

Indeomposable and Nonrossed Produt Division Algebras overCurves over Complete Disrete Valuation RingsFeng Chen1Dept. of Math & CS, Emory University, Atlanta GA 30322
AbstratLet T be a omplete disrete valuation ring and X̂ a smooth projetive urve over S = Spec(T )with losed �bre X . Denote by F the funtion �eld of X̂ and by F̂ the ompletion of F with respetto the disrete valuation de�ned by X , the losed �bre. In this paper, we onstrut indeomposableand nonrossed produt division algebras over F . This is done by de�ning an index preservinggroup homomorphism s : Br(F̂ )′ → Br(F )′, and using it to lift indeomposable and nonrossedprodut division algebras over F̂ .1. IntrodutionLet X̂ be a smooth projetive urve over S = Spec(T ), where T is a omplete disrete valuationring with uniformizer t. Let F = K(X̂) be the funtion �eld, and let F̂ = K̂(X̂) be the ompletionwith respet to the disrete valuation de�ned by the losed �bre X . We de�ne an index-preservinghomomorphism


Br(F̂ )′ → Br(F )′that splits the restrition map res : Br(F )′ → Br(F̂ )′. Here Br(−) denotes the Brauer group of− andthe �prime� denotes the union of the n-torsion part of Br(F ), where n is prime to the harateristiof k, the residue �eld of T . Using the method of Brussel [5℄ and Brussel [4℄, we an onstrutindeomposable and nonrossed produt division algebras over F̂ , and lift these onstrutions to Fusing our homomorphism, generalizing the onstrutions in Brussel et al. [6℄, where indeomposableand nonrossed produt division algebras over funtion �elds of p-adi urves are onstruted.Reall that if K is a �eld, a K-division algebra D is a division ring that is �nite-dimensional andentral over K. The period or exponent of D is the order of the lass [D] in Br(K), and the indexof D is the square root of D's K-dimension. A nonrossed produt is a K-division algebra whosestruture is not given by a Galois 2-oyle. Nonrossed produts were �rst onstruted by Amitsur[2℄, settling a longstanding open problem. Sine then there have been several other onstrutions,inluding Saltman [22℄, Jaob and Wadsworth [18℄, Brussel [5℄.A K-division algebra is indeomposable if it annot be expressed as the tensor produt of twonontrivial K-division algebras. It is easy to see that all division algebras of period not a primepower are deomposable, so the problem of produing an indeomposable division algebra is onlyEmail address: fhen�emory.edu (Feng Chen)Preprint submitted to Arxiv April 24, 2010







2interesting when the period and index are unequal prime powers. Therefore we will only onsiderdivision algebras of prime power period and index in this paper. Then it is not hard to see thatall division algebras of equal (prime power) period and index are trivially indeomposable. Albertonstruted deomposable division algebras in the 1930's, but indeomposable division algebras ofunequal (2-power) period and index did not appear until Saltman [23℄and Amitsur et al. [3℄. Sinethen there have been several onstrutions, inluding Tignol [27℄, Jaob and Wadsworth [17℄, Jaob[16℄, Sho�eld and Van den Bergh [25℄, Brussel [4℄ and MKinnie [21℄.It is the author's pleasure to thank Prof. Brussel, his thesis adviser. The author is greatlyindebted to him for his patiene and suggestions during the preparation of the paper. The authorwould also like to thank Prof. Suresh and Prof. Parimala for many instrutive disussions and theirmost valuable omments and ritiques. Finally the author thanks Prof. Harbater for reading a �rstdraft of the paper and his valuable suggestions and omments to improve the writing.2. Pathing over FieldsOur onstrution is based on the method of pathing over �elds introdued in Harbater andHartmann [14℄. In this setion, we will reall this method. Throughout this setion, T will be aomplete disrete valuation ring with uniformizer t, fration �eld K and residue �eld k. Let X̂ bea smooth projetive T -urve with funtion �eld F suh that the redued irreduible omponents ofits losed �bre X is regular. (Given F , suh an X̂ always exists by resolution of singularities; f.Abhyankar [1℄ or Lipman [20℄). Let f : X̂ → P
1
T be a �nite morphism suh that the inverse image


S of ∞ ∈ P
1
k ontains all the points of X at whih distint irreduible omponents meet. (Suh amorphism exists by Harbater and Hartmann [14, Proposition 6.6℄). We will all (X̂, S) a regular


