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Abstract. Let k be an algebraically closed field of ch(k) = 0
and G be a simple simply connected algebraic group G over k. By
using results of cohomological invariants, we compute the coniveau
spectral sequence for classifying spaces BG.


1. Introduction


Let G be a simple simply connected algebraic group over an alge-
braically closed field k in C. The cohomological invariant Inv∗(G;Z/p)
is (roughly speaking) the ring of natural mapsH1(F ;G) → H∗(F ;Z/p)
for finitely generated field F over k. (For detailed definition and prop-
erties, see the book [Ga-Me-Se] by Garibaldi, Merkurjev and Serre.)
Let BG be the classifying space of G. Totaro showed that


Inv∗(G;Z/p) ∼= H0(BG;H∗
Z/p)


where H∗(X ;H∗′


Z/p) is the cohomology of the Zarisky sheaf induced


from the presheaf H∗
et(V ;Z/p) for open subsets V of X . This sheaf


cohomology is also the E2-term


E∗,∗′


2
∼= H∗(BG;H∗′


Z/p) =⇒ H∗(BG;Z/p)


of the coniveau spectral sequence by Bloch-Ogus [Bl-Og].
We restrict to consider a group G such that it has only one con-


jugacy class of nontoral maximal elementary abeilan p-group A. For
exceptional cases, G = G2, F4, E6 for p = 2, G = F4, E6, E7 for p = 3,
and G = E8 for p = 5. We also consider groups Spinn, n ≥ 7.
Let WG(A) be the Weyl group of G for A. Then by using Rost, Serre


and Garibaldi’s results [Ga], we easily see that


ResInv : Inv
∗(G;Z/p) ∼= Inv∗(A;Z/p)WG(A)
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for cases of the above groups except for (E6, p = 2) and (Spinn, p = 2),
n ≥ 10.
Let Qi be the Milnor operation and let


Q(n) = Λ(Q0, ..., Qn).


We easily see that operations Qi can extend on H∗(BG;H∗
Z/p) for


these fields k. In particular, H∗(BA;H∗′


Z/p)
WG(A) has also the Q(∞)-


module structure. We can prove that for the above cases except for
(E7, p = 3), the invariant is generated as Q(∞)-algebras by elements
in Res(Inv∗


′


(G;Z/p)) and Res(H∗(BG;H∗
Z/p)) = Res(CH∗(BG)/p).


(Moreover it is a direct sum of free Q(n)-modules.)
These facts imply the following theorem.


Theorem 1.1. Let G = G2, Spinn(7 ≤ n ≤ 9), F4 for p = 2, G =
F4, E6 for p = 3, or G = E8, p = 5. Then the following restriction
map


ResE2
: H∗(BG;H∗′


Z/p) → H∗(BA;H∗′


Z/p)
WG(A)


is an epimorphism.


For (E7, p = 3), the map ResE2
is not epic, while ResInv is epic.


We note that the restriction map


ResHZ/p : H
∗(BG;Z/p) → H∗(BA;Z/p)WG(A)


is not an epimorphism for p ≥ 3, while H∗(BA;Z/p) ∼= H∗(BA;H∗′


Z/p)


as algebras. (Indeed, BG is 3-connected but H0(BG;H3
Z/p) 6= 0.) Note


also that the right hand side invariant and Im(ResHZ/p) are computed
by Kameko-Mimura [Ka-Mi] for odd primes p.
When p = 2, the maps ResHZ/2 are even isomorphic except for the


case E6. However note ([Or-Vi-Vo]))


H∗(BA;H∗′


Z/2)
∼= grH∗(BA;Z/2) ∼= Z/2[y1, ..., yn]⊗ Λ(x1, ..., xn)


with βxi = yi but yi 6= x2
i = 0 as the cases p = odd. So we know


ResHZ/2
∼= gr(H∗(BA;Z/2)WG(A))


⊂


6= H∗(BA;H∗′


Z/2)
WG(A)


for the above groups.
The arguments seem something subtle and we give here an exam-


ple, the case G = G2 and p = 2. Then A ∼= (Z/2)3 and WG(A) ∼=
GL3(Z/2), moreover


H∗(BG2;Z/2) ∼= H∗(BA;Z/2)WG(A) ∼= Z/2[w4, w6, w7] |wi| = i.


The cohomological invariant is known by Rost and Serre


Inv∗(G2;Z/2) ∼= Z/2{1, u3} |u3| = 3
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where u3 = x1x2x3 in H0(BA;H3
Z/2). From Mui and Kameko-Mimura


results [Ka-Mi], we can show


H∗(BA;H∗′


Z/2)
WG(A) ∼= Z/2[c4, c6]⊗ (Z/2{1} ⊕ Z/2[c7]⊗Q(2){u3})


where Q0Q1Q2(u3) = c7, deg(ci) = (i, i) (and w2
i = ci inH∗(BA;Z/2)).


These ci are represented by Chern classes, and hence ResE2
is an epi-


morphism.
Of course u3 6∈ ResHZ/2, and moreover we see


H∗(BA;H∗′


Z/2)
WG(A)/ResHZ/2


∼= Z/2[c4, c6]{u3}.


For example, we have


Q0(u3) = w4, Q1(u3) = w6, Q0Q1(u3) = w7, Q2(u3) = w4w6.


Here u3 does not exist in H∗(BG2;Z/2), and hence dr(u3) = y 6= 0 for
some r ≥ 2 and y ∈ H∗(BG2;H


∗
Z/2) in the coniveau spectral sequence.


We can see this r = 2.


Theorem 1.2. We have the epimorphism (as bidegree Q(2)-modules)
from H∗(BG2;H


∗′


Z/2) onto


H∗(BA;H∗′


Z/2)
WG(A) ⊕ (H∗(BA;H∗′


Z/2)
WG(A)/ResHZ/2)(−1)[2]


∼= Z/2[c4, c6]⊗ (Z/2{1, y} ⊕ Z/2[c7]⊗Q(2){u3})


where (−1)[2] is the degree shift operation so that deg(y) = (2, 2).
Moreover d2(u3) = y in the coniveau spectral sequence.


Moreover if the Gottlieb transfer exists in the motivic cohomology,
then the above epimorphism is indeed isomorphism. The similar fact
also holds for G = Spin7 and p = 2.
Note that y in the above theorem, is a (mod(p)) Griffith element,


namely,


y ∈ Ker(cycle map : CH∗(BG)/p → H2∗(BG;Z/p)).


Each non zero element in (H∗(BA;H∗′


Z/p)
WG(A)/ResHZ/p) of deg = (∗−


2, ∗ + 1) corresponds to a Griffith element of deg = (∗, ∗). So we can
construct many Griffith elements in CH∗(BG)/p for the above groups
G.
An outline of this paper is following. In §2, we recall the relation be-


tween the motivic cohomologyH∗,∗′(X ;Z/p) and the sheaf cohomology
H∗(X ;H∗′


Z/p). In §3, we show that H∗(X ;H∗′


Z/p) has the Qi-action. In
§4, we recall the cohomological invariant and give a sufficient condition
such that ResE2


is epic when Inv∗(G;Z/p) is known. In §5, we study
the Dickson invariant for H∗(BA;H∗′


Z/p) using Qi actions by Kameko-


Mimura. In §6 − §8, we compute H∗(BG;H∗′


Z/p) for concrete cases,
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e.g., (G2, p = 2) is studied in §6. In §9, we study the relation between
H∗(BG;H∗′


Z/p) and the Brown-Peterson theory BP ∗(BG). In the last


section, we study the image of Griffith elements to BP ∗(BG)⊗BP ∗Z/p,
in particular, for (Spin9, p = 2).


2. motivic cohomology


Let X be a smooth (quasi projective) variety over a field k ⊂ C. Let
H∗,∗′(X ;Z/p) be themod(p) motivic cohomology defined by Voevodsky
and Suslin ([Vo1-3]).
Recall that the (mod p) B(n, p) condition holds if


Hm,n(X ;Z/p) ∼= Hm
et (X ;µ⊗n


p ) for all m ≤ n.


Recently M.Rost and V.Voevodsky ([Vo5],[Su-Jo],[Ro]) proved that
B(n, p) condition holds for each p and n. Hence the Bloch-Kato con-
jecture also holds. Therefore in this paper, we always assume the
B(n, p)-condition and also the Bloch-Kato conjecture for all n, p.
Moreover we always assume that k contains a primitive p-th root


of unity. For these cases, we see the isomorphism Hm
et (X ;µ⊗n


p ) ∼=
Hm


et (X ;Z/p). Let τ be a generator of H0,1(Spec(k);Z/p) ∼= Z/p, so
that


colimiτ
iH∗,∗′(X ;Z/p) ∼= H∗


et(X ;Z/p).


