ESSENTIAL p-DIMENSION OF PGL,

ANTHONY RUOZZI

1. INTRODUCTION

k a fixed base field of characteristic # p. All fields mentioned in
this paper are assumed to contain k.

Consider any functor ¥ : Fields/k — Set. We say that an element
a € F(K) is defined over k C K, C K if it is in the image of the
map 7 (Ko) — F(K). The essential dimension, edi(a), is the least
transcendence degree/k of a field of definition for a. The essential
dimension of F, edi(F) = supf{edi(a)} where the supremum is taken
over all a € K for all field extensions K/k. The basic properties of this
definition are outlined in [BF].

In this paper, we will be interested in the slightly simpler com-
putation of essential p-dimension. Here, we are allowed some extra
flexibility: edi(a; p) is the minimum essential dimension of the image
of a in ¥ (L) over all L/K finite prime to p extensions. As above, we
define edx(¥; p) as the supremum of the essential p-dimensions over
all elements and fields, a € K.

A field F/kis called p-closed if every finite extension of F has degree
prime to p. For limit-preserving functors, the essential p-dimension
of any element can be computed over a p-closure [LMMR Lemma
3.3], so we can always assume that our fields F are p-closed.

A natural transformation of functors # — G will be called p-
surjective if for any K/k, there is a finite extension L/K of degree prime
to p such that ¥ (L) » G(L). More specifically, if F/k is p-closed and
¥ (F) - G(F), then the map is p-surjective and edi(F; p) > edi(G; p)
[LMMR Prop 3.4].

Of particular interest are the functors H'(—, G) for an algebraic
group G/k. For ease of notation, the essential dimension of such
functors will be denoted ed(G). We will be studying the functor
H'(F, PGL,) which classifies central simple algebras/F of degree n. In
what follows, this functor will be denoted by Alg (—). Its essential
dimension gives the least number of parameters needed to define a
“generic” central simple algebra of degree n.
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Because we can apply prmiary decomposition to central simple
algebras, the computation of ed(Alg, (—); p) reduces to a computation
of ed(Alg .(-);p) where p* is the largest power of p dividing n. It
is well-known that ed(Alg ;p) = 2; cf. [R2]. Recently, Meyer and
Reichstein gave an upper bound for s > 2 [MR2 Theorem 1.1]:

ed(Alg,;p) < 2p* 2 —p° +1

and conjectured that this bound is sharp. The goal of this paper is to
further strengthen this result.

Theorem 1.1. ed(Alg,) < p*?+1fors > 2.

For s = 2, Merkurjev showed that this bound is sharp [M], so we
can consider s > 3.

2. EsseNTIAL DIMENSION AND TORI

Throughout this section, let F/k be an arbitrary field extension. Fix
a finite group G and a finite G-set, X, of n elements. Consider the
augmentation exact sequence of G-modules:

0-1-Z[X]>Z— 0.
Construct any resolution of I
0->-M—->P—->1-0

where P is a permutation module. Fixing bases and using the usual
anti-equivalence of categories, this sequence corresponds to an exact
sequence of algebraic tori split over F:

1-T—-U—>S5S—>1

where U = GL,(E) is the diagonal subgroup in GLr(E) for the split
étale algebra E/F corresponding to P. Thus we have a faithful repre-
sentation T < GLg(E).

Since T acts on E via this representation, G acts on E by algebra
automorphisms, and the above representation is G-equivariant, this
extends to a representation T <G — GLr(E). We will construct an up-
per bound for the essential dimension using the following important
result:

Theorem 2.1. If G acts faithfully on M in the resolution of I constructed
above, then ed(T = G) < rank(P) — rank(I) = rank(M).

Proof. This result is a combination of [R Theorem 3.4] and [MR1
Lemma 3.3]. O
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Since we a interested in essential p-dimension, the following result
will also be useful:

Proposition 2.2. Let H = Sylp(G). Then ed(T = G; p) = ed(T = H; p).
Proof. This is just a special case of [MR1 Lemma 4.1]. O

3. DivisioN ALGEBRAS

In what follows we are interested in computing the essential p-
dimension, so we can assume that F D k is p-closed. Let D/F be a
central division algebra of degree n = p* with s > 2. The following
results will be useful:

Proposition 3.1. D contains degree p cyclic extension of F.
Proof. See [RS Prop 1.1]. m]

Theorem 3.2. Let Ly C D be a degree p cyclic extension/F. Then there is
another degree p cyclic exentsion L, /F contained in D such that L,L, C D
is a bicyclic extension.

