simple E-algebras
of degree n and exponent dividing m. Equivalently, Algn,m(E) is the subset of
the m-torsion part Brm(E) of the Brauer group of E consisting of all elements a
such that ind(a) divides n. In particular, if n = m, then Algn(E) := Algn,n(E)
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is the set of isomorphism classes of central simple E-algebras of degree n. We
view Algn,m and Algn as functors Fields/F → Sets .

In the present paper we give upper and lower bounds for edp(Algn,m) for
a prime integer p. Let pr (respectively, ps) be the largest power of p divid-
ing n (respectively, m). Then edp(Algn,m) = edp(Alg pr,ps) and edp(Algn) =
edp(Alg pr) (see Section 6). Thus, we may assume that n and m are the p-
powers pr and ps respectively.

Using structure theorems on central simple algebras, we can compute the
essential (p)-dimension of Alg pr,ps for certain small values of r, s or p as fol-
lows. As every central simple algebra A of degree p is cyclic over a finite field
extension of degree prime to p, A can be given by two parameters (see Section
2.1). In fact, edp(Alg p) = 2 by [13, Lemma 8.5.7].

By Albert’s theorem, every algebra in Alg4 ,2 is biquaternion and hence can
be given by 4 parameters. In fact, ed(Alg4 ,2 ) = ed2(Alg4 ,2 ) = 4 (see Remark
8.2).

The upper and lower bounds for edp(Alg pr) can be found in [12] and [10]
respectively. In this paper (see Sections 6 and 7), we establish the following
upper and lower bounds for edp(Algpr ,ps ):

Theorem. Let F be a field and p a prime integer different from char(F ).
Then, for any integers r ≥ 2 and s with 1 ≤ s ≤ r,

2p2r−2 − pr + pr−s ≥ edp(Alg pr,ps) ≥

{
(r − 1)2r−1 if p = 2 and s = 1,

(r − 1)pr + pr−s otherwise.

Corollary. (cf. [9]) Let p be a prime integer and F a field of characteristic

different from p. Then

edp(Algp2 ) = p2 + 1.

Corollary. Let p be an odd prime integer and F a field of characteristic

different from p. Then

edp(Algp2 ,p) = p2 + p.

The corollary recovers a result in [21] that for p odd, there exists a central
simple algebra of degree p2 and exponent p which is not decomposable as a
tensor product of two algebras of degree p. Indeed, if every central simple
algebra of degree p2 and exponent p is decomposable, then the essential p-
dimension of Algp2 ,p would be at most 4.

Corollary. Let F be a field of characteristic different from 2. Then

ed2(Alg 8,2) = ed(Alg 8,2) = 8.

The proof is given in Section 8. The corollary recovers a result in [1] that
there is a central simple algebra of degree 8 and exponent 2 which is not
decomposable as a tensor product of three quaternion algebras. Indeed, if
every central simple algebra of degree 8 and exponent 2 is decomposable, then
the essential 2-dimension of Alg8 ,2 would be at most 6.
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2. Character, Brauer group and algebraic tori

2.1. Character and Brauer group. Let F be a field, Fsep a separable closure
of F , ΓF = Gal(Fsep/F ). For a (discrete) ΓF - module M , we write Hn(F, M)
for the Galois cohomology group Hn(ΓF , M).

If S is an algebraic group over F , we let H1(F, S) denote the set H1
(
ΓF , S(Fsep)

)

(see [18]).
The character group of F is defined by

Ch(F ) := Homcont(ΓF , Q/Z) = H1(F, Q/Z) ≃ H2(F, Z).

The n-torsion character group Chn(F ) is identified with H1(F, Z/nZ). For a
character χ ∈ Ch(F ), set F (χ) = (Fsep)

Ker(χ). The field extension F (χ)/F is
cyclic of degree ord(χ). If Ψ ⊂ Ch(F ) is a finite subgroup, we set

F (Ψ) := (Fsep)
∩Ker(χ),

where the intersection is taken over all χ ∈ Ψ. The Galois group G =
Gal

(
F (Ψ)/F

)
is abelian and Ψ is canonically isomorphic to the character

group Hom(G, Q/Z) of G. Note that a character η ∈ Ch(F ) is trivial over
F (Ψ) if and only if η ∈ Ψ.

We write Br(F ) for the Brauer group H2(F, F×
sep) of F . If L/F is a field

extension and α ∈ Br(F ), we let αL denote the image of α under the natural
map Br(F ) → Br(L). We say that L is a splitting field of α if αL = 0. The
index ind(α) of α is the smallest degree of a splitting field of α. The exponent

exp(α) is the order of α in Br(F ). The integer exp(α) divides ind(α).
Let A be a central simple F -algebra. The degree of A in the square root of

dim(A). We write [A] for the class of A in Br(F ). The index of [A] divides
deg(A). If α ∈ Br(F ) and n is a positive multiple of ind(α), then there is a
central simple F -algebra A of degree n with [A] = α.

The cup-product

Ch(F ) ⊗ F× = H2(F, Z) ⊗ H0(F, F×
sep) → H2(F, F×

sep) = Br(F )

takes χ⊗b to the class χ∪(b) in Br(F ) that is split by F (χ). A class α ∈ Br(F )
is called n-cyclic if α = χ ∪ (b) for a character χ with nχ = 0. Such classes
belong to Brn(F ). If n is prime to char(F ), then Brn(F ) ≃ H2(F, µn), where
µn is the ΓF -module of all n-th roots of unity in Fsep.

Let n be prime to char(F ) and suppose that F contains a primitive n-th
root of unity ξ. For any a ∈ F×, let χa ∈ Ch(F ) be a unique character with
values in 1

n
Z/Z ⊂ Q/Z such that

γ(a1/n) = ξ(nχa(γ))a1/n

for all γ ∈ Gal(Fsep/F ). We write (a, b)n for χa ∪ (b). The symbol (a, b)n

satisfies the following properties (see [17, Chap. XIV, Prop.4]):

(a, b)n + (a′, b)n = (aa′, b)n,
(a, b)n = −(b, a)n,
(a,−a)n = 0.
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For a finite subgroup Φ ⊂ Ch(F ) write Br
(
F (Φ)/F

)
dec

for the subgroup of

decomposable elements in Br
(
F (Φ)/F

)
generated by the elements χ∪(a) for all

χ ∈ Φ and a ∈ F×. The indecomposable relative Brauer group Br
(
F (Φ)/F

)
ind

is the factor group Br
(
F (Φ)/F

)
/ Br

(
F (Φ)/F

)
dec

. Similarly, if Φ ⊂ Chn(F ) for

some n, then Brn(F (Φ)/F
)

ind
is the indecomposable n-torsion relative Brauer

group defined as the factor group Brn

(
F (Φ)/F

)
/ Br

(
F (Φ)/F

)
dec

.
Let E be a complete field with respect to a discrete valuation v and K

its residue field. Let p be a prime integer different from char(K). There is
a natural injective homomorphism Ch(K){p} → Ch(E){p} of the p-primary
components of the character groups that identifies Ch(K){p} with the charac-
ter group of an unramified field extension of E. For a character χ ∈ Ch(K){p},
we write χ̂ for the corresponding character in Ch(E){p}.

By [4, §7.9], there is an exact sequence

0 → Br(K){p}
i
−→ Br(E){p}

∂v−→ Ch(K){p} → 0.

If α ∈ Br(K){p}, then we write α̂ for the element i(α) in Br(E){p}. For
example, if α = χ ∪ (ū) for some χ ∈ Ch(K){p} and a unit u ∈ E, then
α̂ = χ̂ ∪ (u). In the case F contains a primitive n-th root of unity, where n is
a power of p, if α = (ā, b̄)n with a and b units in E, then α̂ = (a, b)n.

If β = α̂ +
(
χ̂ ∪ (x)

)
for an element α ∈ Br(K){p}, χ ∈ Ch(K){p} and

x ∈ E× such that v(x) is not divisible by p, we have (cf. [19, Prop. 2.4])

(1) ind(β) = ind
(
αK(χ)

)
· ord(χ).