Let H∗(X ;H∗′


Z/p) be the sheaf cohomology where Hn
Z/p is the Zarisky


sheaf induced from the presheaf Hn
et(V ;Z/p) for open subset V of X .


Let X =
⋃


Uλ for Zarisky open sets Uλ. The sheaf cohomology
H∗(X ;H∗′


Z/p) is defined as the colimit of the cohomology of the following


Čeck complex


(2.1) →
∏


Γ(i1,...,in)
δ
→


∏


Γ(j1,...,jn+1) →


where Γ(i1,...,in) = Γ(Ui1 ∩ ... ∩ Uin ;H
∗(Ui1 ∩ ... ∩ Uin ;Z/p)


a)


and where H∗(−;Z/p)a is a sheaficication of the presheaf H∗(−;Z/p).
Here δ is induced map from the inclusions Ui ∩Uj ⊂ Ui, Ui ∩ Uj ⊂ Uj .
The Beilinson and Lichtenbaum conjecture ( hence B(n, p)-condition


) (see [Vo2,5]) implies the exact sequences of cohomology theories


Theorem 2.1. ([Or-Vi-Vo], [Vo5]) There is a long exact sequence


→ Hm,n−1(X ;Z/p)
×τ
→ Hm,n(X ;Z/p)


→ Hm−n(X ;Hn
Z/p) → Hm+1,n−1(X ;Z/p)


×τ
→ .


In particular, we have
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Corollary 2.2. We have the additive isomorphism


Hm−n(X ;Hn
Z/p)


∼= Hm,n(X ;Z/p)/(τ)⊕Ker(τ)|Hm+1,n−1(X ;Z/p)


where Hm,n(X ;Z/p)/(τ) = Hm,n(X ;Z/p)/(τHm,n−1(X ;Z/p)).


Note that the long exact sequence in Theorem 2.1 induces the τ -
Bockstein spectral sequence


E(τ)1 = Hm−n(X ;Hn
Z/p) =⇒ colimiτ


iH∗,∗′(X ;Z/p) ∼= H∗
et(X ;Z/p).


On the other hand, the filtration coniveau is given by


N cHm
et (X ;Z/p) = ∪ZKer{Hm


et (X ;Z/p) → Hm
et (X − Z;Z/p)}


where Z runs in the set of closed subschemes of X of codim = c.
The induced spectral sequence is called the coniveau spectral sequence.
Bloch-Ogus [Bl-Og] proved that its E2-term is given by


E(c)c,m−c
2


∼= Hc(X,Hm−c
Z/p ).


By Deligne ( foot note (1) in Remark 6.4 in [Bl-Og]) and Paranjape
(Corollary 4.4 in [Pj]), it is proven that there is an isomorphism of the
coniveau spectral sequence with the Leray spectral sequence for the
natural map of the sites. Hence we have ;


Theorem 2.3. (Deligne, Parajape) There is the isomorphism E(c)c,m−c
r


∼=
E(τ)m,m−c


r−1 for r ≥ 2 of spectral sequences. Hence the filtrations are the
same N cHm


et (X ;Z/p) = Fm,m−c
τ where


Fm,m−c
τ = Im(×τ c : Hm.m−c(X ;Z/p) → Hm,m(X ;Z/p)).


3. cohomology operation


Let tC : H∗,∗′(X ;Z/p) → H∗(X(C);Z/p) be the realization map
([Vo1]) for the inclusion k ⊂ C. The motivic cohomology has (Bock-
stein, reduced powered) cohomology operations ([Vo2,4])


β : H∗,∗′(X ;Z/p) → H∗+1,∗′(X ;Z/p)


P i : H∗,∗′(X ;Z/p) → H∗+2i(p−1),∗′+i(p−1)(X ;Z/p)


which are compatible with the usual (topological) cohomology opera-
tions by the realization map tC. Voevodsky defines the Milnor opera-
tion Qi also in the mod p motivic cohomology


Qi : H
∗,∗′(−;Z/p) → H∗+2pi−1,∗′+pi−1(−;Z/p).


Here we define the weight degree by


w(x) = 2n−m (resp. = n′ −m′)
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for 0 6= x ∈ Hm,n(X ;Z/p) (resp. Hm′


(X ;Hn′


Z/p)). Similarly, we also
define the weight degree for cohomology operations and differentials of
spectral sequences,e.g.,


w(τ) = 2, w(P i) = 0, w(Qj) = −1.


Let ρp = (ξp) ∈ k∗/(k∗)p = H1,1(Spec(k);Z/p) where ξp is the prim-
itive p-th root of unity. The Qi operation has the same property as the
topological case only with mod(ρ2). For example, Qi is a derivative
only mod(ρ2).
Let Ap be the mod p Steenrod algebra generated by all cohomology


operations on H∗,∗′(X ;Z/p). ( Voevodsky proved that Ap is multi-
plicatively generated by elements in H∗,∗′(Spec(k);Z/p), P j and Qi.)


Lemma 3.1. Suppose ρp = 0. Then the Steenrod algebra Ap acts on
the etale cohomolgy H∗(X ;Z/p).


Proof. In H∗,∗′(Spec(k);Z/p), we know


P i(τ) = 0 for i > 0, and β(τ) = ρp = 0.


When p ≥ 3, the Cartan formula holds in the motivic cohomology
(Proposition 9.6 in [Vo4]), and we have


P i(τx) = τP i(x) for i > 0, and β(τx) = τβ(x).


From theB(n, p) condition,H∗
et(X ;Z/p) = colimiτ


iH∗,∗′(X ;Z/p),which
implies the lemma.
For p = 2, we also know from Proposition 9.6 in [Vo4],


Sq2∗(xy) =
∑


i


Sq2i(x)Sq2∗−2i(y) + τ
∑


i


Sq2i+1(x)Sq2∗−2i−1(y),


Sq2∗+1(xy) =
∑


j


Sqj(x)Sq2∗+1−j(y) + ρ2
∑


i


Sq2i+1(x)Sq2∗−2i−1(y).


Since ρ2 = 0, we see Sq2i+1(τ) = 0, and so Sq∗(τx) = τSq∗(x). This
also induces the lemma. �


Theorem 3.2. Suppose ρp = 0. Then the cohomology operation Qi


and P i can be extended on the τ -Bockstein spectral sequence and so on
the coniveau spectral sequence Er, r ≥ 2 (e.g., on H∗(X ;H∗′


Z/p)).


Proof. In the stable A1-homotopy category SHot, let HZ/p be the
Eilenberg-MacLane spectrum representing the mod p motivic coho-
mology


H∗,∗′(X ;Z/p) ∼= HomSHot(X,S∗,∗′ ∧HZ/p)


where S∗,∗′ is the sphere of bidegree (∗, ∗′).
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Let op. = Qi or P
i of bidegree (m,n). Consider the diagram


S0,1 ∧HZ/p
×τ


−−−→ HZ/p
ρ


−−−→ cone


op.








y


op.








y


Sm,n+1 ∧HZ/p
×τ


−−−→ Sm,n ∧HZ/p
ρ


−−−→ Sm,n ∧ cone.


Here cone is the mapping cone of τ so that


H∗+∗′(X ;H∗′


Z/p)
∼= HomSHot(X,S∗,∗′ ∧ cone).


In the above diagram, we see ρ · op. · τ = 0. Hence there is a map
op′. : cone → Sm,n ∧ cone such that ρ · op. = op′. · ρ. �


Here we do not see yet that Ap acts on Er, e.g., we do not see that
Qi generates the exterior algebra Q(∞). However when r = 2, the
following theorem holds.


Lemma 3.3. Let k be an algebraically closed field. Then the Steenrod
algebra Ap acts on H∗(X ;H∗′


Z/p)).


Proof. Recall that H∗(X ;H∗′


Z/p) is defined as the cohomology of the


Čeck complex. Given op. ∈ Ap, by the universality of sheaficication,
the following diagram from (2.1) is commutative


∏


Γ(i1,...,in)
δ


−−−→
∏


Γ(j1,...,jn+1)


op.








y


op.








y


∏


Γ(i1,...,in)
δ


−−−→
∏


Γ(j1,...,jn+1).


