NOTE ON THE COHOMOLOGICAL INVARIANT OF PFISTER FORMS

M.TEZUKA AND N.YAGITA

ABSTRACT. The cohomological invariant ring of the *n*-Pfister forms is isomorphic to the invariant ring in that of an elementary abelian 2-group of rank *n* under a $GL_n(\mathbb{Z}/2)$ -action.

1. INTRODUCTION

Let G be an algebraic group over k with $ch(k) \neq 2$. The cohomological invariant $Inv^*(G; \mathbb{Z}/2)$ is (roughly speaking) the ring of natural functors $H^1(F; G) \to H^*(F; \mathbb{Z}/2)$ for the category of finitely generated field F over k. (For details, see the excellent book [Ga-Me-Se]). Moreover, we can define the cohomological invariant $Inv^*(Pfister_n; \mathbb{Z}/2)$ of n-Pfister forms, while there does not exist the corresponding group G for $n \geq 4$. In Theorem 18.1 in [Ga-Me-Se], this invariant has been computed.

In this note, we show that this cohomological invariant is isomorphic to the invariant ring in that of an elementary abelian 2-group of rank n under a $GL_n(\mathbb{Z}/2)$ -action, namely,

$$Inv^*(Pfister_n; \mathbb{Z}/2) \cong Inv^*((\mathbb{Z}/2)^n; \mathbb{Z}/2)^{GL_n(\mathbb{Z}/2)}.$$

2. MOTIVIC COHOMOLOGY AND COHOMOLOGICAL INVARIANT

We recall the motivic cohomology $H^{*,*'}(X; \mathbb{Z}/2)$ for a smooth scheme X over k with $ch(k) \neq 2$. By the Milnor conjecture (which is now solved by Voevosky), we know $H^{*,*'}(X; \mathbb{Z}/2) \cong H^*_{et}(X; \mathbb{Z}/2)$ for $* \leq *'$. Take $\tau \in H^{0,1}(Spec; \mathbb{Z}/2) \cong \mathbb{Z}/2$ as a nonzero element. It is known that $H^{*,*'}(X; \mathbb{Z}/2) = 0$ for (* - *') > dim(X). Hence we have

$$H^{*,*'}(Spec(k);\mathbb{Z}/2) \cong H^*_{et}(Spec(k);\mathbb{Z}/2)[\tau].$$

Let us write $H^{*,*'} = H^{*,*'}(Spec(k); \mathbb{Z}/2)$ and $H^* = H^*_{et}(Spec(k); \mathbb{Z}/2)$ so that $H^{*,*'} \cong H^*[\tau]$.

¹⁹⁹¹ Mathematics Subject Classification. Primary 11E72, Secondary 12G05.

Key words and phrases. Pfister forms, cohomological invariant, Dickson invariant.

Let BG be a classifying space of G ([To], [Vo2]). Let $H^*(X; H^{*'}_{\mathbb{Z}/2})$ be the sheaf cohomology where $H^n_{\mathbb{Z}/2}$ is the Zarisky sheaf induced from the presheaf $H^n_{et}(V; \mathbb{Z}/p)$ for open subset V of X. Then Totaro proved that

 $Inv^*(BG; \mathbb{Z}/2) \cong H^0(BG; H^*_{\mathbb{Z}/2})$

in a letter to Serre [Ga-Me-Se]. The Milnor conjecture implies the Beilinson and Lichtenbaum conjecture (see [Vo2,3]). This fact implies the following long exact sequences of motivic and sheaf cohomology theories (Lemma 3.1 in [Or-Vi-Vo], [Vo3])

$$\to H^{m,n-1}(X;\mathbb{Z}/2) \xrightarrow{\times_{\tau}} H^{m,n}(X;\mathbb{Z}/2) \to H^{m-n}(X;H^n_{\mathbb{Z}/2}) \to H^{m+1,n-1}(X;\mathbb{Z}/2) \xrightarrow{\times_{\tau}} .$$