Proof. Fix a generator < ¢ >= Gal(L;/F). The Skolem-Noether the-
orem gives an element y € D* such that yxy™' = o(x) for all x € L;.
There are two possibilities:

yP € F: In this case, y¥ = a defines a cyclic algebra/F B = (L;,a). By
the double centralizer theorem CpB is division algebra/F of degree
> p. Thus, CpB C D has a cyclic subfield L,. Since L; ® L, C B CpB =~
D is a subfield, L; ® L, =~ L;L, is bicyclic as desired.

yP ¢ F: Let K = F(y”). By the proposition, K contains a cyclic
subfield L,. Any element of L, commutes with F(y). Then x € L; N L,
commuting with yimplies that o acts trivially, so L; and L, are disjoint
and give L;L, bicyclic. m|

Corollary 3.3. For A any central simple algebra/F of degree p° > p* and
Ly C A an étale sub-algebra of degree p, there is a maximal étale sub-algebra
K C A that can be written as K = Ly ® L, for Ly/F an étale algebra of
dimension p*~.

Proof. First, consider the case where A is a division algebra. By the
theorem, A contains two distinct degree p cyclic extensions L; and L
over F. Proceed by induction on s.

If s = 2, then taking L, = L we are done. Otherwise, assume we
have the result for any division algebra of degree p*! and any degree
p subfield L’. The centralizer C4L is a division algebra over L; of
degree p*~!. By definition it contains the degree p subfield L,L/L, so



4 A.RUOZZI

by induction hypothesis, C4L has subfield L,/L disjoint from L;L of
degree p*2.

Since L, N L1L = L and L is disjoint from L;, L, N L; = F. It follows
that L,/F is a degree p°! extension disjoint from L; and L; ® L, C A.

Suppose A is not a division algebra. If A is split, the result is
immediate. Otherwise, choose a division algebra D ~ A. deg(D) =
p' < p°® =deg(A). If t = 1, then any maximal subfield K c D gives the
desired étale algebra K ® F*¥"' C A, so suppose t > 2. By the above
argument, D has a subfield K = L;L, ~ L; ® L, where [L; : F] = p and
[L, : F] = p*". Set L = K*¥"" an étale sub-algebra of B. Since L has

dimension p?, it is maximal. But L ~ [; ® L;pw, so L; and L;pH are
étale algebras of the desired degree. m|

Consider the functor H'(F, S,)) which classifies n-dimensional étale
algebras up to isomorphism [KMRT 29.9]. Let G = 5, XS,--1. We have
the usual isomorphism

H'(F, S,) x H'(F, S;-1) - H'(E, G).

Converting this to the laguange of algebras, H'(F, G) can be identified
as pairs (L1, L) of étale algebras of dimensions p and p*~!, respectively.
Under the natural inclusion

H'(E,G) » H'(E Sp),

the image of such a pair is the étale algebra L; ®L,. LetK = 1 ®L, C A
be given for a central simple algebra A as in the corollary. Using
these identifications, any such K C A can be viewed as an element of
H'(F, G).

Recall the notation of section 2. Consider the split torus T for G as
above and X a G-set of p° elements. For its cohomology group, we
have a disjoint union of fibers

H(ET=G) = || HET)G
yeH\(EG)

where T, denotes T with action twisted by the cocycle y and I' =
Gal(F*P /F) [KMRT 28.C]. T, is also a torus with character module
I. In particular, if X corresponds to a p°-dimensional étale algebra
N representated by y then the usual anti-equivalence of categories
gives an exact sequence

1 - Gm - RN/F(Gm,N) — T)/ e ]_
Passing to cohomology and applying Hilbert theorem 90 gives

1 - H'(F, T,) — H*(F, G,) — H(F, Rn/r(Gm))
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showing that H'(F, T,) =~ Br(N/F). Now, G), acts on G,, trivially, so
given g € G}, we get a diagram:

1 — HYET,) — HXEGy)
ls |
1 — HYET,) — HXEGy)

and the commutativity implies that the action of ¢ must be trivial for
all g € G),. Combining these observations with the above,

HYET = G) = ]_[ Br(N/F),
N

and thus we can define a map ¢(F) : H(F, T~ G) — Algps (F) which
sends [B] € Br(N/F) to the unique (up to isomorphism) C ~ B with
degree C = p°. Since any A € Alg, is split over K = L1 ® L, it is in the
image of this map. We have proven:

Proposition 3.4. ¢ is p-surjective.