2.2. Representations of algebraic tori. Let T be an algebraic torus over
a field F , L/F a finite Galois splitting field for T with Galois group G.
The group G is called the decomposition group of T . The character group

T ∗ := HomL(TL, Gm,L) has the structure of a G-module. The torus T can be
reconstructed from T ∗ by

T = Spec
(
L[T ∗]G

)
.

A torus P over F split by L is called quasi-split if P ∗ is a permutation G-
module, i.e., if there exists a G-invariant Z-basis X for P ∗. The torus P
is canonically isomorphic to the group of invertible elements of the étale F -
algebra A = MapG(X, L). The torus P acts linearly by multiplication on the
vector space A over F making A a faithful P -space (a linear representation
of P ) of dimension dim(P ). It follows that a homomorphism of algebraic tori
ν : T → P with P a quasi-split torus yields a linear representation of T of
dimension dim(P ) that is faithful if ν is injective.

Let P be a split torus over F , and P ∗ its character group. As above, the
choice of a Z-basis X for P ∗ allows us to identify P with the group of invertible
elements of a split étale F -algebra A and make A a faithful P -space over F .
Let ν : T → P be a homomorphism of split tori over F . Suppose a finite
group G acts on T and P by tori automorphisms so that ν is a G-equivariant
homomorphism. Then the map ν∗ : P ∗ → T ∗ is a G-module homomorphism.
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Suppose that there is a G-invariant Z-basis X for P ∗, i.e., P ∗ is permutation.
Then G acts on the algebra A by F -algebra automorphisms. The torus T acts
linearly on A via ν. It follows that the semidirect product T ⋊ G acts linearly
on A making A a T ⋊ G-space.

Let L be a Galois G-algebra over F (for example, L/F is a Galois field
extension with Galois group G). Then γ : Spec L → Spec F is a G-torsor.
Twisting the split torus T by the torsor γ, we get the torus

Tγ = (T × Spec L)/G = Spec
(
L[T ∗]G

)

that is split by L and T ∗
γ is isomorphic to T ∗ as G-modules.

By [5, Prop. 28.11], the fiber of H1(F, T ⋊ G) → H1(F, G) over the class of
γ is naturally bijective to the orbit set of the group Gγ(F ) in H1(F, Tγ), i.e.,

(2) H1(F, T ⋊ G) ≃
∐

H1(F, Tγ)/Gγ(F ),

where the coproduct is taken over all [γ] ∈ H1(F, G).

2.3. Generic torsors. Let T be an algebraic torus split by a finite Galois
field extension L/F with G = Gal(L/F ). Let P be a quasi-split torus split
by L and containing T as a subgroup. Set S = P/T . Then the canonical
homomorphism γ : P → S is a T -torsor.

Proposition 2.1. The T -torsor γ is generic, i.e., for every field extension

K/F with K infinite, every T -torsor γ′ : E → Spec K and every nonempty

open subset W ⊂ S, there is a morphism s : Spec K → S over F with Im(s) ⊂
W such that the T -torsors γ′ and s∗(γ) = γ×S Spec K over K are isomorphic.

Proof. As P is quasi-split, the last term in the exact sequence

P (K)
γK−→ S(K)

δ
−→ H1(K, T ) → H1(K, P )

is trivial. Then there is s ∈ S(K) with δ(s) = [γ′]. As K is infinite, the
K-points of P are dense in P and we can modify s by an element in the image
of γK so that s ∈ W (K), i.e., Im(s) ⊂ W . Then the T -torsor γ′ over K with
the class δ(s) satisfies the required property. �

2.4. The algebraic tori PΦ, SΦ, TΦ, UΦ and V Φ. Let 1 ≤ s ≤ r be integers,
p a prime integer, F a field with char(F ) 6= p, Φ a subgroup of Chp(F ) of rank r
and L = F (Φ). Let G = Gal(L/F ). Choose a basis χ1, χ2, . . . , χr for Φ. Each
χi can be viewed as a character of G, i.e., as a homomorphism χi : G → Q/Z.
Let σ1, σ2, . . . , σr be the dual basis for G, i.e.,

χi(σj) =

{
(1/p) + Z, if i = j;
0, otherwise.

Let R be the group ring Z[G]. Consider the surjective G-modules homomor-
phism ε̄ : R → Z/psZ, defined by ε̄(x) = ε(x) + psZ, where ε : R → Z is the
augmentation homomorphism given by ε(ρ) = 1 for all ρ ∈ G. Set J := Ker(ε̄),
thus, we have an exact sequence

0 → J → R
ε̄
−→ Z/psZ → 0.
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Moreover, the G-module J is generated by I and ps, where I := Ker(ε) is the
augmentation ideal in R.

Consider the G-module homomorphism h : Rr+1 → R taking the i-th canon-
ical basis element ei to σi − 1 for 1 ≤ i ≤ r and er+1 to ps. The image of h
coincides with J .

Set N := Ker(h) and write wi = 1 + σi + σ2
i + · · ·+ σp−1

i ∈ R for 1 ≤ i ≤ r.
Consider the following elements in N :

eij = (σi − 1)ej − (σj − 1)ei, fi = wiei, and gi = −psei + (σi − 1)er+1

for all 1 ≤ i, j ≤ r.

Lemma 2.2. The G-module N is generated by eij, fi and gi.

Proof. Consider the surjective morphism k : Rr → I taking ei to σi − 1 and
set N ′ := Ker(k). Then we have the following commutative diagram

N ′
_�

��

�� // Rr
_�

��

k // I
_�

����
N

����

�� // Rr+1

����

h // // J

ε′
����

I �� // R
ε // // Z

where Rr+1 → R is the projection morphism to the last coordinate and ε′ :
J → Z is given by ε′(j) = ε(j)/ps.

By the exactness of the first column of the diagram, N is generated by N ′

and the liftings gi of σi − 1 in N . The module N ′ is generated by eij and fi

by [10, Lemma 3.5]. This completes the proof. �

Let εi : Rr+1 → Z be the i-th projection followed by the augmentation map
ε. It follows from Lemma 2.2 that εi(N) = pZ for every i = 1, . . . , r. Moreover,
the G-homomorphism

q : N → Zr, x 7→
(
ε1(x)/p, . . . , εr(x)/p

)

is surjective. Set M := Ker(q) and Q := Rr+1/M .
Let PΦ, SΦ, TΦ, UΦ and V Φ be the algebraic tori over F with the character

G-modules Rr+1, Q, M , J and N , respectively. The diagram of homomor-
phisms of G-modules with the exact columns and rows

(3) M
_�

��

M
_�

��
N

q
����

�� // Rr+1

����

h // // J

Zr �� // Q // // J



ESSENTIAL DIMENSION OF CENTRAL SIMPLE ALGEBRAS 7

yields the following diagram of homomorphisms of the tori

(4) TΦ TΦ

V Φ

OOOO

PΦ

OOOO

γoooo UΦ? _oo

Gr
m

� ?

OO

SΦ
� ?

OO

oooo UΦ? _oo

Let K/F be a field extension and set KL := K ⊗F L. The commutative
diagram

0 −−−→ I −−−→ R −−−→ Z −−−→ 0y
∥∥∥

y
0 −−−→ J −−−→ R −−−→ Z/psZ −−−→ 0

induces the commutative diagram of homomorphisms of algebraic groups

(5)

1 −−−→ µps −−−→ RL/F (Gm,L) −−−→ UΦ −−−→ 1y
∥∥∥

y
1 −−−→ Gm −−−→ RL/F (Gm,L) −−−→ U ′Φ −−−→ 1

and then the commutative diagram

(6)

0 −−−→ H1(K, UΦ) −−−→ H2(K, µps) −−−→ H2(KL, Gm)y
y

∥∥∥
0 −−−→ H1(K, U ′Φ) −−−→ H2(K, Gm) −−−→ H2(KL, Gm).