Thus we have

Theorem 2.1. There is an additive isomorphism

$$Inv^{*}(G; \mathbb{Z}/2) \cong H^{*,*}(BG; \mathbb{Z}/2)/(\tau) \oplus Ker(\tau)|H^{*+1,*-1}(BG; \mathbb{Z}/2).$$

As an application, we first consider the case $G = \mathbb{Z}/2$. The mod(2) motivic cohomology is computed in [Vo1,2].

$$H^{*,*'}(B\mathbb{Z}/2;\mathbb{Z}/2) \cong H^{*,*'}[y] \otimes \Delta(x)$$

with $\beta(x) = y$, hence deg(y) = (2, 1) and deg(x) = (1, 1). Here Voevodsky shows ([Vo1,2])

$$x^2 = \tau y + \rho x$$
 with $\rho = (-1) \in H^1 = k^*/(k^*)^2$.

Next consider their product $G = (\mathbb{Z}/2)^n$. The cohomology $H^{*,*'}(B\mathbb{Z}/2;\mathbb{Z}/2)$ has the Kunneth formula (also by Voevodsky). Hence the motivic cohomology is given

$$H^{*,*'}(BG; \mathbb{Z}/2) \cong H^{*,*'}[y_1, ..., y_n] \otimes \Delta(x_1, ..., x_n)$$

where $\beta(x_i) = y_i$ and $x_i^2 = \tau y_i + \rho x_i$. Hence from Theorem 2.1, we get (as stated in [Ga-Me-Se])

Lemma 2.2. Let G be an elementary abelian 2-group of rank(G) = n. Then $Inv^*(G; \mathbb{Z}/2) \cong H^* \otimes \Delta(x_1, ..., x_n)$ with $x_i^2 = \rho x_i$.

3. DICKSON INVARIANTS

Recall that the mod 2 (topological) cohomology

 $H^*(B(\mathbb{Z}/2)^n; \mathbb{Z}/2) \cong \mathbb{Z}/2[x_1, ..., x_n] \quad |x_i| = 1.$

It is well known that the invariant ring under the $GL_n(\mathbb{Z}/2)$ -action is the Dickson algebra

$$H^*(B(\mathbb{Z}/2)^n;\mathbb{Z}/2)^{GL_n(\mathbb{Z}/2)} \cong \mathbb{Z}/2[d_{n,0},...,d_{n,n-1}]$$

where each generator $d_{n,i}$ is given by

$$w_t(x) = \prod_{\epsilon_i=0 \text{ or } 1} (t + \epsilon_1 x_1 + \dots \epsilon_n x_n)$$
$$= t^{2^n} + d_{n,n-1} t^{2^{n-1}} + d_{n,n-2} t^{2^{n-2}} + \dots + d_{n,0} t$$

Examples. Let us write by w_i the elementary symmetric function for x_j in $H^*(B(\mathbb{Z}/2)^n; \mathbb{Z}/2)$. Then

$$\begin{cases} d_{2,1} = x_1^2 + x_1 x_2 + x_2^2 = w_1^2 + w_2 \\ d_{2,0} = x_1^2 x_2 + x_1 x_2^2 = w_1 w_2 \end{cases}$$

We want to know the Dickson invariant ring in the cohomological invariant. Let us consider

$$U = Inv_{k=\mathbb{R}}^*((\mathbb{Z}/2)^n; \mathbb{Z}/2) \cong H^{*,*'}(B(\mathbb{Z}/2)^n|_{\mathbb{R}}; \mathbb{Z}/2)/(\tau)$$
$$\cong \mathbb{Z}/2[\rho] \otimes \Delta(x_1, ..., x_n), \quad x_i^2 = \rho x_i.$$

For example, in U, we see $d_{2,0} = \rho x_1 x_2 + x_1 \rho x_2 = 0$, and

$$d_{2,1} = \rho x_1 + x_1 x_2 + \rho x_2 = \rho w_1 + w_2.$$

Lemma 3.1. In U, we have $d_{n,i} = 0$ for i < n-1 and

$$d_{n,n-1} = \sum_{i\geq 1}^{n} w_i \rho^{2^{n-1}-i} = (\rho + x_1)...(\rho + x_n)\rho^{2^{n-1}-n} + \rho^{2^{n-1}}.$$