Thus we have the desired result. �


Let us write H∗,∗′ = H∗,∗′(Spec(k);Z/p) and H∗ = K∗
M(k)/p so that


H∗,∗′ ∼= H∗[τ ]. (Note if k is algebraically closed, H∗,∗′ ∼= Z/p[τ ].) For
an elementary abelian p-group A = An


∼= (Z/p)n, the mod(p) motivic
cohomology is given by Voevodsky ([Vo2,4])


H∗,∗′(BA;Z/p) ∼= H∗,∗′[y1, ..., yn]⊗∆(x1, .., xn)


with x2
i = yτ + xρ2 for p = 2 and x2


i = 0 otherwise.
Since Ker(τ)|H∗,∗′(BA;Z/p) = 0, from Corollary 2.2, we have


H∗(BA;H∗′


Z/p)
∼= H∗,∗(BA;Z/p)/(τH∗,∗−1(BA;Z/p))


∼= H∗[y1, ..., yn]⊗ Λ(x1, ..., xn) (mod(ρ2))


for all primes p. Each Qi is a derivation mod(ρ2), and hence


Q0...Qs−1(x1...xs) =
∑


sgn(j1, ..., js)y
pj1
1 yp


j2


2 ...yp
js


s 6= 0 mod(ρ2)
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where (j1, ..., js) are permutations of (0, ..., s− 1).
Let us write


Q(n) = Λ(Q0, ..., Qn),


Q̄(n) = Q(n)− Z/p{Q0...Qn} = Z/p{Qi0 ...Qis |0 ≤ ik ≤ n, s < n}.


Let ui = x1...xi ∈ H0(BA;H i
Z/p). For example, we have


H∗(BA;H∗′


Z/p) ⊃ H∗[y1, ..., yn]⊗ (⊕iQ̄(i− 1){ui})


⊃ ⊕iH
∗[y1, ..., yi]⊗Q(i− 1){ui} (∗)


since Q0...Qi−1(ui) ∈ H∗[y1, ..., yi]{y1...yi}. In sections bellow, we show
that the last sum (∗) of freeQ(i−1)-modules containsH∗(BG;H∗′


Z/p)
WG(A),


as a direct summand , for many cases of G. (See Assumption (1) in
§4.)


4. cohomological invariant


Let G be a linear algebraic group over k. Recall that H1(k;G) is
the first non abelian Galois cohomology set of G, which represents the
set of G-torsors over k. The cohomology invariant is defined by


Invi(G,Z/p) = Func(H1(F ;G) → H i(F ;Z/p))


where Func means natural functions for each field F which is finitely
generated over k. (For details for the definition or properties, see the
book [Ga-Me-Se].)
Totaro proved [Ga-Me-Se] the following theorem in the letter to


Serre.


Theorem 4.1. (Totaro) Inv∗(G;Z/p) ∼= H0(BG;H∗
Z/p).


Hereafter (throughout this paper), we assume that k is an algebraically
closed field in C. Moreover, in this paper, we only consider simple
simply connected groups G which have the following property. we as-
sume that the algebraic group G has only one conjugacy class A of non
toral maximal elementary abelian p-subgroups. Exceptional groups are


G =

















G2, F4, E6 for p = 2


F4, E6, E7 for p = 3


E8 for p = 5.


For spin groups Spinn, we consider the cases n ≤ 9 only in this paper.
We consider the restriction maps (of cohomology) to A and the max-


imal torus TG


ResHZ/p : H
∗(BG;Z/p)


i∗
→ H∗(BTG;Z/p)×H∗(BA;Z/p)


pr.
→ H∗(BA;Z/p)WG(A).
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By the Quillen’s theorem the above i∗ has nilpotent kernel. More
strongly, Toda, Kono, Tezuka and Kameko show i∗ is really injective,
namely, H∗(BG;Z/p) is detected by A and TG. Moreover when p = 2,
ResHZ/2 are isomorphic except the case E6. However ResHZ/p is not
epic for p ≥ 3.
On the other hand, by Serre, Rost and Garibaldi([Ga-Me-Se],[Ga]),


Inv∗(G;Z/p) are computed for these groups, e.g.,


Inv∗(G;Z/p) ∼=



























































Z/p{1, u3} for (G2, E6, p = 2), (F4, E7, p = 3),


(E8, p = 5)


Z/p{1, u3, u4} for (Spin7, p = 2), (E6, p = 3)


Z/p{1, u3, u4, u5} for (Spin9, p = 2)


Z/p{1, u3, u4, u
′
4, u5} for (Spin8, p = 2)


Z/p{1, u3, u5} for (F4, p = 2).


(Moreover Rost and Garibaldi determined Inv∗(Spinn;Z/2) for n ≤
12).
For these groups, we note (Ga-Me-Se],[Ga]) the the restriction


ResInv : Inv
∗(G;Z/p) → Inv∗(A;Z/p) ∼= Λ(x1, ..., xn).


is injective (identifying ui = x1...xi and u′
4 = x1x2x3x5). We will show


the following theorem in §6 − 8 bellow (by computations of concrete
cases)


Theorem 4.2. Let G be an above type except for G = E6 and p = 2.
Then


ResInv : Inv
∗(G;Z/p) ∼= Inv∗(A;Z/2)WG(A).


Remark. When G = E6 and p = 2, the above ResInv is not epic.
We want to extend above isomorphism in the theorem to say that


ResE2
: H∗(BG;H∗′


Z/p) → H∗(BA;H∗′


Z/p)
WG(A)


is an epimorphism. (Of course for p ≥ 3 the above map is not injective.)
We will prove the following assumption (in the sections bellow) for
the above groups except for (E6, p = 2) and (E7, p = 3). (When
G = Spin8, some modification of Assumption (1) holds.)
Assumption When Inv∗(G;Z/p) ∼= Z/p{1, ui1, ..., uim}, there is a


bidegree isomorphism


(1) H∗(BA;H∗′


Z/p)
WG(A) ∼= ⊕m


s=1Z/p[fs1, ..., fsks]⊗Q(is − 1){uis}


(2) fst ∈ ResHZ/p(H
2∗,∗(BG;Z/p)) = Res(CH∗(BG)/p)


for all 1 ≤ s ≤ m, 1 ≤ t ≤ ks.
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If this assumption is satisfied then H∗(BA;H∗′)WG(A) is generated
as bidegree Q(∞)-algebra by uis and Res(CH∗(BG)/p). Hence the
surjectivity of ResE2


is immediate.


Lemma 4.3. If Assumption (1),(2) are satisfied, then


ResE2
: H∗(BG;H∗′


Z/p) → H∗(BA;H∗′


Z/p)
WG(A)


is an epimorphism.


Thus we can prove Theorem 1.1 in the introduction. As for the
statements of differential and (Griffith elements), the following lemma
is useful.


Lemma 4.4. Let ResInv(a) 6= 0 for a ∈ Invi(G;Z/p) = H0(BG;H∗
Z/p).


(Namely, the above element is a permanent cycle in the coniveau spec-
tral sequence.) Moreover let


Qj1...Qji−3
(a) 6∈ H∗(BG;Z/p).


Then d2(a) = y 6= 0 ∈ H2(BG;H i−1
Z/p ) in the coniveau spectral sequence,


and elements


Qj1 ...Qji−3
(y) 6= 0 ∈ CH∗(BG)/p = H2∗,∗(BG;Z/p)


are Griffith elements (i.e., in the kernel of CH2∗(BG)/p → H2∗
et (BG;Z/p)).


Proof. Take q = Qj1 ...Qji−3
(a). Since q does not exist in H∗(BG;Z/p),


we see dr(q) 6= 0 in the spectral sequence for some r.
This r = 2 because the following reason of weight degree. First note


w(dr) = wt(1, 1− r) = 2(1− r)− 1 = 1− 2r.


Since w(q) = w(a)− (i− 3) = 3, we have


w(dr(q)) = 3 + 1− 2r = 4− 2r.


If r ≥ 3, then the above weight is negative and dr(q) = 0.
This implies that d2(a) 6= 0. Otherwise


d2(q) = d2(Qj1 ...Qji−3
a) = Qj1...Qjn−3


(d2(a)) = 0,


which is a contradiction. �


5. Dickson invariant


At first we assume p ≥ 3. Dickson computed the ring of invariants
of Z/p[y1, ..., yn] with respect to the action of GLn(Z/p). The ring of
invariants is a polynomial algebra


Dn = Z/p[y1, ..., yn]
GLn(Z/p) ∼= Z/p[cn,0, ..., cn,n−1]
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where the generators are given by the equation


On(X) =
∏


y∈Z/p{y1,··· ,yn}


(X + y) = Xpn +


n−1
∑


j=0


(−1)n−jcn,jX
pj .


Let reg : A → GLn(C) be the regular representation and c(reg) the
total Chern class. Then it is well known that


c(reg) = On(1) = 1− cn,n−1 + ...+ (−1)ncn,0.


We also note the following lemma.


Lemma 5.1. (Lemma 2.3,2.4 in [Ka-Ya2]) Let ρ : An → GLm(C) be
an representation such that c(ρ) ∈ H∗(BA;Z/p)SLn(Z/p). Then c(ρ) =
c(reg)a for some a ≥ 0.