Hence

(7) H1(K, UΦ) ≃ Brps(KL/K) and H1(K, U ′Φ) ≃ Br(KL/K).

Lemma 2.3. The map H1(K, UΦ) → H1(K, SΦ) induces an isomorphism

H1(K, SΦ) ≃ Brps(KL/K) ind.

Proof. Consider the following commutative diagram

1 −−−→ UΦ −−−→ SΦ −−−→ Gr
m −−−→ 1y

y
∥∥∥

1 −−−→ U ′Φ −−−→ S ′Φ −−−→ Gr
m −−−→ 1,

where the bottom row is induced by the bottom row of the diagram (4) in [10].
This yields a commutative diagram

(K×)r −−−→ H1(K, UΦ) −−−→ H1(K, SΦ) −−−→ 0∥∥∥
y

y

(K×)r λ
−−−→ H1(K, U ′Φ) −−−→ H1(K, S ′Φ) −−−→ 0
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with the exact rows. The homomorphism λ takes (x1, . . . , xr) to
∑r

i=1

(
(χi)K ∪

(xi)
)

by [10, Lemma 3.6], whence the result. �

3. Essential dimension of algebraic tori

Let S be an algebraic group over F . The essential dimension ed(S) (re-
spectively, essential p-dimension edp(S)) of S is defined to be the essential
(p-)dimension of the functor taking a field extension K/F to the set of iso-
morphism classes S-torsors(K) of S-torsors over K. Note that the functor
S-torsors is isomorphic to the functor taking K to the set H1(K, S).

Let S be an algebraic torus over F split by L with G = Gal(L/F ). We
assume that G is a group of order pr, where p is a prime integer and r ≥ 2. Let
X be the G-module of characters of S. Define the group X := X/(pX + IX),
where I is the augmentation ideal in R = Z[G]. For any subgroup H ⊂
G, consider the composition XH →֒ X → X. For every k, let Vk denote
the subgroup generated by images of the homomorphisms XH → X over all
subgroups H with [G : H ] ≤ pk. We have the sequence of subgroups

0 = V−1 ⊂ V0 ⊂ · · · ⊂ Vr = X.

A p-presentation of X is a G-homomorphism P → X with P a permutation
G-module and finite cokernel of order prime to p. A p-presentation with the
smallest rank(P ) is called minimal. The essential p-dimension of algebraic tori
was determined in [7, Th. 1.4] in terms of a minimal p-presentation P → X:

(8) edp(S) = rank(P ) − dim(S).

We have the following explicit formula for the essential (p-)dimension of S
(cf. [10, Th. 4.3]):

Theorem 3.1. Let S be a torus over a field F and p a prime integer different

from char(F ). If the decomposition group G of S is a p-group, then

ed(S) = edp(S) =
r∑

k=0

(rankVk − rank Vk−1)p
k − dim(S).

Proof. The second equality was proven in [10, Th. 4.3]. Let ν : P → X be
a minimal p-presentation. By definition, the index [X : Im(ν)] is prime to
p. Let T and U be algebraic groups of multiplicative type split by L with
the character G-modules Im(ν) and X/ Im(ν), respectively, hence we have an
exact sequence

1 → U → S → T → 1.

Let K/F be a field extension. By assumption, the group U(KL) = Hom(X/ Im(ν), KL×)
has order prime to p. We have an exact sequence

H1
(
G, U(KL)

)
→ H1

(
G, S(KL)

)
→ H1

(
G, T (KL)

)
→ H2

(
G, U(KL)

)
.

As the order of U(KL) is prime to p and G is a p-group, the groups H i
(
G, U(KL)

)

are trivial for i ≥ 1, hence the homomorphism S → T induces an isomorphism
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of functors S-torsors
∼
→ T -torsors . It follows that ed(S) = ed(T ). The surjec-

tion P → Im(ν) yields a generically free representation of T by [11, Lemma
3.3]. Hence, by [3, Prop. 4.11] and (8), we have

edp(S) ≤ ed(S) = ed(T ) ≤ rank(P ) − dim(T ) = rank(P ) − dim(S) = edp(S),

therefore, ed(S) = edp(S). �

Let F be a field, Φ a subgroup of Chp(F ) of rank r ≥ 2, L = F (Φ) and
G = Gal(L/F ). In this section we compute the essential (p-)dimension of the
algebraic tori UΦ and SΦ defined by (4). For any subgroup H of G, we write
nH :=

∑
τ∈H τ in R = Z[G]. An element x ∈ R is decomposable if x = yz with

y, z ∈ R, and ε(y), ε(z) ∈ pZ.

Lemma 3.2. Let H ⊂ G be a nontrivial subgroup and x ∈ R such that

ε(nHx) ∈ p2Z. Then nHx is decomposable.

Proof. If |H| = p, then ε(x) ∈ pZ and hence nHx is decomposable. Otherwise
H = H ′ × H ′′ for nontrivial subgroups H ′ and H ′′. As nH = nH′ · nH′′ , the
element nH and therefore, nHx is decomposable. �

Lemma 3.3. If x ∈ R is decomposable, then x ≡ ε(x) modulo pI + I2.

Proof. Let y = ε(y) + u and z = ε(z) + v for some u, v ∈ I. Then we have
yz − ε(yz) =

(
ε(y)v + ε(z)u

)
+ uv ∈ pI + I2. �

Lemma 3.4. The group Vk is generated by

(1) the elements nHx such that |H| ≥ pr−k and ε(nHx) ∈ psZ if r − k < s,
(2) the elements nH such that |H| ≥ pr−k if r − k ≥ s.

Proof. The statement follows from the equality JH = RH ∩ J = nHR∩ J . �

Lemma 3.5. If k < r − s, then Vk = 0.

Proof. By Lemma 3.4(2), Vk is generated by nH with |H| ≥ pr−k. As nH is

decomposable and |H| > ps, in view of Lemma 3.3, we have nH = ε(nH) =

|H| = 0 as |H| ∈ pJ . �

Lemma 3.6. If s ≥ 2 and r − s ≤ k ≤ r − 1, then dim(Vk) = 1.

Proof. By Lemma 3.4, Vk is generated by nHx with H nontrivial and ε(nHx) ∈
psZ. As s ≥ 2, the element nHx is decomposable by Lemma 3.2. In view of
Lemma 3.3, nHx = ε(nHx), hence Vk is generated by ps. �

Lemma 3.7. If s = 1 and p is odd, then dim(Vr−1) = 1.

Proof. We claim that Vr−1 is generated by p. By Lemma 3.4(2), Vr−1 is gener-
ated by nH with |H| ≥ p. If |H| ≥ p2, then by Lemma 3.2, nH is decomposable

and in view of Lemma 3.3, nH = ε(nH) = 0.
Suppose |H| = p and let σ ∈ H be a generator. We have nH −p = (σ−1)m,

where m =
∑p−2

i=0 (p − 1 − i)σi, so ε(m) = p(p − 1)/2. As p is odd, ε(m) ∈ pZ.

Hence, m ∈ pR + I, therefore, nH − p ∈ pI + I2 and nH = p in J . �
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Lemma 3.8. If s = 1 and p = 2, then Vr−1 = J .

Proof. By Lemma 3.4(2), Vr−1 is generated by nH with |H| ≥ 2. Take non-

trivial elements σ 6= τ in G. Then 2 = (1 + στ) − σ(1 + τ) + (1 + σ) ∈ Vr−1.
Also, for any σ ∈ G, σ − 1 = 1 + σ − 2 ∈ Vr−1. The group J is generated by
2 and σ − 1 over all σ ∈ G. �

Proposition 3.9. We have

ed(UΦ) = edp(U
Φ) =

{
(r − 1)2r−1 if p = 2 and s = 1,

(r − 1)pr + pr−s otherwise.