Proof. Decompose that

$$w_t(x) = \Pi(t + \epsilon_1 x_1 + \dots \epsilon_{n-1} x_{n-1}) \times \Pi(t + x_n + \epsilon_1 x_1 + \dots \epsilon_{n-1} x_{n-1}).$$

By induction on n, we assume this element is

$$(t^{2^{n-1}} + d_{n-1,n-2}t^{2^{n-2}})((t+x_n)^{2^{n-1}} + d_{n-1,n-2}(t+x_n)^{2^{n-2}})$$

Letting $d_{n-1,n-2} = d$, $t^{2^{n-2}} = T$ and $x^{2^{n-2}} = X$, we see that the above formula is

$$= (T^{2} + dT)(T^{2} + X^{2} + dT + dX)$$

= T⁴ + (d² + dX + X²)T² + (d²X + dX²)T.

Here note $X^2 = \rho^* X = \rho^{*'} x_n$, $d^2 = \rho^* d$ (since $(\rho + x)^2 = \rho(\rho + x)$). So $(d^2 X + dX^2) = 0$. Let $a = a_{n-1} = (\rho + x_1)...(\rho + x_{n-1})$. Then we have $d^2 + dX + X^2 = a^* d + a^{*-1} dx + a^{*'} x$

$$d^{2} + dX + X^{2} = \rho^{*}d + \rho^{*} dx_{n} + \rho^{*} x_{n}$$

= $\rho^{\sharp}(a + \rho^{*''}) + \rho^{\sharp-1}(a + \rho^{*''})x_{n} + \rho^{*'}x_{n}$
= $\rho^{\sharp-1}a(\rho + x_{n}) + \rho^{\sharp''} = \rho^{\sharp-1}a_{n} + \rho^{\sharp''}$

as desired.

Corollary 3.2. Let us write

$$e_n = \rho^{-2^{n-1}+n} d_{n,1} = \sum_{i \ge 1}^n w_i \rho^{n-i} = (\rho + x_1)...(\rho + x_n) + \rho^n.$$

Then we have

$$Inv^*((\mathbb{Z}/2)^n; \mathbb{Z}/2)^{GL_n(\mathbb{Z}/2)} \cong H^*\{1, e_n\}.$$

Proof. By $Ideal(\rho)$, we consider the associated graded algebra

$$gr(H^* \otimes \Delta(x_1, ..., x_n)) \cong gr(H^*) \otimes \Lambda(x_1, ..., x_n) \quad (x_i^2 = 0).$$

Note $e_n = w_n$ in the above graded algebra. We can see

$$\Lambda(x_1, ..., x_n)^{GL_n(\mathbb{Z}/2)} \cong \mathbb{Z}/2\{1, w_n\}$$

as following arguments.

Since $x_i^2 = 0$, the only possibility of invariant is w_s . Suppose s < n. Write

$$w_s = x_1(\sum_{1 \neq i_k} x_{i_1} \dots x_{i_{s-1}}) + (\sum_{1 \neq i_k} x_{i_1} \dots x_{i_s}).$$

Consider the action $x_{12} : x_1 \mapsto x_1 + x_2$ but $x_{12} : x_i \mapsto x_i$ for i > 1. Then

$$(x_{12}-1)w_s = x_2(\sum_{1 \neq i_k} x_{i_1} \dots x_{i_{s-1}}) = x_2 x_3 \dots x_{s+1} + \dots \neq 0 \quad in \Lambda(x_1, \dots, x_n).$$

All elements in H^* and e_n are really invariants in $H^* \otimes \Delta(x_1, ..., x_n)$. Thus we have the corollary.