For the invariant ring SDn under SLn(Z/p), we have


SDn = Z/p[y1, ..., yn]
SLn(Z/p)


∼= Dn{1, en, ..., e
p−2
n } with ep−1


n = cn,0
∼= D′


n ⊗ Z/p[en] with D′
n = Z/p[cn,1, ..., cn,n−1].


Mui computed the ring of invariants of


H∗(BA;H∗′


Z/p)
∼= Z/p[y1, ..., yn]⊗ Λ(x1, ...xn)


with respect to the action of SLn(Z/p). (In fact, Mui studiedH∗(BA;Z/p)
for odd prime p, however we study H∗(BA;H∗′


Z/p) for all primes.) Of


course un = x1...xn is invariant under SLn(Z/p). In terms of Milnor’s
operation, we may state Mui’s result in the following form.


Theorem 5.2. (Mui[Mu], Kameko-Mimura [Ka-Mi])


H∗(BA;H∗′


Z/p)
SLn(Z/p) ∼= Z/p[en, cn,1, ..., cn,n−1]⊗(Z/p{1}⊕Q̄(n−1){un})


∼= D′
n ⊕ SDn ⊗Q(n− 1){un}


where Q0...Qn−1un = en.


The Qi-operation acts on un as follows.


Lemma 5.3. (Kameko-Mimura [Ka-Mi],[Ka-Ya1]) For x ∈ H∗(BA;H∗′


Z/p),
it holds


(Qn +
n−1
∑


i=0


(−1)n−icn,iQi)(x) = 0, Q0...Q̂i...Qn(un) = cn,ien.


Let Un ⊂ SLn(Z/p) be the maximal unipotent subgroup generated
by upper triangular matrices with diagonals 1, so that Un is a Sylow
p-subgroup of SLn(Z/p). The invariant under this group is given by
Mui, Kameko-Mimura.
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Theorem 5.4. (Kameko-Mimura Theorem 4.2 in [Ka-Mi]) Let G′ ⊂
GLn(Z/p) such that Z/p[y1, ..., yn]


G′ ∼= Z/p[f1, ..., fn] and


H∗(BAn;H
∗′


Z/p)
G′ ∼= Z/p[f1, ..., fn]{v1 = 1, ..., v2n}.


Then the invariant under G = 〈G′, Un+1〉 ⊂ GLn+1(Z/p) is given by


(1) Z/p[y1, ..., yn+1]
G ∼= Z/p[f1, ..., fn,On(yn+1)]


(2) H∗(BAn+1;H
∗′


Z/p)
G ∼=


Z/p[f1, ..., fn,On(yn+1)]⊗ (Z/p{v1, ..., v2n} ⊕Q(n− 1){un+1}).


Corollary 5.5.


H∗(BA;H∗′


Z/p)
Un ∼= ⊕n


i=0Z/p[O0(y1), ...,Oi−1(yi)]⊗Q(i− 1){ui}.


Corollary 5.6. (Lemma 5.8 in [Ka-Ya])


O(yn+1)un = (Qn +


n−1
∑


i=0


(−1)n−icn,iQi)(un+1).


Hereafter this section, we assume p = 2. Of course we have the
isomorphism H∗(BA;Z/2) ∼= Z/2[x1, ..., xn] and its invariant under
GLn(Z/2) = SLn(Z/2) is


Z/2[x1, ..., xn]
GLn(Z/2) ∼= Z/2[dn,0, ..., dn,n−1]


where the generators are given by the equation


O′
n(X) =


∏


x∈Z/p{x1,··· ,xn}


(X + x) = X2n +
n−1
∑


j=0


dn,jX
2j .


Here d2n,i = cn,i in H∗(BA;Z/2) identifying yi = x2
i . The Milnor Qi-


operations (see (2.6) in Schuster-Yagita [Sc-Ya]) are given as the case
p odd. (Hereafter let us write dn,i by di simply.)


d0 = Q0...Qn−2(un), di = Q0...Q̂i−1...Qn−1(un)/d0.


From Lemma 2.1 in [Sc-Ya], we have


(∗) Qn−1(di) = d0di, Qi−1(di) = d0.


In H∗(BA;H∗′


Z/2), we can get more strong result. Let us write simply


I(GLn) = gr(H∗(BAn;Z/2)
GLn(Z/2)) ⊂ H∗(BA;H∗′


Z/2)


Igr(GLn) = H∗(BAn;H
∗′


Z/2)
GLn(Z/2).


By Kameko-Mimura theorem, we have showed


Igr(GLn) ∼= D′
n ⊕Dn ⊗Q(n− 1){un})


where Dn = Z/2[cn,n−1, ..., cn,0] and D′
n = Z/2[cn,n−1, ..., cn,1].
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Lemma 5.7. In H∗(BA;H∗′


Z/2), we have


di = Q0...Q̂i−1...Q̂n−1(un), did0 = Q0...Q̂i−1...Qn−1(un).


didj = Q0...Q̂i−1...Q̂j−1...Qn−1(un) i 6= j.


Proof. Consider the element


ai = Q0...Q̂i−1...Qn−2Q̂n−1(un) ∈ Igr(GLn).


Then Qi−1(ai) = d0 and Qn−1ai = d0di.
Using property (∗), we see Qj(ai − di) = 0 for all j. Of course


ai − di ∈ Igr(GLn). From Kameko-Mimura theorem, we still know


Igr(GLn) ∩ ∩jKer(Qj) = Dn.


This means di = ai ∈ Igr(GLn). (In fact di = ai mod(Dn) in
H∗(BAn;Z/2), but di = ai exactly in H∗(BAn;H


∗′


Z/2).)
Therefore we have


di = Q0...Q̂i−1...Q̂n−1(un), did0 = Q0...Q̂i−1...Qn−1(un).


By the similar arguments, we have


didj = Q0...Q̂i−1...Q̂j−1...Qn−1(un).


�


Of course I(GLn) ⊂ Igr(GLn), but this injection is not an isomor-
phism for n ≥ 3.


Lemma 5.8. Let n ≥ 3. Then we have


Igr(GLn)/I(GLn) ⊃ Q(n− 1)/(Q(n− 1)+)n−2{un}.


Proof. Consider the element


x = Q0...Q̂i−1...Q̂j−1...Q̂k−1...Qn−1(un).


Its image Qi−1(x) = djdk or dj (when k = n.) Hence x is not in I(GLn)
because Qi maps n-product elements into also n-product elements. (If
x ∈ I(GLn), then x must be a sum of di or didj, but it still appeared
in (Q(n− 1)+)n−2(un).) Thus we get the lemma. �


Let A = An be a maximal elementary abelian p-subgroup of G and
WG(A) its Weyl group.


Lemma 5.9. If ResInv : Inv∗(G;Z/p) → Inv∗(An;Z/p)
WG(A) is an


epimorphism, then


(Q(n− 1)+)n−2{un} ⊂ ResHZ/p
(H∗(BG;Z/p) → H∗(BAn;Z/p))


(e.g., d1, ..., dn−1 for p = 2 are in ResHZ/2
).
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Proof. Let x be an element in H∗(BG;H∗′


Z/p) with


ResE2
(x) = Qi1 ...Qin−2


(un).


Then w(x) = n − (n − 2) = 2. However the weight of the differential
dr of the coniveau spectral sequence is w(dr) = 1 − 2r (see the proof
of Lemma 4.4). Hence dr(x) = 0 for r ≥ 2, namely, x is a permanent
cycle and is an element in H∗(BG;Z/p). �


6. WG(A) ∼= SL3(Z/p)


We consider the cases of A ∼= (Z/p)3 and WG(A) ∼= SL3(Z/p),
namely, (G2, 2), (F4, 3) and (E8, 5). These cases


Inv∗(G;Z/p) ∼= Z/p{1, u3}.


(These u3 are called the Rost invariants.)
Let G = G2 and p = 2. It is well known that


H∗(BG;Z/2) ∼= I(GL3) ∼= Z/2[w4, w6, w7]


where wi is the Stiefel-Whitney class of G2 ⊂ SO7. We can identify


w4 = d3,2, w6 = d3,1, w7 = d3,0.


On the other hand, Kameko-Mimura theorem implies


Igr(GL3) ∼= Z/2[c4, c6]⊗ (Z/2{1} ⊕ Z/2[c7]⊗Q(2){u3}).


Also by using Lemma 5.8, we can show


Igr(GL3)/I(GL3) ∼= Z/2[c4, c6]{u3}.


In fact (from Lemma 5.7 or from dimensional reason), we have


Q0(u3) = w4, Q1(u3) = w6, Q0Q1(u3) = w7, Q2(u3) = w4w6.