Proof. Note that Vr = J , rank(J) = rank(Vr) = r + 1 and dim(UΦ) = pr.

Case 1: p is odd or p = 2 and s ≥ 2. By Lemmas 3.5, 3.6 and 3.7, we have

rank Vk =





r + 1 if k = r,

1 if r − s ≤ k < r,

0 if 0 ≤ k < r − s.

Since the decomposition group G of UΦ is a p-group, by Theorem 3.1,

ed(UΦ) = edp(U
Φ) = rpr +pr−s−dim(UΦ) = rpr +pr−s−pr = (r−1)pr +pr−s.

Case 2: p = 2 and s = 1. By Lemmas 3.5 and 3.8, we have

rank Vk =

{
r + 1 if k = r − 1 or k = r,

0 if 0 ≤ k ≤ r − 2.

Again by Theorem 3.1,

ed(UΦ) = ed2(U
Φ) = (r + 1)2r−1 − dim(UΦ) = (r − 1)2r−1. �

Remark 3.10. One can construct a surjective minimal p-presentation ν :
P ′ → J as follows.

Case 1: p is odd or p = 2 and s ≥ 2. Let H be a subgroup of G of order ps

and P ′ := Rr ⊕ Z[G/H ]. We define ν by

ν(x1, . . . , xn, y) =
r∑

i=1

(σi − 1)xi + nHy.

The image of ν contains I and nH . As nH ≡ ps modulo I, we have ps ∈ Im(ν),
hence ν is surjective. Note that eij = (σi − 1)ej − (σj − 1)ei ∈ Ker(ν). As
σieij 6= eij for every j 6= i, the group G acts faithfully on Ker(ν).

Case 2: p = 2 and s = 1. Let Hi be the subgroup of G generated by σi and
H = 〈σ1σ2〉. Set P ′ =

∐r
i=1 Z[G/Hi] ⊕ Z[G/H ]. We define ν by

ν(x1, . . . , xn, y) =
r∑

i=1

(σi + 1)xi + (σ1σ2 + 1)y.

The image of ν contains σi +1 and 2 = (σ1σ2 +1)−σ1(σ2 +1)+(σ1 +1), hence
ν is surjective. Note that hij := (σi +1)ej −(σj +1)ei ∈ Ker(ν). As σkhij 6= hij
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for distinct i, j and k, the group G acts faithfully on Ker(ν) if r ≥ 3. In fact,
G acts trivially on Ker(ν) if r = 2.

Corollary 3.11. We have

ed(SΦ) = edp(S
Φ) =

{
(r − 1)2r−1 − r if p = 2 and s = 1,

(r − 1)pr + pr−s − r otherwise.

Proof. By (8) and Proposition 3.9, there is a minimal p-presentation ν : P → J
such that

(9) rank(P ) =

{
(r + 1)2r−1 if p = 2 and s = 1,

rpr + pr−s otherwise.

The exact sequence

0 → Zr → Q → J → 0

in the bottom row of (3) yields an exact sequence

HomG(P, Q) → HomG(P, J) → Ext1
G(P, Zr).

As P and Zr are permutation G-modules, Ext1
G(P, Zr) = 0, hence the homo-

morphism ν factors through a morphism ν ′ : P → Q.
Recall that we write X = X/(pX + IX) for a G-module X. As Zr ≃

(Z/pZ)r → Q is zero map, the natural homomorphism Q → J is an iso-
morphism, hence ν ′ is a minimal p-presentation of Q. Note that G is the
decomposition group of SΦ and dim(SΦ) = pr + r. By Theorem 3.1, ed(SΦ) =
edp(S

Φ) = rank(P ) − dim(SΦ), hence the result follows by (9). �

4. Degeneration

In this section we relate the essential p-dimensions of Algpr ,ps and of the
torus SΦ by means of the iterated degeneration (Proposition 4.1). The latter
is a method of comparison of the essential p-dimension of an object (a central
simple algebra in our case) over a complete discrete valued field and of its
specialization over the residue field.

4.1. A simple degeneration. Let F be a field, p a prime integer different
from char(F ) and Φ ⊂ Chp(F ) a finite subgroup. For integers k ≥ 0, s ≥ 1
and a field extension K/F , let

(10) BΦ
k,s(K) = {α ∈ Br(K){p} | ind(αK(Φ)) ≤ pk, exp(α) ≤ ps}.

We say that two elements α and α′ in BΦ
k,s(K) are equivalent if α − α′ ∈

Br
(
K(Φ)/K

)
dec

. Write B̃Φ
k,s(K) for the set of equivalence classes in BΦ

k,s(K).
To simplify notation, we shall write α for the equivalence class of an element
α ∈ BΦ

k,s(K) in B̃Φ
k,s(K). We view BΦ

k,s and B̃Φ
k,s as functors from Fields/F to

Sets .
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In particular, if k = 0, then BΦ
0,s(K) and B̃Φ

0,s(K) are bijective to Brps(K(Φ)/K)
and Brps(K(Φ)/K) ind, respectively. Hence, by (7) and Lemma 2.3,

(11) BΦ
0,s ≃ UΦ- torsors and B̃Φ

0,s ≃ SΦ- torsors .

Moreover, if Φ = 0, then

(12) BΦ
k,s = B̃Φ

k,s ≃ Algpk ,ps .

Let Φ′ ⊂ Φ be a subgroup of index p and η ∈ Φ \Φ′, hence Φ = 〈Φ′, η〉. Let
E/F be a field extension such that ηE /∈ Φ′

E in Ch(E). Choose an element
a ∈ BΦ

k,s(E), i.e., α ∈ Br(E){p} such that ind(αE(Φ)) ≤ pk and exp(α) ≤ ps.
Let E ′ be a field extension of F that is complete with respect to a discrete

valuation v′ over F with residue field E and set

(13) α′ := α̂ +
(
η̂E ∪ (x)

)
∈ Br(E ′),

for some x ∈ E ′× such that v′(x) is prime to p. As ηE(Φ′) 6= 0, it follows from
(1) that

ind(α′
E′(Φ′)) = p · ind(αE(Φ)) ≤ pk+1 and exp(α′) = lcm

(
exp(α), p

)
≤ ps,

hence α′ ∈ BΦ′

k+1,s(E
′).

In the case the condition exp(α) ≤ ps in (10) is dropped, the following
proposition was proved in [10, Prop. 5.2]:

Proposition 4.1. Suppose that for any finite field extension N/E of degree

prime to p and any character ρ ∈ Ch(N) of order p2 such that pρ ∈ ΦN \ Φ′
N ,

we have ind
(
αN(Φ′,ρ)

)
≥ pk. Then

ed
eBΦ

′

k+1,s
p (α′) ≥ ed

eBΦ
k,s

p (α) + 1.

Proof. The proof of [10, Prop. 5.2] still works with the following modification.
Let M/E ′ be a finite field extension of degree prime to p, M0 ⊂ M a

subfield over F and α′
0 ∈ BΦ′

k+1,s(M0) such that (α′
0)M = α′

M in B̃Φ′

k+1,s and

tr. degF (M0) = ed
eBΦ′

k+1,s
p (α′). We extend the discrete valuation v′ on E ′ to a

(unique) discrete valuation v on M and let N be its residue field. Let n0 be
the residue field of the restriction of v on M0. It was shown in the proof of [10,
Prop. 5.2] that there exist α0 ∈ Br(N0){p} with ind(α0)N0(Φ) ≤ pk, a prime
element π0 in M0, and η0 ∈ Chp(N0) such that

(14) (α′
0)cM0

= α̂0 +
(
η̂0 ∪ (π0)

)
in Br(M̂0)

and

(15) αN − (α0)N ∈ Br
(
N(Φ)/N

)
dec

.