T -model of F .We follow Harbater and Hartmann [14, Setion 6℄ to introdue the notation. Given an irreduibleomponent X0 of X with generi point η, onsider the loal ring of X̂ at η. For a (possibly empty)proper subset U ofX0, we let RU denote the subring of this loal ring onsisting of rational funtionsthat are regular at eah point of U . In partiular, Rφ is the loal ring of X̂ at the generi point ofthe omponent X0. The t-adi ompletion of RU is denoted by R̂U . If P is a losed point of X , wewrite RP for the loal ring of X̂ at P , and R̂P for its ompletion at its maximal ideal. A height 1prime ideal p that ontains t determines a branh of X at P , i.e., an irreduible omponent of thepullbak of X to Spec(R̂P ). Similarly the ontration of p to the loal ring of X̂ at P determinesan irreduible omponent X0 of X , and we say that p lies on X0. Note that a branh p uniquelydetermines a losed point P and an irreduible omponent X0. In general, there an be severalbranhes p on X0 at a point P ; but if X0 is smooth at P then there is a unique branh p on X0at P . We write R̂p for the ompletion of the loalization of R̂P at p; thus R̂P is ontained in R̂p,whih is a omplete disrete valuation ring.Sine X̂ is normal, the loal ring RP is integrally losed and hene unibranhed; and sine Tis a omplete disrete valuation ring, RP is exellent and hene R̂P is a domain (f. Grothendiekand Dieudonné [13, Sholie 7.8.3(ii,iii,vii)℄). For nonempty U as above and Q ∈ U , R̂U/t
nR̂U →


R̂Q/t
nR̂Q is injetive for all n and hene R̂U → R̂Q is also injetive. Thus R̂U is also a domain.Note that the same is true if U is empty. The fration �eld s of the domains R̂U , R̂P and R̂p willbe denoted by FU , FP and Fp.If p is a branh at P lying on the losure of U ⊂ X0, then there are natural inlusions of R̂Pand R̂U into R̂p, and hene of FP and FU into Fp. The inlusion of R̂P was observed above; for


R̂U , note that the loalization of RU and of Rp at the generi point of X0 are the same; and this







3loalization is naturally ontained in the t-adially omplete ring R̂p. Thus so is RU and hene its
t-adi ompletion R̂U .In the above ontext, assume f : X̂ → P


1
T is a �nite morphism suh that P = f−1(∞) ontainsall points at whih distint irreduible omponents of the losed �bre X ⊂ X̂ meet (Suh an falways exists by Harbater and Hartmann [14, Proposition 6.6℄). We let U be the olletion ofirreduible omponents U of f−1(A1


k), and let B be the olletion of all branhes p at all points of
P. The inlusions of R̂U and of R̂Q into R̂p, for p = (U,Q), indue inlusions of the orrespondingfration �elds FU and FQ into the fration �eld Fp of R̂p. Let I be the index set onsisting of all
U,Q, p desribed above. Via the above inlusions, the olletion of all Fξ, for ξ ∈ I, then forms aninverse system with respet to the ordering given by setting U ≻ p and Q ≻ p if p = (U,Q).Under the above hypotheses, suppose that for every �eld extension L of F , we are given aategory A(L) of algebrai strutures over L(i.e. �nite dimensional L-vetor spaes with additionalstruture, e.g. assoiative L-algebras), along with base-hange funtors A(L) → A(L′) when L ⊆ L′.An A-pathing problem for (X̂,S) onsists of an objet Vξ in A(Fξ) for eah ξ ∈ I, together withisomorphisms φU,p : VU⊗FU


Fp → Vp and φQ,p : VQ⊗FQ
Fp → Vp in A(Fp). These pathing problemsform a ategory, denoted by PPA(X̂, S), and there is a base hange funtor A(F ) → PPA(X̂, S).If an objet V ∈ A(F ) indues a given pathing problem up to isomorphism, we will say that


V is a solution to that pathing problem, or that it is obtained by pathing the objets Vξ. Wesimilarly speak of obtaining a morphism over F by pathing morphisms in PPA(X̂, S). The nextresult is given by Harbater and Hartmann [14, Theorem 7.2℄.Theorem 1. Let T be a omplete disrete valuation ring. Let X̂ be a smooth onneted projetive
T -urve with losed �bre X. Let U1, U2 ⊆ X, let U0 = U1 ∩ U2, and let Fi := FUi