Moreover we note


c7u3 = w4w6w7


because both above elements are same after acting Qi, e.g. Q0(c7u3) =
c7w4 = Q0(w4w6w7) (see the proof of Lemma 5.7 or see [Ya2]).
Therefore Assumption (1),(2) are satisfied. Moreover from Lemma


4.4, we see d2(u3) = y 6= 0. Therefore we have the following theorem.


Theorem 6.1. There is a Q(2) bidegree module epimorphism from
H∗(BG2;H


∗′


Z/2) to


Igr(GL3)⊕Z/2[c4, c6]{y} ∼= Z/2[c4, c6]⊗(Z/2{1, y}⊕Z/2[c7]⊗Q(2){u3}).
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Remark. If there is a Gottlib transfer in the motivic theoryH∗,∗′(−;Z/2)
or the sheaf theory H∗(−;H∗


Z/2), then the above epimorphism is in fact
an isomorphism.
Next we consider the odd prime cases i.e., (G, p) = (F4, 3) or (E8, 5).


From Kameko-Mimura theorem, we also have


Igr(SL3) ∼= D′
3 ⊕ SD3 ⊗Q(2){u3}.


Moreover from Kameko (Lemma 5.2 in [Ka-Ya1]), it is known that


Igr(SL3)/ResHZ/p
∼= SD3/(e){u3}


as the case (G2, 2). Hence Assumption (1) satisfied and Lemma 4.4
can be applied so that d2(u3) = y.
To see Assumption (2), we consider the representations. We consider


the case (E8, 5). (The case (F4, 3) is similar.) It is known that there is
a non trivial representation ([Ad], [Ka-Ya2])


ρ : E8 → SO(248).


We consider the total Chern class of the representation ρ|A for A ∼=
(Z/5)3,


c(ρ|A) = (1− c3,2 + c3,1 − c3,0)
a for a ≥ 0


from Lemma 5.1. Since ρ|A is non trivial, a ≥ 1. Moreover


|c3,0| = 2(53 − 1) = 248.


So a = 1. This means that c3,i are represented by Chern classes. (We
also note c3,1 = P 1c3,2 for the reduced power operation P 1.) Hence
w(c3,1) = w(c3,2) = 0. Thus we can see Assumption (2).


Theorem 6.2. Let (G, p) = (F4, 3) or (E8, 5). Then there is an epi-
morphism of Q(2)-bidegree modules from H∗(BG;H∗′


Z/p) to


Z/p[c3,2, c3,1]⊗ (Z/p{1, y} ⊕ Z/p[e3]⊗Q(2){u3}).


7. WG(A) ∼= 〈U4, SL3(Z/p)〉


We consider the cases of A ∼= (Z/p)4 and


W4 = WG(A) ∼= 〈U4, SL3(Z/p)〉,


namely, (Spin7, 2), (E6, 3). For these cases, we have the isomorphism


Inv∗(G;Z/p) ∼= Z/p{1, u3, u4}.


We also study the case (E7, 3), while the above facts do not satisfied.
Let G = Spin7 and p = 2. It is well known that


H∗(BG;Z/2) ∼= I(W4) = Z/2[x1, ..., x4]
W4







16 M. KAMEKO, M. TEZUKA, AND N. YAGITA


∼= Z/2[w4, w6, w7, w8]


where w8 is the Stiefel-Whitney class of some spin representation. We
can identify w8 = O′


3(x4).


Lemma 7.1.


Igr(W4) ∼= Igr(GL3)⊕Z/2[c4, c6]⊗(Z/2[c8]{c8}⊕Z/2[c7, c8]⊗Q(3){u4}).


Proof. Recall that using Q̄(2), we have (Q2Q1Q0(u3) = c7)


Igr(GL3) ∼= Z/2[c4, c6, c7]⊗ (Z/2{1} ⊕ Q̄(2){u3}).


By Theorem 5.4, we have


Igr(W4) ∼= Z/2[c4, c6, c7, c8]⊗ (Z/2{1} ⊕ Q̄(2){u3} ⊕Q(2){u4})


∼= Z/2[c4, c6]⊗(Z/2[c8]{1}⊕Z/2[c7]⊗Q(2){u3}⊕Z/2[c7, c8]⊗Q(3){u4}).


The last isomorphism is shown by using the following facts. From
Lemma 5.6, we can see (Lemma 5.8 in [Ka-Ya2])


O3(y4)u3 = (Q3 + c3,2Q2 + c3,1Q1 + c3,0Q0)(u4),


namely, Q3(u4) = c8u3 + c4Q2(u4) + c6Q1(u4) + c7Q0(u4). Hence


Q(2){u4} ⊕Q(2){c8u3} ∼= Q(3){u4}.


Using Q0Q1Q2Q3(u4) = c7c8, we get the last isomorphism. �


Lemma 7.2.


Igr(W4)/I(W4) ∼= Igr(GL3)/I(GL3)⊕


Z/2[c4, c6, c8]⊗ {1, Q0, ..., Q3}{u4}.


Proof. At first, we see


Q1Q0(u4) = Q1Q0(u3x4) = Q1(w4x4 + u3y4)


= w7x4 + w4y
2
4 + w6y4 = w8 in H∗(BA;H∗′


Z/2).


(This fact also follows from d4,3 = w8 and Lemma 5.7.) Similarly, we
can compute the Qi action on u4, which is given as Q0Q1(u4) = w8,
Q0Q2(u4) = w4w8, Q1Q2(u4) = w6w8, Q0Q3(u4) = c8w4, Q1Q3(u4) =
c8w6, Q2Q3(u4) = c8w4w6.
Moreover we have


c7u4 = c7u3x4 = w4w6w7x4 = w4w6w8.


Therefore Qiu3 6∈ I(W4) but QiQj(u3) ∈ I(W4). Thus we have


Igr(W4)/I(W4) ∼= Z/2[c4, c6]⊗ (Z/2{u3}⊕Z/2[c8]{1, Q0, ..., Q3}{u4}).


�


Therefore Assumption (1),(2) are satisfied. Therefore we can com-
pute ;
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Theorem 7.3. There is a Q(2) bidegree module epimorphism from
H∗(BSpin7;H


∗′


Z/2) to


H∗(BG2;H
∗′


Z/2)⊕Z/2[c4, c6, c8]⊗(Z/2{c8, y
′
2, Q0y


′
2, ..., Q3y


′
2}⊕Z/2[c7]⊗Q(3){u4})


where Q0Q1Q2Q3u4 = c7c8. The differentials d2(u3) = y2, d2(u4) = y′2
in the coniveau spectral sequence.


Remark. If the epimorphism in Theorem 6.1 is an isomorphism,
then that in the above theorem is also an isomorphism.
Remark. The notations in [Ya3] are given : a′ = u4 as a virtual


element and


ξ3 = Q0y
′
2, ξ4 = Q1y


′
2, ξ6 = Q2y


′
2, c8y2 = Q3y


′
2.


Next we consider the odd prime cases i.e., (G, p) = (E6, 3). Let us
denote by O simply, O3(x4) so that e4 = Q0Q1Q2Q3(u4) = e3O. Then
from Kameko-Mimura lemma, we also have ([Ka-Mi],


Igr(W4) ∼= SD/(e)[O]⊕ SD3[O]⊗Q(2){u3, u4}


∼= SD3/(e)[O]⊕ SD3 ⊗Q(2){u3} ⊕ SD3[O]⊗Q(3){u4}.


Moreover from Kameko (Lemma 5.2 in [Ka-Ya1]), it is known that


Igr(W4)/ResHZ/p
∼= SD3/(e)⊗(Z/3{u3}⊕Z/3[O]{u4, Q0u4, ..., Q3u4})


as the case (Spin7, 2). Hence Assumption (1) satisfied and Lemma 4.4
can be applied so that d2(u3) = y.
To see Assumption (2), we consider the representations. It is known


that there is a non trivial representation E6 → SO(26). Hence we know
that c3,i is represented by Chern classes by the arguments similar to
the case (F4, 3). As for the element O, we consider the restriction


〈a4〉 ⊂ A ⊂ E6
ρ
→ SO(26).


Here a4 ∈ A is the dual of x4 ∈ Hom(A;Z/3). We see O|〈a4〉 6= 0 but
SD3|〈a4〉 = 0. Hence the fact


c26(ρ|〈a4〉) = y3
3−1


4 6= 0


implies O (modulo elements in SD3) can be represented by a Chern
class. Hence Assumption (2) is also satisfied.


Theorem 7.4. There is an epimorphism of Q(3)-bimodules
from H∗(BE6;H


∗′


Z/3) to


H∗(BF4;H
∗′


Z/3)⊕ Z/3[c3,2, c3,1,O]⊗ (Z/3{O, y′2, Q0y
′
2, ..., Q3y


′
2}


⊕Z/2[e3]⊗Q(3){u4}).
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At last of this section, we consider the case (E7, 3). This case


WG(A) = W ′
4 = 〈W4, diag(1, 1, 1,−1)〉 ⊂ GL4(Z/3).