Let n = 2 and $G = SO_3$ or n = 3 and $G = G_2$ the exceptional group. Then G has only one conjugacy class A_n of maximal elementary abelian 2 groups of rank n. The Weyl group $W_G(A_n) \cong GL_n(\mathbb{Z}/2)$. Hence we have the restriction map

$$Inv^{*}(G; \mathbb{Z}/2) \to Inv^{*}(A_{n}; \mathbb{Z}/2)^{W_{G}(A_{n})} \cong H^{*}\{1, e_{n}\}.$$

The result in [Ga-Me-Se] shows this map is an isomorphism.

4. PFISTER FORMS

The most important quadratic forms are Pfister forms. Given $a = (a_1, ..., a_n) \in (k^*/(k^*)^2)^{\times n}$, the *n*-th Pfister form P_a is the quadratic form defined as

$$P_a = \langle \langle a_1, ..., a_n \rangle \rangle = \langle 1, -a_1 \rangle \otimes ... \otimes \langle 1, -a_n \rangle$$
$$= \bigoplus_{1 \le i_1 < ... < i_s \le n} \langle (-a_{i_1}) ... (-a_{i_s}) \rangle.$$

Given a quadratic form $q_a = \langle a_1, ..., a_n \rangle$, the total Stiefel-Whitney class is given by

$$w_t(q_a) = \Pi(t+a_i)$$

Hence we know

$$w_t(P_a) = \prod_{\epsilon_i=0 \text{ or } 1} (t + \epsilon_1(\rho + x_1) + \dots + \epsilon_n(\rho + x_n))$$

identifying $x_i = (a_i)$. Hence the following proposition follows the preceding lemma. (Substitute $x_i + \rho$ for x_i in the right hand side of the evation in Lemma 3.1.)

Proposition 4.1. Let $x_i = (a_i) \in k^*/(k^*)^2$ and $w_n = x_1...x_n$. Then $w_t(P_a) = t^{2^n} + (w_n + \rho^n)\rho^{2^{n-1}-n}t^{2^{n-1}}.$

Next consider the map from $(k^*/(k^*)^2)^{\times n}$ to the set of *n*-th Pfister forms $Pfist_n$ defined by

$$p: a = (a_1, ..., a_n) \mapsto P_{-a} = \langle \langle -a_1, ..., -a_n \rangle \rangle = \langle 1, a_1 \rangle \otimes ... \otimes \langle 1, a_n \rangle.$$

This map induces the map of cohomological invariants

$$p^*: Inv^*(Pfister_n; \mathbb{Z}/2) \to Inv^*((k^*/(k^*)^2)^{\times n}; \mathbb{Z}/2)$$

Here the last invariant is isomorphic to

$$Inv^*((\mathbb{Z}/2)^n;\mathbb{Z}/2)\cong H^*\otimes\Delta(x_1,...,x_n).$$

On $H^* \otimes \Delta(x_1, ..., x_n)$, we can define the usual $GL_n(\mathbb{Z}/2)$ -action. This action is also written as follows. Consider the Bruhat decomposition

$$GL_n(\mathbb{Z}/2) = \prod_{w \in S_n} BwB$$

where B is the Borel group generated by upper triangular matrices, and S_n is the n-th symmetric group generated by transition matrices. The group B is generated by $x_{ij} = 1 + e_{ij}$; the elementary matrix with (i, j) entries 1 with the relations

$$x_{ij}^2 = 1, \quad [x_{ij}, x_{kl}] = \begin{cases} x_{il} & if \ j = k \\ 0 & otherwise. \end{cases}$$

Define $w(x_i) = x_{w(i)}$ for $w \in S_n$ and

$$x_{ij}(x_i) = x_i + x_j, \quad x_{ij}(x_k) = x_k \text{ for } i \neq k.$$

Then the $GL_n(\mathbb{Z}/2)$ -action is decided on $Inv^*((\mathbb{Z}/2)^n; \mathbb{Z}/2)$.