Let Gs = Sylp(Sp X Sp1) = Sylp(Sp) X Sylp(Sps_l) = Xj X Xs_1. Using
Proposition 2.2 and the property of p-surjective maps stated in the
introduction,

edi(T = Gg; p) = edi(T = (S, X Sps—l); p) = edk(Algps(—); p).

We can therefore reduce to the computation of the essential dimen-
sion of T = G,. The calculations for this case will be done in the next
section.

4. CONSTRUCTION

We will produce an upper bound for the essential dimension of
T = G,. By section 2, this requires finding a faithful G;-module, M,
in a resolution of I of smallest rank. In what follows, we denote
Gs = L1 X Z[p = Ls-1X < 0 >, where as above L, = Sylp(S,,s).

First observe that G; C S,s acts by permutation on a set X; of p*
elements. This action can be descrbibed as an action on p blocks of
p*~! elements where o cyclically permutes the blocks and X,_; acts as
usual on a block of p°~! elements. In particular, the action is transitive,
so if H; = Stab(x) for some x € X, then X; ~ G,/H; as G;,-sets.

Begin with the case s = 2.
Gy, = X1 XX =< 11 > X < 0 >. No non-trivial element of G, fixes
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x € X, so H, = 1. Identifying X, =~ G,, I is generated by 0 — 1 and
71 — 1 as a Go-module. Since G, is abelian, the map

Z|G]eZ[G] = I

defined by sending a generator of the first term to 0—1 and a generator
of the second to 7; — 1 is a well-defined G,-module homomorphism.
It is surjective by definition. The kernel of this map, M, has rank:

rank(M) = 2 rank(Z[G,]) — rank(l) = 2p* — (p* = 1) = p* + 1.

For the general case,
Yo = (Zsp)! < Z[p = (Es2)P= < 154 >. We will show inductively
that H, = H,_; X (Xs_»)" "' and G, =< 0, Ts_1, H, >.

The case s = 2 was verified above. Suppose the formula holds for
s—1 > 2. X;acts onaset X; of p° elements, and H; = Stab(x). Asabove,
this action can be thought of as an action on p blocks of p°*~! elements.
On any of these blocks, X;_; C G; acts as usual by considering it as
a collection of p blocks of p*~? elements. Therefore, we see that to be
the stabilizer of x is to stabilize the block containing x and allow the
others to be permuted freely. That is, H; = Hs_1 X (Zs-0)P .

Now, 755 €< 751, (Es2)P"! > and since < 1,5, H,-1 >= X5 by
assumption, we can conclude that G; =< 0, 7;,-1, H; >. By an easy
argument, I is then generated by ox — x and 7,_1x — x; cf. [MR2 proof
of Theorem 4.1]. Setting H, = 7, H7), N H =~ H,y X Hy_1 X (Zs5)P 2,
we can define a map as above

Z|Gs/Hs] @ ZIGs/H] — 1

by sending a generator of the first to ox — x and a generator of the
second to 7,_1x — x. This is well-defined since H is exactly the subset
of G that fixes 7,.1x — x. We then have constructed a surjective
Gs-module map with rank(M) =

rank(Z[G,/H,])+rank(Z[G,/H.])-rank(l) = p*+p**¢ 2 —(p°~1) = p*2+1.

5. CONCLUSIONS

We now complete the proof of the theorem stated in the introduc-
tion. Recall that we are assuming that the base field k has character-
istic # p.

Theorem 5.1. ed(Alg,;p) < p* 2 +1fors > 2.

Proof. For F p-closed, the construction in the previous section pro-
duced a G;-module M of rank p*~2 + 1. By section 2, it remains to
show that the G-action on M is faithful (cf. [MR Lemma 3.2] for a
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more general argument). Faithfulness can be checked over Q, so we
have the split exact sequences:

0-1I®Q - Q[G;/H,] - Q—0
0 - N — Q[G,/H!] — Q[Gs/Hs] = 0
0> MeQ— Q[G/H,]®Q[Gs/H] - 1®Q =0
Combining these together,

MeQ)e(I®Q)

1R

Q[Gs/H;s] ® Q[Gs/H;]
Q[Gs/Hs] © N @ Q[Gs/H]
~ Q[G;/H;]oNo Qo (I® Q).

Therefore, Q[G;/H;] is a direct summand of M ® Q, so it suffices to

check that the G, action on Q[G,/H,] is faithful. However, if the coset

gH; is fixed by every element in G;, then g € () 2:€Cs ¢sHsg ' A quick

induction argument shows that for all s > 2 this group is trivial.
Since then the action is faithful, we have the bound:

P2 +12ed(T = G;p) 2 ed(Alg,; p). O
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