The invariant is also computed by Kameko-Mimura


Igr(W ′
4)


∼= SD/(e)[O2]⊕ SD3[O
2]⊗Q(2){u3,Ou4}


Moreover from Kameko (page 2279 in [Ka-Ya1]), it is known that


Igr(W ′
4)/ResHZ/3


∼= SD3/(e)[O
2]⊗ (Z/3{u3} ⊕Q(2){Ou4}).


It is also known Inv∗(E7;Z/3) ∼= Z/3{1, u3} and hence


Inv∗(E7;Z/3) ∼= Inv∗(A;Z/3)W
′


4


from the above result.
There is the natural representation ρ : E7 → SO(52). Hence we see


that O2 can be represented by a Chern class. So Assumption (2) is
satisfied. However Assumption (1) is not.


Theorem 7.5. The following restriction map


ResE2
: H∗(BE7, H


∗′


Z/3) → H∗(BA,H∗′


Z/3)
W ′


4


is not an epimorphism.


Proof. Recall arguments in the proof of Lemma 5.9. Suppose Ou4 ∈
ResE2


and Res(x) = Ou4 for x ∈ H∗(BE7;H
∗′


Z/3).


Of course w(x) = w(Ou4) = 4. The weight Q0Q1(x) = 2. Recall
w(dr) = 1− 2r and


dr(Q0Q1(x)) = 0 for r ≥ 2.


Hence Q0Q1(x) ∈ H∗(BE3;Z/3) from the coniveau spectral sequence.
So Q0Q1(Ou4) ∈ ResHZ/3, which contradicts to the result above


Igr(W ′
4)/ResHZ/3 ⊃ Q(2){Ou4}.


�


8. Spin9 for p = 2


In this section, we consider the groups Spin8, Spin9, F4, E6 for p = 2.
At first we consider the case G = Spin9. Then the maximal elementary
abelian 2-group is rank2 = 5, and the Weyl group is


WG(A) = W5
∼= 〈U5, SL3〉 ⊂ SL5(Z/2).


The cohomology is known that


H∗(BG;Z/2) ∼= H∗(BA;Z/2)WG(A) ∼= Z/2[w4, w6, w7, w8, w16]
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where w16 is the Stiefel-Whitney class of some spin representation. We
can also identify


w16 = O′
4(x5) = x16


5 + d3x
8
5 + d2x


4
5 + d1x


2
5 + d0x5


where d3 = w8, d2 = w8w4, d1 = w8w6, d0 = w8w7 (see the proof
of Lemma 7.2 or p1051 in [Sc-Ya]). As the case (∗) in §5, we know
([Sc-Ya])


Q3w16 = d0w16, Q4(d0w16) = d20w
2
16.


We can prove from Kameko-Mimura theorem


Lemma 8.1.


Igr(W5) ∼= Igr(W4)⊕ Z/2[c4, c6, c16]⊗ (Z/2[c8]{c16}⊕


Z/2[c7]⊗Q(2){c16u3} ⊕ Z/2[c7, c8]⊗Q(4){u5})


Proof. Recall that


Igr(W4) ∼= Z/2[c4, c6, c7, c8]⊗ (Z/2{1} ⊕ Q̄(2){u3} ⊕Q(2){u3}).


From Kameko-Mimura theorem (Theorem 5.4) we see that


Igr(W5) ∼= Z/2[c4, c6, c7, c8, c16]⊗(Z/2{1}⊕Q̄(2){u3}⊕Q(2){u4}⊕Q(3){u5}).


Using Q2Q1Q0(u3) = c7 and Q3(u4) = c8u3+... as the case for Spin7,
we have the isomorphism


Q(2){u3} ∼= Z/2{c7}⊕Q̄(2){u3}, Q(3){u4} ∼= Q(2){c8u3}⊕Q(2){u4}.


Hence Igr(W5) is isomorphic to


Z/2[c4, c6, c16]⊗ (Z/2[c8]⊕ Z/2[c7]⊗Q(2){u3}⊕


Z/2[c7, c8]⊗Q(3){u4} ⊕ Z/2[c7, c8]⊗Q(3){u5})


Using the fact Q4(u5) = c16u4 + ... from Lemma 5.6, we have the
isomorphism


Q(4){u5} ∼= Q(3){c16u4} ⊕Q(3){u5}.


This induces the isomorphism


Igr(W5) ∼= Z/2[c4, c6]⊗ (Z/2[c8, c16]⊕ Z/2[c7, c16]⊗Q(2){u3}


⊕Z/2[c7, c8]⊗Q(3){u4} ⊕ Z/2[c7, c8, c16]⊗Q(4){u5}).


Hence we have the desired isomorphism. �


The cohomological invariant is known


Inv∗(Spin9,Z/2) ∼= Z/2{1, u3, u4, u5}.


Hence Assumption (1),(2) are also satisfied for (Spin9, 2) (from the
last isomorphism in the above proof).
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Lemma 8.2.


Igr(W5)/I(W5) ∼= Igr(W4)/(W4)⊕ Z/2[c4, c6, c16]⊗ (Z/2{c16u3}⊕


⊕Z/2[c8]⊗ ((Q(4)/(Q(4)+)3{u5} ⊕ Z/2{c7u5})).


Proof. Since


Q0(u5) = Q0(u4x5) = Q0(u4)x5 + u4y5,


we can compute


Q2Q1Q0(u5) = Q2Q1Q0(u4)x5+Q1Q0(u4)y
4
5+Q2Q0(u4)y


2
5+Q2Q1(u4)y5


= w7w8x5 + w8y
4
5 + w4w8y


2
5 + w6w8y5 = w16.


(This fact also follows from d5,4 = w16.) Let us write Qi1,...,ij(u5) =
Qi1,...,ij simply. Similarly we can compute


Q012 = w16, Q013 = w16w8, Q023 = w16w4w8, Q123 = w16w6w8,


Q014 = c16w8, Q024 = c16w8w4, Q034 = c16c8w4,


Q124 = c16w6w8, Q134 = c16c8w6, Q234 = c16c8w4w6.


We can compute


Q0(c7u5) = Q0(c7u4x5) = Q0(w4w6w8x5)


= w4w7w8x5 + w4w6w8y5 + ... = w4w16.


Let us write Qi1,...,ij(c7u5) = Q′
i1,...,ij


simply. Then we can compute


Q′
0 = w16w4, Q′


1 = w16x6, Q′
2 = w16w4w6, Q′


3 = w16w4w6w8,


Q′
4 = c16w4w6w8, Q′


01 = w16w7, Q′
12 = w16w6w7, Q′


04 = c16w7w4w8.


Moreover
c27u5 = c7w4w6w8x5 = w4w6w7w16.


There appear all generators of the Z/2[c4, c6, c8, c16]-module with
modulo Ideal(c7, w7). Thus we can see


Igr(W5)/I(W5) ∼= Z/2[c4, c6]⊗(Z/2[c16]{u3}⊕Z/2[c8](Q(3)/(Q(3)+)2{u4}


⊕Z/2[c8, c16]⊗ ((Q(4)/(Q(4)+)3{u5} ⊕ Z/2{c7u5})).


�


Theorem 8.3. There is an epimorphism of Q(4)-modules
from H∗(BSpin9;H


∗′


Z/2) to


H∗(BSpin7;H
∗′


Z/3)⊕Z/p[c4, c6, c16]⊗(Z/2[c7]⊗Q(2){c16u3}⊕Z/2{c16y}


⊕Z/2[c8, c7]⊗Q(4){u5} ⊕ Z/2[c8]⊗ (Q(4)/(Q(4)+)3{y′′})


where d2u3 = y and d2(u5) = y′′.
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Remark. However note that we can not see d2(c7u5) 6= 0 or not.
From Lemma 4.4, we know d2(u5) = y′′ 6= 0 and we get many Griffith


elements
QiQj(y


′′) for 0 ≤ i < j ≤ 4.


We study the image of the cycle map c̃l to BP ∗(BSpin9)⊗BP ∗ Z/2 in


the last section (indeed c̃l(QiQj(y
′′) 6= 0).


Next we consider the case (Spin8, 2). The Weyl group is


W4 ⊂ WG(A) = W ′′
5 = {(wij) ∈ GL5(Z/2)|w5,4 = 0} ⊂ W5.


We can compute


Igr(W ′′
5 )


∼= Igr(W4)⊕ Z/2[c4, c6, c
′
8, c8]⊗


(Z/2{c′8} ⊕ Z/3[c7]⊗Q(3){u′
4} ⊗ Z/2[c7]⊗Q(4){u5}).