By (14), we have

exp(α0) = exp(α̂0) ≤ lcm
(
exp(α′

0)cM0
, p

)
≤ lcm

(
exp(α′

0), p
)
≤ ps,
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hence α0 ∈ BΦ
k,s(N0). Therefore, the class of αN in B̃Φ

k,s(N) is defined over N0

by (15). It follows that

ed
eBΦ

′

k+1,s
p (α′) = tr. degF (M0) ≥ tr. degF (N0) + 1 ≥ ed

eBΦ
k,s

p (α) + 1. �

4.2. A technical lemma. In this subsection we prove Lemma 4.2 that will
allow us to apply Proposition 4.1.

Until the end of this subsection we assume that the base field F contains a
primitive p2-th root of unity.

Let χ1, χ2, . . . , χr with r ≥ 2 be linearly independent characters in Chp(F )
and Φ = 〈χ1, χ2, . . . , χr〉. Let E/F be a field extension such that rank(ΦE) = r
and let α ∈ Br(E){p} be an element that is split by E(Φ) and exp(α) ≤ ps.

Let E0 = E, E1, . . . , Er be field extensions of F such that for any k =
1, 2, . . . , r, the field Ek is complete with respect to a discrete valuation vk

over F and Ek−1 is its residue field. For any k = 1, 2, . . . , r, choose elements
xk ∈ E×

k such that vk(xk) is prime to p and define the elements αk ∈ Br(Ek){p}
inductively by α0 := α and

αk := α̂k−1 +
(
(̂χk)Ek−1

∪ (xk)
)
.

Let Φk be the subgroup of Φ generated by χk+1, . . . , χr. Thus, Φ0 = Φ,
Φr = 0 and rank(Φk) = r − k. Note that the character (χk)Ek−1(Φk) is not
trivial. It follows from (1) that

ind(αk)Ek(Φk) = p · ind(αk−1)Ek−1(Φk−1)

for any k = 1, . . . , r. As ind αE(Φ) = 1, we have ind(αk)Ek(Φk) = pk for all k =
0, 1, . . . , r. Moreover, as exp(α) ≤ ps, we have exp(αk) = lcm(exp(αk−1), p) ≤
ps. Therefore, αk ∈ BΦk

k,s(Ek).
The followings lemma assures that under a certain restriction on the element

α, the conditions of Proposition 4.1 are satisfied for the fields Ek, the groups
of characters Φk and the elements αk. This lemma is similar to [10, Lemma
5.4].

Lemma 4.2. Suppose that for any subgroup Ψ ⊂ Φ with [Φ : Ψ] = p2 and

any field extension L/E(Ψ) of degree prime to p, the element αL is not p2-

cyclic . Then for every k = 0, 1, . . . , r − 1, and any finite field extension

N/Ek of degree prime to p and any character ρ ∈ Ch(N) of order p2 such that

pρ ∈
(
Φk)N \ (Φk+1

)
N
, we have

(16) ind(αk)N(Φk+1,ρ) ≥ pk.

Proof. Let k, N and ρ satisfy the conditions of the lemma. We construct a new
sequence of fields Ẽ0, Ẽ1, . . . , Ẽr such that each Ẽi is a finite extension of Ei

of degree prime to p as follows. We set Ẽk = N . The fields Ẽj with j < k are

constructed by descending induction on j. If we have constructed Ẽj as a finite

extension of Ej of degree prime to p, then we extend the valuation vj to Ẽj

and let Ẽj−1 to be its residue field. The fields Ẽm with m > k are constructed
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by ascending induction on m. If we have constructed Ẽm as a finite extension
of Em of degree prime to p, then let Ẽm+1 be an extension of Em+1 of degree
[Ẽm : Em] with residue field Ẽm. Replacing Ei by Ẽi and αi by (αi)Ẽi

, we may
assume that N = Ek.

We proceed by induction on r. The case r = 1 is obvious.

(r − 1) ⇒ r: First suppose that k < r − 1. Consider the fields F ′ =
F (χr), E ′ = E(χr), E ′

i = Ei(χr), the sequence of characters χ′
i = (χi)F ′, and

the sequence of elements α′
i := (αi)E′

i
∈ Br(E ′

i) for i = 0, 1, . . . , r − 1. Let
Φ′ = 〈χ′

1, χ
′
2, . . . , χ

′
r−1〉 ⊂ Ch(F ′), let Φ′

i be the subgroup of Φ′ generated by
χ′

i+1, . . . , χ
′
r−1 and ρ′ = ρE′

k
.

We check the conditions of the lemma for the new datum. Let Ψ′ be a
subgroup of Φ′ of index p2. Then the pre-image Ψ of Ψ′ under the map
Ch(F ) → Ch(F ′) is a subgroup of Φ of index p2 and E ′(Ψ′) = E(Ψ). Let
L′/E′(Ψ′) be a field extension of degree prime to p. By assumption, the ele-
ment α′

L′ = αL′ is not p2-cyclic. We also have pρ′ = pρE′

k
∈

(
Φk)E′

k
=

(
Φ′

k)E′

k
.

Suppose that pρ′ ∈
(
Φ′

k+1)E′

k
, i.e., pρE′

k
= pρ′ = ηE′

k
for some η ∈

(
Φk+1)Ek

.

It follows that pρ − η ∈ Ker
(
Ch(Ek) → Ch(E ′

k)
)

= 〈(χr)Ek
〉 and therefore,

pρ ∈ (Φk+1

)
Ek

, a contradiction, hence pρ′ ∈
(
Φ′

k)E′

k
\ (Φ′

k+1

)
E′

k
.

By the induction hypothesis, the inequality (16) holds for α′
k, i.e,

ind(α′
k)E′

k(Φ′

k+1
,ρ′) ≥ pk.

As
(α′

k)E′

k(Φ′

k+1
,ρ′) = (αk)Ek(Φk+1,ρ),

the inequality (16) holds for αk. Therefore, it remains to show the inequality
(16) in the case k = r − 1. Note that is this case pρ is a nonzero multiple of
(χr)Er−1

and Φk+1 = Φr = 0.

Case 1: The character ρ is unramified with respect to vr−1, i.e., ρ = µ̂ for
a character µ ∈ Ch(Er−2) of order p2. Note that pµ is a nonzero multiple of
(χr)Er−2

.
By (1),

(17) ind(αr−2)Er−2(χr−1,µ) = ind(αr−1)Er−1(ρ)/p.

Consider the fields F ′ = F (χr−1), E ′ = E(χr−1), E ′
i = Ei(χr−1), the new

sequence of characters χ′
1 = (χ1)F ′, . . . , χ′

r−2 = (χr−2)F ′, χ′
r−1 = (χr)F ′, the

group of characters Φ′ = 〈χ′
1, χ

′
2, . . . , χ

′
r−1〉 and the elements α′

i ∈ Br(E ′
i)

for i = 0, 1, . . . , r − 1 defined by α′
i = (αi)E′

i
for i ≤ r − 2 and α′

r−1 =

α̂r−2 +
(
χ̂r ∪ (xr−1)

)
over E ′

r−1, and the character µ. The new datum satisfy
the conditions of the lemma. By the induction hypothesis, the inequality (16)
holds for α′

r−2, i.e,

ind(α′
r−2)E′

r−2
(µ) ≥ pr−2.

As
(α′

r−2)E′

r−2
(µ) = (αr−2)Er−2(χr−1,µ),

the inequality (16) holds for αr−1 in view of the equality (17).
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Case 2: The character ρ is ramified. Assume that inequality (16) does not
hold for αr−1, i.e., we have

ind(αr−1)Er−1(ρ) ≤ pr−2.

By [10, Lemma 2.3(2)], there exists a unit u ∈ Er−1 such that Er−2(χr) =
Er−2(ū

1/p) and

ind
(
αr−2 − (χr−1 ∪ (ū1/p))

)
Er−2(χr)

= ind(αr−1)Er−1(ρ) ≤ pr−2.