(i = 0, 1, 2). Let
U = U1 ∪ U2 and form the �bre produt of groups Br(F1) ×Br(F0) Br(F2) with respet to the maps
Br(Fi) → Br(F0) indued by Fi →֒ F0. Then the base hange map β : Br(F


U
) → Br(F1) ×Br(F0)


Br(F2) is a group isomorphism.The above Theorem says that giving a Brauer lass over a funtion �eld F is equivalent to givingompatible division algebras over the pathes. The nie thing about pathing Brauer lasses overa funtion �eld F is that we have good ontrol of the index, whih is stated in Harbater et al. [15,Theorem 5.1℄.Theorem 2. Under the above notation, let A be a entral simple F -algebra. Then ind(A) =
lcmξ∈P∪U(ind(AFξ


)).To onlude this setion, we reord a variant of Hensel's Lemma from Harbater et al. [15, Lemma4.5℄ that will be used over and over again in the index omputation.Lemma 3. Let R be a ring and I an ideal suh that R is I-adially omplete. Let X be an a�ne
R-sheme with struture morphism φ : X → SpecR. Let n ≥ 0. If sn : Spec(R/In) → X×R (R/In)is a setion of φn : φ×R (R/In) and its image lies in the smooth lous of φ, then sn may be extendedto a setion of φ.3. Splitting MapLet T be a omplete disrete valuation ring with uniformizer t and residue �eld k. By a smoothurve X̂ over T , we will mean a sheme X̂ whih is projetive and smooth of relative dimension







3.1 Constrution over an Open A�ne Subset 4
1 over Spec(T ). In partiular, X̂ is �at and of �nite presentation over Spec(T ). Let F = K(X̂)be the funtion �eld of X̂. Note that sine X̂ is smooth, the losed �bre X is smooth, integral,onneted and of odimension 1, hene determines a disrete valuation ring on F . Let F̂ = K̂(X̂)be the ompletion of F with respet to this disrete valuation. Throughout the paper, n will denotean integer whih is prime to the harateristi of k.We will be using the following notation for ohomology groups in the sequel: For an integer r,we let


µr
n =


{


µ⊗r
n for r ≥ 0,


hom(µ⊗−r
n , µn) for r < 0.For a �xed integer n, and for any �eld K, we will let Hq(K, r) = Hq(K,µ⊗r


n ) and Hq(K) =
Hq(K, q − 1) = Hq(K,µ⊗q−1


n ). In partiular, H2(K) = nBr(K) will be the n-torsion part of theBrauer group of K; and H1(K) will be the n-torsion part of the harater group of K.Adopting the above notation, in this setion we will de�ne a map s : H2(F̂ ) → H2(F ) and showthat s has the following properties:
• s is a group homomorphism;
• s splits the restrition;
• s preserves index of Brauer lasses.One suh a map s is de�ned, we ould use it to onstrut indeomposable division algebras andnonrossed produt division algebras over F , as in setion 5.3.1. Constrution over an Open A�ne SubsetGiven an element γ̂ ∈ H2(F̂ ), we will de�ne a lift γU to FU of γ̂. Note that sine F̂ is a ompletedisretely valued �eld with t a unifomizer, and with k(X) the residue �eld. We have an exat WittSequene as in Garibaldi et al. [10, II.7.10 and II.7.11℄,


0 → H2(k(X)) → H2(F̂ ) → H1(k(X)) → 0 (1)split (non-anonially) by the up produt with (t) ∈ H1(k(X)). Hene eah element γ̂ ∈ H2(F̂ )an be written as a sum γ0 + (χ0, t), with γ0 ∈ H2(k(X)) and χ0 ∈ H1(k(X)) (Note that here weare identifying Hr(k(X)) as a subgroup of Hr(F̂ ), for r = 1, 2, as in Garibaldi et al. [10, II.7.10 andII.7.11℄). Here we use the notation (χ0, t) to denote the up produt χ0 ∪ (t), and we will use thisnotation throughout the paper without further explanation.Let U be an open a�ne subset of X so that neither γ0 nor χ0 rami�es at any losed point of U .This implies that γ0 ∈ H2(k[U ]) and χ0 ∈ H1(k[U ]) by purity(f, Colliot-Thélène [8℄), where k[U ]denotes the ring of regular funtions of the a�ne sheme U .By Cipolla [7℄, there exists a anonial isomorphism H2(R̂U ) → H2(k[U ]) sine R̂U is t-adiallyomplete and k[U ] ∼= R̂U/(t); therefore there is a unique lift of γ0 to H2(R̂U ). At the same time,Grothendiek and Raynaud [12, Théorèm 8.3℄ implies that there is a unique lift of χ0 to H1(R̂U ) aswell. Taking γ̃0 and χ̃0 as the lifts of γ0 and χ0 to R̂U , we will let
γU = γ̃0 + (χ̃0, t) (2)be the lift of γ̂ to H2(FU ).