Hence Assumption (1) (with some modification for u′
4) and (2) are


satisfied.
We consider the case (F4, 2) also . This case A ∼= (Z/2)5 but


WG(A) = W ′
5 = 〈U5, GL3(Z/2)⊕GL2(Z/2)〉 ⊂ GL5(Z/2).


The cohomology is given by


H∗(BG;Z/2) ∼= H∗(BA;Z/2)WG(A) ∼= Z/2[w4, w6, w7, x16, x24]


where x16 = w2
8+w16 and x24 = w8w16. We consider the representation


〈a4, a5〉 ⊂ A ⊂ F4
ρ
→ SO(26)


where a4, a5 are dual of x4, x5. Then the total Chern class is


c(ρ|〈a4, a5〉) = (1 + c2,1 + c2,0)
a


from Lemma 5.1. By dimensional reason, a ≤ 8. So we see x2
16 and x2


24


are represented by Chern classes. Thus we can write


Igr(W ′
5)


∼= Z/2[c4, c6]⊗ (Z/2[c16, c24]⊕ Z/2[c7, c24]⊗Q(2){u3}


⊕Z/2[c7, c16, c24]⊗Q(4){u5}).


Hence Assumption (1),(2) are also satisfied. So ResE2
is an epimor-


phism for (F4, 2).
At last of examples, we consider the case (E6, 2). This caseWG(A) ∼=


W ′
5 same as the case F4. But it is known ([Ga-Me-Se]) that


Inv∗(E6,Z/2) ∼= Z/2{1, u3}.


Therefore we see


Lemma 8.4. When G = E6 and p = 2, the restriction map


ResE2
: H∗(BG;H∗′


Z/2) → H∗(BA;H∗′


Z/2)
WG(A)


is not an epimorphism.
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The above fact also proved by using the cohomology H∗(BE6;Z/2)
and Lemma 5.9 as follows.


Theorem 8.5. The restriction maps


ResInv : Inv
∗(G;Z/2) → Inv∗(A5;Z/2)


WG(A5)


are epimorphisms for G = E6 and G = Spinn, n ≥ 10.


Proof. Of course there is the embedding i : Spin9 ⊂ Spin10. From
Kono-Mimura [Ko-Mi], we know


H∗(BSpin10;Z/2) ∼= H∗(BSpin7;Z/2)⊗ Z/2[x10, x32]/(w7x10).


Hence H∗(BE6;Z/2) does not contain an element x with i∗(x) = w16


for w16 = d5,4 = Q0Q1Q2(u5). From Lemma 5.9, we see that ResInv is
not an epimorphism.
There is the embedding F4 ⊂ E6. From also Kono-Mimura [Ko-Mi],


we know


H∗(BE6;Z/2) ∼= H∗(BSpin7;Z/2)⊗Z/2[x10, x18, x32, x48]/(relations).


Hence ResInv is not epic from the lack of element x16. �


9. BP -theory and Griffith elements


In this section, we recall the results in §5 in [Ya1] and consider the re-
lation between BP -theory and results in the preceding sections. We al-
ways assume k = C in this section. Let BP ∗(−) be the Brown-Peterson
theory with the coefficient ring BP ∗ = Z(p)[v1, ...], |vi| = −2(pi − 1).
The Thom map induces ρ : BP ∗(X)⊗BP ∗ Z(p) → H∗(X ;Z(p)). Totaro
constructs [To1] the map


c̃l : CH∗(X)(p) → BP ∗(X)⊗BP ∗ Z(p)


such that the composition ρ · c̃l is the usual cycle map cl = tC which is
also the realization map. Totaro conjectured that this map is isomor-
phic for X = BG.
Let us write by


P (n)∗ = BP ∗/(p, v1, ..., vn−1),


e.g., P (0)∗ = BP ∗, P (1)∗ = BP ∗/p and P (∞)∗ = Z/p.
Many cases of X([Te-Ya2], [Ko-Ya]), BP ∗(X) are computed by the


Atiyah-Hirzebruch spectral sequences


E∗,∗′


2 = H∗(X)⊗ BP ∗′ =⇒ BP ∗(X).


It is known that d2pi−1(x) = vi ⊗Qi(x) mod(Mi) where Mi is the ideal


of E∗,∗′


2pi−1
generated by elements in (p, ..., vi−1)E


∗,∗′


2 .
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We assume that H∗(X) has no higher p-torsion and all non zero
differentials are of form


(9.1) d2pi−1(x) = vi ⊗Qi(x) mod(Mi).


Let us write
(9.2) grBP ∗(X) ∼= E∗,∗


∞
∼= A⊕ B


where A (resp. B) is a BP ∗-module generated by elements in H∗(X)/p
(resp. pH∗(X)⊕E∗,minus


∞ ) so that B ⊂ Ker(ρp). Then we can write


A ∼= ⊕n=−1P (n+ 1)∗G̃n


by the prime invariant ideal theorem of Landweber ; if P (n)∗/(a) is a
BP ∗(BP )-module, then a = vsn for some s ≥ 1.


Lemma 9.1. (Lemma 5.1 in [Ya1]) Let H∗(X)(p) has no higher p-


torsion. Suppose (9.1) and A = ⊕n=−1P (n + 1)∗G̃n in (9.2). Then
there is a injection of Q(∞)-modules


H∗(X ;Z/p) →֒ ⊕n=−1Q(n)Gn with Q0...QnGn = G̃n.


It is proved ([Ko-Ya],[Ka-Ya],[Ya1]) that all X = BG in Theorem
1.2 satisfy the assumption in the above lemma. Hence


H∗(BG;Z/p) →֒ ⊕∞
n=−1Q(n)Gn.


Moreover when n 6= −1, we still know


w(Gn) = n.


Indeed if n ≥ 0, then Gn = G′
n{un} where G′


n is represented by ele-
ments in CH∗(BG)/p (see Assumption (1),(2)). From Theorem 1.2,
we also know


Corollary 9.2. Let G be a group in Theorem 1.2. Then there is a
bidegree Q(n)-module injection


⊕i≥0Q(n)Gn ⊂ H∗(BG;H∗′


Z/p).


Lemma 9.3. (Lemma 5.2 in [Ya]) Let H∗(X)(p) has no higher p-
torsion.
(1) If (9.1) is satisfied and in (9.2),


A ∼= ⊕n=−1P (n+ 1)∗G̃n and B ∼= ⊕s=0BP ∗{p, v1, .., vs}K̃s,


then we have the isomorphism


H∗(X ;Z/p) ∼= (⊕n=−1Q(n)Gn)− (⊕sQ̄(s)Ks)


with Q0...QnGn = G̃n , and Q1...QsKs = K̃s.
(2) If Q0...QnGn ∈ Im(ρ) and |Q1...QsKs| = even, then the


converse also holds.
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Corollary 9.4. Let G be a group in Theorem 1.2 so that Assumption
(1),(2) are satisfied. Then there are epimorphisms from grBP ∗(BG) ∼=
E∗,∗′


∞ to


(9.3) ⊕s P (is)
∗[fs1, ..., fsks]{ũis} ⊕ ⊕tBP ∗(p, ..., vt){K̃t}


and from BP ∗(BG)⊗BP ∗ Z/p to


⊕sZ/p[fs1, ..., fsks]{ũis} ⊕ ⊕tZ/p{p, ..., vt}{K̃t}


where ũis = Qis−1...Q0(uis) and Igr(W )/ResHZ/p
∼= ⊕tQ̄(t)Kt.


We give examples. At first we recall the Atiyah-Hirzebruch spectral
sequence for BG2 in [Ko-Ya]. Since H∗(BG) has no higher torsin, we
have


H∗(BG2)(2) ∼= Z(2)[w4, c6]⊗ (Z(2){1} ⊕ Z/2[w7]{w7}).


Let us write Bi1,...,ij = Z(2)[ci1 , ..., cij ], e.g., B4,6 = Z(2)[c4, c6].
Since Q1(w4) = w7, we have d3(w4) = v1 ⊗ w7. Hence the E4-term


of the spectral sequence is


E(G2)
∗,∗
4


∼= B4,6 ⊗ (BP ∗{1, 2w4} ⊕ P (2)∗[c7]{c7, w7}).


Next differential is d7(w7) = v2 ⊗Q2(w7) = v2c7 and


E(G2)
∗,∗
8


∼= B4,6 ⊗ (BP ∗{1, 2w4} ⊕ P (3)∗[c7]{c7}).


which is isomorphic to E(G2)
∗,∗
∞ . In particular


BP ∗(BG)⊗BP ∗ Z/2 ∼= Z/2[c4, c6]⊗ (Z/2{1, 2w4} ⊕ Z/2[c7]{c7}).