Theorem 4.2. The above map p^* induces the isomorphism

 $Inv^*(Pfister_n; \mathbb{Z}/2) \cong H^* \otimes \Delta(x_1, ..., x_n)^{GL_n(\mathbb{Z}/2)} \cong H^*\{1, e_n\}.$

Proof. On $(k^*/(k^*)^2)^{\times n}$, we can define the $GL_n(\mathbb{Z}/2)$ -action by

$$x_{ij}(a_1, \dots a_n) = (a_1, \dots, a_{i-1}, a_i a_j, a_{i+1}, \dots, a_n),$$

 $w(a_1, ..., a_n) = (a_{w(1)}, ..., a_{w(n)}).$

This induces the action on $Inv^*((\mathbb{Z}/2)^n;\mathbb{Z}/2)$ by $w(x_i) = x_{w(i)}$ and

$$x_{ij}(x_i) = x_i + x_j, \quad x_{ij}(x_k) = x_k \text{ for } i \neq k.$$

Define a $GL_n(\mathbb{Z}/2)$ action on $Pfister_n$ by $x_{ij}p(a) = p(x_{ij}(a))$. Then this action is invariant, indeed,

$$\begin{aligned} x_{12} \langle \langle a_1, a_2 \rangle \rangle &= p x_{12} (-a_1, -a_2) = p(a_1 a_2, -a_2) \\ &= \langle \langle -a_1 a_2, a_2 \rangle \rangle = \langle 1, a_1 a_2, -a_2, -a_1 a_2^2 \rangle \\ &= \langle 1, a_1 a_2, -a_2, -a_1 \rangle = \langle \langle a_1, a_2 \rangle \rangle. \end{aligned}$$

Hence we have the map

$$q^*: Inv^*(Pfister_n; \mathbb{Z}/2) \to H^* \otimes \Delta(x_1, ..., x_n)^{GL_n(\mathbb{Z}/2)}.$$

Since $P_{-a} \mapsto e_n = w_n(P_{-a}) + \rho^n$ is a cohomology invariant and hence the above map is epic.

For each finitely generated field F over k, the map $p: (K^*/(K^*)^2)^n \to Pfister_n|_K$ is of course an epimorphism. Hence the induced map

$$p^*(x): (K^*/(K^*)^2)^n \to Pfister_n \xrightarrow{x} H^n(K; \mathbb{Z}/2)$$

is always injective.

If we consider the map

$$q: a = (a_1, ..., a_n) \mapsto P_a = \langle \langle a_1, ..., a_n \rangle \rangle,$$

then the map q^* also induces the isomorphism

 $Inv^*(Pfister_n; \mathbb{Z}/2) \cong H^* \otimes \Delta(x_1, ..., x_n)^{GL_n(\mathbb{Z}/2)_{II}} \cong H^*\{1, w_n\}$ where $GL(\mathbb{Z}/2)_{II}$ is the unusual action defined by $x_{ij}(x_i) = \rho + x_i + x_j$.

References

- [Ga-Me-Se] S.Garibaldi, A.Merkurjev and J.P.Serre. Cohomological invariants in Galois cohomology. University lect. series vol(28) AMS (2003).
- [Or-Vi-Vo] D.Orlov, A.Vishik and V.Voevodsky. An exact sequence for Milnor's Ktheory with applications to quadric forms. Ann. of Math. 165 (2007) 1-13.
- [To] B. Totaro. The Chow ring of classifying spaces. Proc. of Symposia in Pure Math. "Algebraic K-theory" (1997:University of Washington,Seattle) 67 (1999), 248-281.
- [Vo1] V. Voevodsky. Motivic cohomology with $\mathbb{Z}/2$ coefficient. *Publ. Math. IHES* **98** (2003), 59-104.
- [Vo2] V.Voevodsky. Reduced power operations in motivic cohomology. Publ.Math. IHES 98 (2003),1-57.

[Vo3] V.Voevodsky. On motivic cohomology with \mathbb{Z}/l -coefficients. www.math.uiuc.edu/K-theory/0631 (2003).

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, RYUKYU UNIVER-SITY, OKINAWA, JAPAN, DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCA-TION, IBARAKI UNIVERSITY, MITO, IBARAKI, JAPAN

E-mail address: tez@sci.u-ryukyu.ac.jp, yagita@mx.ibaraki.ac.jp,