3.2 Constrution over Closed Points 53.2. Constrution over Closed PointsFix an open a�ne subset U of X and let P = X\U . In order to apply the pathing resultwe realled in 2, we need to de�ne a γP for eah P ∈ P in suh a way that when p = (U, P )is the unique branh of U at P , the restrition to Fp of γP and γU agree with eah other, i.e.,
resFp


(γP ) = resFp
(γU ) (Reall there are �eld embeddings FP →֒ Fp and FU →֒ Fp for p = (U, P ),as in Setion 2, hene there are restritions res : H2(FU ) → H2(Fp) and res : H2(FP ) → H2(Fp).For more details on these restrition maps, see Serre [26℄).Note that sine X̂ is regular and the losed �bre X is smooth, the maximal ideal of the loalring RP is generated by two generators, t and π. So is R̂P .We de�ne γP in the following way: There is a �eld embedding FU → Fp, hene a anonialrestrition res : H2(FU ) → H2(Fp). Let γp be the image of γU under this restrition. Observe that


Fp is a omplete disretely valued �eld with residue �eld κ(p); furthermore, κ(p) is also a ompletedisretely valued �eld with residue �eld κ(P ). Therefore, applying Garibaldi et al. [10, II.7.10 andII.7.11℄ twie, we get the following deomposition of H2(Fp):
H2(Fp) ∼= H2(κ(P ))⊕H1(κ(P ))⊕H1(κ(P )) ⊕H0(κ(P )). (3)In other words, eah element γp ∈ H2(Fp) an be written as γp = γ0,0+(χ1,π)+(χ2+(πr), t), where


γ0,0 ∈ H2(κ(P )), χ1,χ2 ∈ H1(κ(P )), r ∈ H0(κ(P )) ∼= Z/nZ and (πr) denote the image in H1(κ(P ))of πr under the Kummer map. Note that by our notation, H0(κ(P )) = H0(κ(P ), µ−1
n ) = Z/nZ.In order to de�ne a lift for γp to FP , we �rst show that all haraters in H1(κ(p)) an be liftedby proving the following lemma.Lemma 4. Let χ ∈ H1(κ(p)) be a harater. Then there is a unique χ̃ ∈ H1(FP ) that lifts χ.Proof. Sine κ(p) is a omplete disretely valued �eld with residue �eld κ(P ), we have the lassialWitt's deomposition for χ,


χ = χ0 + (πr),where χ0 ∈ H1(κ(P )) and r ∈ H0(κ(P )). Note that χ0 an be lifted without any di�ulty byGrothendiek and Raynaud [12, Théorèm 8.3℄; the only trouble omes from (πr).Let L,L0/κ(p) be the �eld extension determined by χ, χ0 respetively. Then L0 is the maximalunrami�ed subextension of κ(p) inside L and L/L0 is a totally rami�ed extension determined bythe harater (πr). Now Fesenko and Vostokov [9, Theorem II.3.5℄ implies that (πr) an be liftedto H1(FP ) in a unique fashion as well, sine κ(p) is a omplete disretely valued �eld.Now we are ready to de�ne a lift for γ̂ in H2(FP ). Again Cipolla [7℄ implies that H2(κ(P )) ∼=
H2(R̂P ) and Lemma 4 implies that χ1, χ2 + (πr) an be lifted to H1(R̂P ) uniquely. Hene eahomponent of H2(Fp) an be lifted to R̂P , and thus we will set


γP = γ̃0,0 + (χ̃1, π) + (χ̃2 + (πr), t). (4)where γ̃, χ̃1, χ̃2 are the lifts of γ0,0,χ1, χ2 to R̂P (and hene to FP ), respetively. Therefore this γPis a unique lift of γp to FP . The assignment of sP (γp) = sP will yield a map sP : H2(Fp) → H2(FP ).It is not hard to see that sP is a group homomorphism, sine it is a group homomorphism on eahof the omponents.