This result is also immediate from Corollary 9.4 and Theorem 6.1,
in fact, we have the epimorphism


H∗(BG2;H
∗′


Z/2) → Z/2[c4, c6]⊗ (Z/2{1, y} ⊕ Z/2[c7]⊗Q(2){u3}).


Here ũ3 = Q0Q1Q2(u3) = c7 and d2(u3) = y in the coniveau spectral
sequence, and we have


Q̄(0)K0 = K0 = Z/2[c4, c6]{u}.


Hence the cycle map c̃l is epimorphism and c̃l(y) = {2w4} (which is


represented by a Chern class c2). Moreover we know [Ya2] that this c̃l
is a really isomorphism.
Next consider the case Spin7. From [Ko-Ya], we can compute


E(Spin7)
∗,∗
16


∼= B4,6 ⊗ P (3)∗[c7]{c7}⊕


B4,6,8 ⊗ (BP ∗{1, 2w4, 2w4w8, 2w8, v1w8} ⊕ P (4)∗[c7]{c7c8}).


This term is also the infinity term. Hence we have


BP ∗(BG)⊗BP ∗ Z/2 ∼= BP ∗(BG2)⊗BP ∗ Z/2⊕
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Z/2[c4, c6, c8]⊗ (Z/2{c8, 2c8w4, 2w4w8, 2w8, v1w8} ⊕ Z/2[c7]{c7c8})


This result is also get from Corollary 9.4 and Theorem 7.3, indeed, we
have the epimorphsm


H∗(BSpin7;H
∗′


Z/2) → H∗(BG2;H
∗′


Z/2)⊕


Z/2[c4, c6, c8]⊗ (Z/2{c8, y
′
2, Q0y


′
2, ..., Q3y


′
2} ⊕ Z/2[c7]⊗Q(3){u4})


This case d2(u3) = y, d2(u4) = y′ in the coniveau spectral sequence.
Recall


⊕sQ̄(s)Ks
∼= Igr(W4)/I(W4) ∼= I(GL3)/I(GL3)⊕


Z/2[c4, c6, c8]{1, Q0, ..., Q3}{u4}.


We can take


Q̄(1)K1
∼= Z/2[c4, c6, c8]{1, Q0, Q1}{u4}


Q̄(0)K0
∼= Z/2[c4, c6]⊗ (Z/2{u3} ⊕ Z/2{Q2u4, Q3u4}).


The cycle map c̃l is given by


Q0(y
′) 7→ v1w8 , Q1y


′ 7→ 2w8 , Q2y
′ 7→ 2w4w8 , Q3y


′ 7→ 2c8w4.


Of course the cycle map c̃l is isomorphic. This fact is still proved by
P.Guillot [Gu1], and the case G = Spin8 is computed by Molina [Mo].


10. BP ∗(BSpin9)⊗BP ∗ Z/2


At last of this paper, we consider the case Spin9. In [Ko-Ya], we can
compute (which is quite complicated)


E(Spin9)
∗,∗
32


∼= B4,6,8,16 ⊗ (BP ∗{1, 2w4, 2w4w8, 2w8, v1w8,


2w4w16, 2w4w8w16, 2w8w16, v1w8w16, 2w16, v1w16.v2w16}


⊕P (5)∗[c7]{c7c8c16})⊕B4,6,7,8⊗P (4)∗[c7]{c7c8}⊕B4,6,16⊗P (3)∗[c7]{c7}.


This term is the infinite term. (See Theorem 8.3 also.)


Lemma 10.1. ([Ko-Ya])


BP ∗(BSpin9)⊗BP ∗ Z/2 ∼= BP ∗(BSpin7)⊗BP ∗ Z/2⊕


Z/2[c4, c6, c8, c16]⊗ (Z/2{c16, 2w4c16, 2w4c8c16, (2, v1)w8c16, 2w4w8c16,


(2, v1, v2)w16, 2w4w16, (2, v1)w8w16, 2w4w8w16} ⊕ Z/2[c7]{c16c7}).


We still know there is an epimorphism from H∗(BSpin9;H
∗′


Z/2) to


H∗(BSpin7;H
∗′


Z/2)⊕Z/2[c4, c6, c16]⊗(Z/2[c7]⊗Q(2){c16u3}⊕Z/2{c16y}


⊕Z/2[c8, c7]⊗Q(4){u5} ⊕ Z/2[c8]⊗ (Q(4)/(Q(4)+)3{y′′})


where d2u3 = y and d2(u5) = y′′.
We can see the following lemma;
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Proposition 10.2. When (G, p) = (Spin9, 2), the cycle map


c̃l : CH∗(BG)/2 → (BP ∗(BG)⊗BP ∗ Z/2)


is an epimorphism with mod(Z/2[c4, c6, c8, c16]{2w4w16}).


The image of the cycle map c̃l is given as follows. By arguments for
G2, we see


d2(c16u3) 7→ 2w4c16


If we can see
d3(c7u5) 7→ 2w4w16,


then the Totaro’s map c̃l is an epimorphism. Unfortunately, we do not
see even d2(c7u5) = c7y


′′ = 0 yet.


Let us write Qij = QiQj(d2u5) = QiQj(y
′′). Then the cycle map c̃l


is written as


Q01 7→ v2w16, Q02 7→ v1w16, Q12 7→ 2w16,


Q03 7→ v1w8w16, Q13 7→ 2w8w16, Q23 7→ 2w4w8w16,


Q04 7→ v1w8c16, Q14 7→ 2w8c16, Q24 7→ 2w4w8c16,


Q34 7→ 2w4c8c16.


By the arguments for Spin7, we still know, for example Q1(d2u4) 7→
2w8, so we get the Q4Q1(d2u5) 7→ 2w8c16 using Q4(u5) = c16u4 + ....
Similarly we get the maps for Q∗4 from that for Spin7.
For other maps, we use the Quillen operation in BP ∗(−) theory. For


a sequence α = (α1, ..., αm), αi ≥ 0, we have the Quillen cohomology
operation in BP ∗(X) (and also in ABP ∗(X)) (see [Ra], [Ha], [Ya2])


rα : BP ∗(X) → BP ∗+|α|(X) |α| =
∑


2piαi


such that ρ(rα) = P α the fundamental basis of the reduced power
operations (see [Ha]) and rα(vi) ∈ Ideal(p, ..., vi). Hence rα acts also
on BP ∗(X)⊗BP ∗ Z/p.
Let us write by S̄qeven the Quillen operation corresponding Sqeven.


By the definition of Qi, se see the equation Sq16Sq8(Q2Q1(u5)) =
Q4Q1(u5) in H∗(BG;Z/2). We still know the image of the cycle map


Sq16Sq8(Q12) = Q14 7→ 2w8c16 ∈ BP ∗(BG)⊗BP ∗ Z/2.


Let c̃l(Q12) = x. Then


S̄q16S̄q8(x) = 2w8c16 in BP ∗(BG)⊗BP ∗ Z/2.


So x is non zero. The equation Sq16Sq8(w16) = w8c16 in H∗(BG;Z/2)
implies


S̄q16S̄q8(2w16) = 2w8c16 mod(v1, ...) in BP ∗(BG).
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Hence we can take x = 2w16.
Using S̄q4S̄q2 and dimensional reason, we have the first map Q01 7→


v2w16. The other cases are also proved similarly.
The above Qij are all Griffith elements. From Corollary 9.4, we can


write


Q(4){u5}/(Q(4)+)3{u5} ∼= ⊕2
t=1Q̄(t)K ′


t.


In fact, we can take


Q̄(2)K ′
2 = Z/2{u5, Q0, Q1, Q2, Q01, Q02, Q12},


Q̄(1)K ′
1 = Z/2{Q3, Q03, Q13, Q4, Q04, Q14},


Q̄(0)K ′
0 = Z/2{Q23, Q24, Q34}.


Recall Corollary 9.4 and Igr(W )/ResHZ/p
∼= ⊕tQ̄(t)Kt. Let k ∈ Kt.


Then we can identify k ∈ H∗(BG;H∗′


Z/p) and


k(i) = Q0...Q̂i...Qt(k) ∈ Q̄(t)Kt ⊂ Igr(W )/ResHZ/p.


Moreover suppose w(k) = t+3. Since w(k(i)) = 3 and w(dr) = 1−2r,
we see


d2(k(i)) 6= 0 (hence d2(k) 6= 0).


Let us consider the projection map


pr. : BP ∗(X)⊗BP ∗ Z/p → (9.3)⊗BP ∗ Z/p → (p, v1, ..., vt){k̃}


where k̃ = Q0...Qt(k). For G = G2, Spin7 and Spin9, it holds that


pr.c̃l(d2(k(i))) = vik̃, that is,


pr.c̃l(d2(Q0...Q̂i...Qt(k))) = viQ0...Qt(k),


while we do not show it for general cases.
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