By descending induction on j = 0, 1, . . . , r − 2 we show that there exist an
element uj in E×

j and a subgroup Ψj ⊂ Φ of rank r − j − 2 such that

〈χ1, . . . , χj , χr−1, χr〉 ∩ Ψj = 0, Ej(χr) = Ej(u
1/p
j ) and

(18) ind
(
αj − (χr−1 ∪ (u

1/p
j ))

)
Ej(Θj)

≤ pj ,

where Θj := 〈Ψj, χr〉. We set Ψr−2 = 0 and ur−2 = ū.

j ⇒ (j − 1): The field Ej(u
1/p
j ) = Ej(χr) is unramified over Ej , hence

vj(uj) is divisible by p. Modifying uj by a p2-th power, we may assume that
uj = vxmp

j for a unit v ∈ Ej , xj ∈ E×
j and an integer m. Then

(
αj − (χr−1 ∪ (u

1/p
j ))

)
Ej(Θj)

= β̂ +
(
η̂ ∪ (xj)

)
Ej(Θj)

,

where η = χj−mχr−1 and β =
(
αj−1−(χr−1∪(u

1/p
j−1))

)
Ej−1(Θj)

, where uj−1 = v̄.

As η is not contained in Θj , the character ηEj−1(Θj) is not trivial. Set Ψj−1 =
〈Ψj, η〉. It follows from (1) and the induction hypothesis that

ind(βEj−1(Θj−1)) = ind
(
αj − (χr−1 ∪ (u

1/p
j ))

)
Ej(Θj)

/p ≤ pj−1.

Applying the inequality (18) in the case j = 0, we have

αE(Θ0) =
(
χr−1 ∪ (w1/p)

)
E(Θ0)

for an element w ∈ E× such that E(w1/p) = E(χr). Hence

αE(Ψ0)(w1/p2 ) = (αE(Θ0))E(Θ0)(w1/p2 ) = 0 in Br(E(Ψ0)(w
1/p2

)).

Since αE(Ψ0) is split by a cyclic extension E(Ψ0)(w
1/p2

)/E(Ψ0) of degree p2,
αE(Ψ0) is p2-cyclic. As [Φ : Ψ0] = p2, this contradicts the assumption. Hence,
the inequality (16) holds for αr−1. �

5. Non-cyclicity of the generic element

The aim of this section is the technical Lemma 5.4 that will allow us to
apply later Lemma 4.2 and Proposition 4.1.

In this section we assume that the base field F contains a primitive p3-th
root of unity. The choice of a primitive p2-th root of unity ξ allows us to define
the symbol (a, b)p2 as in Section 2.1. As −1 is a p2-th power in F×, we have
(a,−1)p2 = 0, hence (a, a)p2 = 0 for all a ∈ F×. We shall write (a, b)p for
p(a, b)p2 = (ap, b)p2.
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Lemma 5.1. Let E be a field extension of F that is complete with respect to

a discrete valuation v with residue field K and α ∈ Br(K). Set β = α̂+(a, x)p

for a unit a ∈ E and x ∈ E× such that ā /∈ K×p and v(x) is prime to p. If β
is p2-cyclic, then α = (ā, z)p2 in Br(K) for some z ∈ K×.

Proof. Suppose that β = (uπi, wπj)p2 and write x = tπk for a prime element
π, integers i, j, k = v(x) and units u, w, t in E. Then we have

α̂ + (ap, wπk)p2 = β = (uπi, vπj)p2 = (u, v)p2 + (uj/vi, π)p2.

Applying the residue map ∂v, we get āpk = ūj/v̄i in K×/K×p2

and

α = (ū, v̄)p2 − (ā, w̄p)p2.

Suppose that i/j is a p-integer (the other case is similar). As k is not
divisible by p and ā is not a p-th power in K×, j is not divisible by p2. It
follows that ū ∈ 〈ā, v̄〉 in K×/K×p2

and then ū ∈ ārv̄sK×p2

for some r and s.
Hence α = (ā, v̄r/w̄p)p2 . �

Corollary 5.2. Let x,y be independent variables over F and a, b ∈ F×. If

(a, b)p 6= 0 in Br(F ), then for any field extension M/F (x, y) of degree prime

to p, the element (a, x)p + (b, y)p in Br(M) is not p2-cyclic.

Proof. Let M/F (x, y) be a field extension of degree prime to p and β = (a, x)p+
(b, y)p over M . As the degree of M/F (x, y) is prime to p, by [8, Lemma 6.1],
there exists a field extension E of the fields F ((y))((x)) and M over F such that
the degree of E/F ((y))((x)) is finite and prime to p. The discrete valuation vx

on the complete field F ((y))((x)) extends uniquely to a discrete valuation v of
E. The ramification index of E/F ((y))((x)) is prime to p, hence v(x) is prime
to p. The residue field K of v is an extension of F ((y)) of degree prime to p.

Let v′ be the valuation on K extending the discrete valuation vy on F ((y)).
The ramification index e′ of K/F ((y)) is prime to p. The residue field N of v′

is a finite extension of F of degree prime to p.
Let α = (b, y)p over K, so βE = α̂ + (a, x)p. Suppose that β is p2-cyclic

over M . Then βE is also p2-cyclic. By Lemma 5.1, applied to βE over E, we
have α = (a, z)p2 for some z ∈ K×, hence (bp, y)p2 = (a, z)p2 . Taking the cup

product with (a)p2 ∈ K×/K×p2

, we get

(a)p2 ∪ (bp, y)p2 = (a)p2 ∪ (a, z)p2 = (a, a)p2 ∪ (z)p2 = 0.

Applying the residue map ∂v′ , we find that e′(a, b)p = e′(a, bp)p2 = 0 over N ,
hence (a, b)p = 0 in Br(N). Taking the corestriction map Br(N) → Br(F ), we
see that (a, b)p = 0 in Br(F ), a contradiction. �

Lemma 5.3. For any integer r ≥ 2, there exist a field extension F ′/F and a

subgroup Φ ⊂ Chp(F
′) of rank r such that for any subgroup Ψ ⊂ Φ of index

p2, there is an element β ∈ Brp

(
F ′(Φ)/F ′

)
with the property that any field

extension M/F ′(Ψ) of degree prime to p, the element βM is not p2-cyclic.
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Proof. Let a1, a2, . . . , ar, x, y be independent variables over F and set F ′ :=
F (a1, a2, . . . , ar, x, y). For every i = 1, . . . , r, let χi ∈ Chp(F

′) be a char-

acter such that F ′(χi) = F ′(a
1/p
i ) and set Φ := 〈χ1, χ2, . . . , χr〉. Let Ψ

be a subgroup of Φ of index p2. Choose a basis η1, η2, . . . , ηr for Φ such
that Ψ = 〈η1, η2, . . . , ηr−2〉 and the elements b1, b2, . . . , br in F ′ such that

F (ηi) = F (b
1/p
i ) for all i = 1, . . . , r and F (b1, b2, . . . , br) = F (a1, a2, . . . , ar).

Clearly, b1, b2, . . . , br are algebraically independent over F and F ′(Ψ) = L(x, y),

where L := F (b
1/p
1 , . . . , b

1/p
r−2, br−1, br) with the generators algebraically indepen-

dent over F .
Let β = (br−1, x)p+(br, y)p in Brp

(
F ′(Φ)/F ′

)
and M/F ′(Ψ) a field extension

of degree prime to p. As ∂v

(
(br−1, br)p

)
= b̄r−1, where v is the discrete valuation

on L associated with br, is nontrivial, we have (br−1, br)p 6= 0 in Br(L). The
result follows from Corollary 5.2. �

Let F ′/F be the field extension and Φ ⊂ Chp(F
′) the subgroup of rank r as

in Lemma 5.3. Consider the algebraic tori PΦ, SΦ, TΦ, UΦ and V Φ over F ′

defined in Section 2.4. The morphism γ : PΦ → V Φ in the diagram (4) is a
UΦ-torsor. Denote by δ the image of the class of γ under the composition

H1
ét(V

Φ, UΦ) → H1
ét(V

Φ, U ′Φ) → H2
ét(V

Φ, Gm),

induced by the diagram (5). We write δgen for the image of δ under the
homomorphism

H2
ét(V

Φ, Gm) → H2
(
F (V Φ), Gm

)
= Br

(
F ′(V Φ)

)

induced by the generic point morphism Spec
(
F ′(V Φ)

)
→ V Φ. It follows from

(6) that δgen ∈ Brps

(
F ′(V Φ)

)
.