3.3 The Map is Well De�ned 63.3. The Map is Well De�nedIn this setion we show that γU and γP that we onstruted in Setion 3.1 and Setion3.2 areompatible in the sense of pathing, that is resFp
(γU ) = resFp


(γP ) for eah P ∈ P = X\U when
p = (U, P ) is the unique branh of U at P .We laim that the ompatibility will be proved if we an show that sP splits the restritionmap resFp


: H2(FP ) → H2(Fp), or equivalently, resFp
◦ sP is the identity map. This is true beause


γP = sP (γp) = sP ◦ resFp
(γU ), hene we would have that resFp


(γP ) = resFp
(γU ) if resFp


◦ sP is theidentity map. So it su�es to prove the followingProposition 5. sP as de�ned in 3.2 splits the restrition res : H2(FP ) → H2(Fp), that is, res ◦ sPis the identity map.Proof. Take an arbitrary element γp ∈ H2(Fp). As in setion 3.2, we write γp = γ0,0 + (χ1,π) +
(χ2 + (πr), t). Therefore it is easily heked that


res ◦ sP (γp) = res ◦ sP (γ0,0 + (χ1, π) + (χ2 + (πr), t))


= res(γ̃0,0 + (χ̃1, π) + (χ̃2 + (πr), t))


= γ0,0 + (χ1, π) + (χ2 + (πr), t)


= γp.Thus γU , γP will path and yield γ ∈ H2(F ), by Harbater and Hartmann [14, Theorem 7.2℄.But there is one more thing we have to hek before we an say we have a map s : H2(F̂ ) → H2(F ):we need to show that γ is independent of the hoie of the open a�ne subset U of X . In order todo this, we prove the followingLemma 6. Let T be a omplete disrete valuation ring with residue �eld k; let X̂ be a smoothprojetive T -urve with funtion �eld F and losed �bre X. Let F̂ be the ompletion of F withrespet to the disrete valuation indued by X, and denote by k(X) the orresponding residue �eld.Take an element γ̂ = γ0 + (χ0, t) ∈ H2(F̂ ), where γ0 ∈ H2(k(X)) and χ0 ∈ H1(k(X)). Assume that
U1, U2 are two open a�ne subsets of X so that neither γ0, χ0 is rami�ed on any point of U1∪U2. Let
P1,P2 be the omplements of U1, U2 respetively. We onstrut two Brauer lasses γ, γ′ ∈ H2(F )by pathing as we did above, while using U1 and U2 as the open a�ne subset in the onstrution,respetively. Then γ, γ′ denote the same Brauer lass in H2(F ).Proof. We �rst deal with the ase where U1 is ontained in U2. In this ase we have a �eld embedding
FU2


→֒ FU1
. Let γi be the lift of γ0 to H2(FUi


), we must have γ1 = resFU1
(γ2), sine both γ1 and γ2are the image of γ0; in other words, resFU2


(γ) = resFU2
(γ′). By the onstrution in Setion 3.2, itfollows that for every P ∈ P2, resFP


(γ) = resFP
(γ′). Therefore it follows that γ = γ′, by Harbaterand Hartmann [14, Theorem 7.2℄. This proves the Lemma in the ase where U1 is ontained in U2.In the general ase, let U3 be an open a�ne subset of U1 ∩ U2. Clearly γ0 and χ0 are bothunrami�ed at every point of U3. Let γ′′ ∈ H2(F ) be the Brauer lass onstruted by pathing asabove, using U3 as the open a�ne subset in the onstrution. It follows that γ′′ = γ and γ′′ = γ′sine U3 is ontained in both U1 and U2, by what we just proved for the ase where one open a�nesubset is ontained in the other. Hene γ = γ′ = γ′′ ∈ H2(F ), whih proves the Lemma in thegeneral ase.