Lemma 5.4. Let K = F ′(V Φ) and Ψ ⊂ Φ a subgroup with [Φ : Ψ] = p2. Then

for any field extension M/K(Ψ) of degree prime to p, the element (δgen)M is

not p2-cyclic.

Proof. Suppose that there exist a subgroup Ψ ⊂ Φ with [Φ : Ψ] = p2 and
a field M/K(Ψ) of degree prime to p such that (δgen)M = χ ∪ (a) for some
χ ∈ H2(M, Z) = Ch(M) with p2χ = 0 and a ∈ H0(M, Gm) = M×. Choose
an integral scheme X over F ′ such that F ′(X) = M together with a dominant
F ′-morphism

f : X → V Φ(Ψ) := (V Φ)F ′(Ψ)

of degree prime to p that induces the embedding of the function field K(Ψ)
into M . Let h : X → V Φ be the composition of f with the natural morphism
g : V Φ(Ψ) → V Φ. Replacing X by a nonempty open set, we may assume that
h∗(δ) = χ0∪ (a0) for some χ0 ∈ H2

ét(X, Z) with p2χ0 = 0 and a0 ∈ H0
ét(X, Gm).

By [8, Lemma 6.2], there is a nonempty open set W ′ ⊂ V Φ(Ψ) such that
for every x′ ∈ W ′ there exists a point x ∈ X with f(x) = x′ and the degree
[F ′(x) : F ′(x′)] prime to p. Let Z = V Φ(Ψ) \ W ′. As g is finite, g(Z) 6= V Φ,
hence the open set W := V Φ \ g(Z) is not empty. We have g−1(W ) ⊂ W ′.
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Consider the element β ∈ Brp

(
F ′(Φ)/F ′

)
constructed in Lemma 5.3. Let

γ′ ∈ H1(F ′, UΦ) be the corresponding class of UΦ-torsors over F ′ under the
isomorphism H1(F ′, UΦ) ≃ Brps

(
F ′(Φ)/F ′

)
by (7). As γ is a generic UΦ-

torsor, there exists an F ′-morphism v : Spec F ′ → V Φ such that v∗(γ) = γ′

and Im(v) ⊂ W (see Section 2.3). From the commutativity of the diagram

H1
ét(V

Φ, UΦ)
v∗

−−−→ H1(F ′, UΦ)y
y

H2
ét(V

Φ, Gm)
v∗

−−−→ H2(F ′, Gm)

we find that v∗(δ) = β.
Let v′ : Spec F ′(Ψ) → V Φ(Ψ) be the morphism vF ′(Ψ). Note that Im(v′) ⊂

g−1(W ) ⊂ W ′.
By the definition of W ′, there is a point x ∈ X such that the degree of the

field extension F ′(x) over the residue field of (the only) point in Im(v′) is prime
to p. By [8, Lemma 6.1], there exist a field extension M/F ′(Ψ) of degree prime
to p and a morphism w : Spec(M) → X such that the diagram

Spec(M) −−−→ Spec
(
F ′(Ψ)

)
−−−→ Spec(F ′)

w

y v′

y v

y

X
f

−−−→ V Φ(Ψ)
g

−−−→ V Φ

is commutative. It follows that

βM = v∗(δ)M = w∗h∗(δ) = w∗
(
χ0 ∪ (a0)

)
= w∗(χ0) ∪ w∗(a0),

i.e., βM is p2-cyclic. This contradicts Lemma 5.3. �

6. A lower bound for edp(Alg pr,ps)

Let n ≥ 1 be an integer, m a divisor of n and p a prime integer. Let pr

(respectively, ps) be the largest power of p dividing n (respectively, m). If
A ∈ Algn,m(K) for some field extension K/F , then there is a finite field ex-
tension E/K of degree prime to p such that ind(AE) is a p-power. Hence
ind(AE) divides pr and exp(AE) divides ps as it divides m and ind(AE), i.e.,
AE ∈ Alg pr,ps(E). It follows that the embedding functor Alg pr ,ps → Algn,m

is p-surjective and hence edp(Algn,m) ≤ edp(Alg pr,ps) by [8, Sec. 1.3]. Con-
versely, if A ∈ Algn,m(K), then the p-primary component Ap of A satisfies
Ap ∈ Alg pr,ps(K), hence the morphism of functors Algn,m → Alg pr,ps, taking A
to Ap is surjective and therefore, edp(Algn,m) ≥ edp(Alg pr,ps). We proved that

edp(Algn,m) = edp(Alg pr,ps).
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Theorem 6.1. Let F be a field and p a prime integer different from char(F ).
Then, for any integers r and s with 1 ≤ s ≤ r,

edp(Alg pr,ps) ≥

{
(r − 1)2r−1 if p = 2 and s = 1,

(r − 1)pr + pr−s otherwise.

Proof. By [8, Prop.1.5], we can replace the base field by any field extension.
Hence we may assume that F contains a primitive p3-th root of unity. More-
over, we can replace F by the field F ′ in Lemma 5.3. Let V Φ be the alge-
braic torus constructed in Section 2.4. Set E = F (V Φ) and let α := δgen ∈
Brps(E(Φ)/E) be the element defined in Section 5. Let Ek be the fields and

αk ∈ BΦk
k,s(Ek) the elements constructed in Section 4.2, so that E0 = E and

α0 = α. By Lemma 5.4, αM is not p2-cyclic for any subgroup Ψ ⊂ Φ with
[Φ : Ψ] = p2 and any field extension M/E(Ψ) of degree prime to p, hence α
satisfies the condition of Lemma 4.2. It follows that we can apply Proposition
4.1. By the iterated application of this proposition, we have

(19) ed
Algpr ,ps

p (αr) = ed
eB
Φr
r,s

p (αr) ≥ ed
eB
Φr−1
r−1,s

p (αr−1) + 1 ≥ . . .

≥ ed
eB
Φ1
1,s

p (α1) + (r − 1) ≥ ed
eB
Φ0
0,s

p (α0) + r = ed
eBΦ
0,s

p (α) + r.

Consider the commutative diagram with exact rows:

1 −−−→ UΦ −−−→ PΦ γ
−−−→ V Φ −−−→ 1y

y
∥∥∥

1 −−−→ SΦ −−−→ PΦ × Gr
m

γ′

−−−→ V Φ −−−→ 1,

where PΦ → PΦ ×Gr
m takes x to (x, 1) and SΦ →֒ PΦ × Gr

m is the product of
SΦ →֒ PΦ and SΦ

։ Gr
m.

The element α considered in BΦ
0,s(E) corresponds to the generic fiber of the

UΦ-torsor γ under the bijection BΦ
0,s(E) ≃ UΦ- torsors(E) in (11). Hence, by

the diagram, the class of α in B̃Φ
0,s(E) corresponds to the generic fiber γ′

gen of

the SΦ-torsor γ′ under the bijection B̃Φ
0,s(E) ≃ SΦ- torsors(E). As PΦ × Gr

m is

a quasi-split torus, γ′ is a generic SΦ-torsor by Proposition 2.1, hence

(20) ed
eBΦ
0,s

p (α) = edSΦ- torsors
p (γ′

gen) = edp(S
Φ)

by [8, Th. 2.9]. The essential p-dimension of SΦ was calculated in Corollary
3.11. From (19),(20) and this corollary, we have

edp

(
Algpr ,ps

)
≥ ed

Algpr ,ps

p (αr) ≥ edp(S
Φ)+r =

{
(r − 1)2r−1 if p = 2 and s = 1,

(r − 1)pr + pr−s otherwise.

This concludes the proof. �
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7. An upper bound for edp(Alg pr,ps)

Lemma 7.1. Let F be a field and p a prime. Then, for any integers r and s
with 1 ≤ s ≤ r,

edp(Alg pr,ps) ≤ edp(Algpr) + pr−s − 1.

Proof. Let A ∈ Alg pr,ps(K) ⊂ Alg pr(K) for a field extension K/F . There exist
a field extension K ′/K of degree prime to p, a subfield K0 ⊂ K ′ over F and
B ∈ Alg pr(K0) such that tr. degF (K0) ≤ edp(Alg pr) and A⊗K K ′ ≃ B ⊗K0

K ′.

By [16, Lemma 5.6], ind(B⊗ps
) divides pr−s. Choose a central simple algebra

C of degree pr−s over K0 in the Brauer class of B⊗ps
in Br(K0) and consider the

Severi-Brauer variety X := SB(C) of C. Since exp(A) divides ps, the algebra
C is split over K ′, hence X(K ′) 6= ∅. This implies that there exists x ∈ X
such that K0(x) ⊂ K ′ and X

(
K0(x)

)
6= ∅. Therefore, CK0(x) is split, hence

exp(BK0(x)) divides ps, i.e., BK0(x) ∈ Alg pr,ps

(
K0(x)

)
. Since dim(X) = pr−s−1,

we have

ed
Algpr,ps

p (A) ≤ tr. degF (K0(x)) = tr. degF (K0) + tr. degK0
(K0(x)) ≤

edp(Alg pr) + dim(x) ≤ edp(Alg pr) + (pr−s − 1). �

By [12, Th.1.1],

edp(Algpr) ≤ 2p2r−2 − pr + 1,

if r ≥ 2, therefore, by Lemma 7.1, we have the following upper bound for
edp(Alg pr ,ps):

Theorem 7.2. Let F be a field and p a prime integer. Then, for any integers

r ≥ 2 and s with 1 ≤ s ≤ r,

edp(Alg pr ,ps) ≤ 2p2r−2 − pr + pr−s.

8. Essential dimension of AlgL/F , AlgG and ALGG .

Let G be an elementary abelian group of order pr and K/F a field extension.
Consider the subset AlgG (K) of Algpr ,ps (K) consisting of all classes that have
a splitting Galois K-algebra E with Gal(E/K) ≃ G.

Let L/F be a Galois field extension with Gal(L/F ) ≃ G. Consider the
subset AlgL/F (K) of AlgG (K) consisting of all classes split by the field extension
KL/K. We have the subfunctors of Algpr ,ps :

AlgL/F ⊂ AlgG ⊂ Algpr ,ps .

We write ALGG (K) for the set of pairs (A, E), where A ∈ AlgG (K) and E is
a Galois G-algebra splitting A. We have an obvious surjective morphism of
functors ALGG → AlgG .

Theorem 8.1. Let F be a field, p a prime integer different from char(F ), G
an elementary abelian group of order pr with r ≥ 2, and L/F a Galois field

extension with Gal(L/F ) ≃ G. Let an integer s satisfy 1 ≤ s ≤ r. Suppose
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that r ≥ 3 if p = 2 and s = 1. Let F be one of the three functors: AlgL/F , AlgG

or ALGG . Then

edp(F) = ed(F) =

{
(r − 1)2r−1 if p = 2 and s = 1,

(r − 1)pr + pr−s otherwise.

Proof. Let Φ be a subgroup of Chp(F ) of rank r such that L = F (Φ). By (7),
we have AlgL/F ≃ UΦ- torsors . It follows from Proposition 3.9 that

edp(AlgL/F ) = ed(AlgL/F ) = dp,r,s :=

{
(r − 1)2r−1 if p = 2 and s = 1,

(r − 1)pr + pr−s otherwise.

Let αr ∈ Br(Er) be as in the proof of Theorem 6.1. By construction, αr is split
by Er(Φ), hence αr ∈ AlgG (Er). Note that edB

p (β) ≤ edH

p (β) for any subfunctor
H of a functor B and any β ∈ H(K). Hence, by the proof of Theorem 6.1, we
have

edp(AlgG ) ≥ edAlgG
p (αr) ≥ ed

Algpr ,ps

p (αr) ≥ dp,r,s.

Let J be the G-module defined in the Section 2.4 and T := Spec F [J ] the
split torus with the character group J . Consider the minimal surjective p-
presentation ν : P ′ → J as in Remark 3.10. As explained in Section 2.2, a
choice of a G-invariant basis of P yields a linear T ⋊G-space V with dim(V ) =
rank(P ′). By Remark 3.10, G acts faithfully on Ker(ν). It follows from [11,
Lemma 3.3] that the action of T ⋊G on V is generically free in this case, hence,
by [3, Prop. 4.11],

ed(T ⋊ G) ≤ dim(V ) − dim(T ⋊ G)

= rank(P ′) − rank(J)

= rank
(
Ker(ν)

)

= dp,r,s.

Let γ ∈ H1(F, G) and let L be the corresponding Galois G-algebra over F .
Since G is an abelian group, we have G = Gγ . The G-action on RL/F (Gm,L)
restricts to the trivial action on the subgroup µps. As Tγ = RL/F (Gm,L)/µps,
the connecting map

H1(F, Tγ) → H2(F, µps) = Brps(F )

is injective, hence the group Gγ(F ) = G acts trivially on H1(F, Tγ). By (2),

H1(F, T ⋊ G) =
∐

Gal(E/F )=G

Brps(E/F ),

where the disjoint union is taken over all isomorphism classes of Galois G-
algebras E/F . Hence we have a surjective morphism of functors T⋊G- torsors →
ALGG . As ALGG surjects on AlgG , we have

edp(AlgG ) ≤
(
edp(ALGG ) or ed(AlgG )

)
≤ ed(ALGG ) ≤ ed(T ⋊ G) ≤ dp,r,s. �
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Remark 8.2. Suppose that p = r = 2 and s = 1 and F is a field of charac-
teristic different from 2. By [15, Th.1] or [2, Sec.2.4], there exists a nontrivial
cohomological invariant of degree 4 for AlgG over F (i), where i is a primitive
4-th root of unity. Hence, ed2(AlgG ) ≥ ed2(AlgG )F (i) ≥ 4 by [13, Lemma 6.9].
Moreover, by the structure theorem on central simple algebras split by a bi-
quadratic field extension [20, Cor.2.8], every (A, E) ∈ ALGG (K) is of the form
E = K(a1/2, b1/2) and [A] = (a, x)2 + (b, y)2 for some a, b, x, y ∈ K×. Hence
ed(ALGG ) ≤ 4. As ALGG surjects on AlgG , we have

4 ≤ ed2(AlgG ) ≤
(
ed2(ALGG ) or ed(AlgG )

)
≤ ed(ALGG ) ≤ 4,

hence the essential (2)-dimension of AlgG and ALGG is equal to 4.

Corollary 8.3. Let F be a field of characteristic 6= 2. Then

ed2(Alg 8,2) = ed(Alg 8,2) = 8.

Proof. As any central simple algebra of degree 8 and exponent 2 has a tri-
quadratic splitting field by [14], we have Alg 8,2 = AlgG for the elementary
abelian group G of order 8, hence the statement follows from Theorem 8.1.
Note that the inequality ed2(Alg 8,2) ≥ 8 is also proven in Theorem 6.1 and the
opposite inequality ed(Alg 8,2) ≤ 8 was shown in [2, Th.2.12]. �
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ESSENTIAL DIMENSION OF CENTRAL SIMPLE ALGEBRAS 23

[14] L. Rowen, Central simple algebras, Israel J. Math. 29 (1978), no. 2-3, 285–301.
[15] M. Rost, J.-P. Serre, J.-P. Tignol, La forme trace d’une algèbre simple centrale de degré
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