3.4 s Splits the Restrition Map 73.4. s Splits the Restrition MapReall the notation: let T be a omplete disrete valuation ring with residue �eld k and uni-formizer t. Let X̂ be a smooth projetive T -urve with funtion �eld F and losed �bre X . Let F̂be the ompletion of F with respet to the disrete valuation indued by X . Let s : H2(F̂ ) → H2(F )be the map de�ned by pathing as in setion 3.1 and setion 3.2. We will show that s splits therestrition map res : H2(F ) → H2(F̂ ). Hene index of Brauer lasses annot go up under the map
s, beause restrition an never raise index. In partiular, we prove the following Proposition.Proposition 7. The map s is a setion to the restrition map res


F̂
: H2(F ) → H2(F̂ ).Proof. It su�es to show that res ◦ s is the identity map on H2(F̂ ). Sine H2(F̂ ) ∼= H2(k(X)) ⊕


H1(k(X)), it su�es to show that res
F̂
◦ s is the identity map on both omponents; that is, given


γ̂ = γ0 + (χ0, t) where γ0 ∈ H2(k(X)) and χ0 ∈ H1(k(X)), the Proposition will follow if we anshow that res
F̂
◦ s(γ0) = γ0 and res


F̂
◦ s((χ0, t)) = (χ0, t).Take an open a�ne subset U of X so that γ0, χ0 are both unrami�ed on every point of U ; that is,we have γ0 ∈ H2(k[U ]) and χ0 ∈ H1(k[U ]). Note that we have the following ommutative diagram(For a �eld E, H2


nr(E) denotes the unrami�ed part of H2
nr(E), or equivalently, H2


nr(E) = ∩vH
2(Ev),where v runs through all disrete valuations on E, and Ev denotes the ompletion of E at v. SeeColliot-Thélène [8℄ for more details on the unrami�ed ohomology.):


H2(k(X))
f


∼ // H2nr(F̂ )


s


��
H2(R̂U )


?�


g


OO


_�


h


��


H2(F )


resFUyyss
s
s
s
s
s
s
s
s


H2(FU )The ommutativity of the above diagram follows simply from the onstrution of over opena�ne subset we outline in Setion 3.1. Therefore res
F̂
on s(γ0) is the same as f ◦ g ◦ h−1 ◦ resFU


,and thus res
F̂
◦ s(γ0) = f ◦ g ◦ h−1 ◦ resFU


◦ s(γ0) = γ0. (Note in fat h has no inverse; however wean �nd an inverse image under h for resFU
◦ s(γ0), so we write h−1 only merely as a shorthandnotation here.)To show that res


F̂
◦s((χ0, t)) = (χ0, t), it su�es to show that ram(res


F̂
◦s((χ0, t))) = χ0, where


ram : H2(F̂ ) → H1(k(X)) denotes the rami�ation map on H2(F̂ ) with respet to the valuationdetermined by the losed �breX . Sine χ0 ∈ H1(k[U ]), we have ram(res
F̂
◦s((χ0, t))) = ram((χ̃0, t))where χ̃0 denotes the lift of χ0 to H1(R̂U ), as we did in Setion 3.1 (Sine H1(R̂U ) ∼= H1(k[U ]), χ̃0 anbe viewed as as element of H1(k[U ]), and hene element of H1(k(X)) via the injetion H1(k[U ]) →֒


H1(k(X)), and �nally element of H1(F̂ ) via the injetion H1(k(X)) →֒ H1(F̂ )). Therefore the imagein H1(F̂ ) of χ̃0 under the omposition of these maps is in fat χ0, sine all these maps are injetive.Then it is easy to see that ram((χ̃0, t)) = χ̃0 = χ0 ∈ H1(k[X ]), as desired.The following orollary is immediate:Corollary 8. Index of Brauer lasses annot go down under the map s.Proof. Take γ̂ ∈ H2(F̂ ) and let γ = s(γ̂). By Proposition 7 we must have that γ̂ = res
F̂
(γ),therefore ind(γ̂)|ind(γ). This proves that s an never lower index of Brauer lasses.







84. s Preserves Index of Brauer ClassesIn this setion, we will show that the splitting map s that we de�ned in setion 3 has one moreproperty that is ruial to the onstrution of indeomposable and nonrossed produt divisionalgebras over p-adi urves, that is, s preserves index of Brauer lasses. In other words, ind(γ̂) =
ind(γ) = ind(s(γ̂)). We make the following elementary observation, whih is true for Brauer lassesover an arbitrary �eld.Proposition 9. Let k be an arbitrary �eld. Let γ ∈ H2(k) be a Brauer lass with the followingdeomposition: γ = γ0 + (χ, t), where γ0 ∈ H2(k), χ ∈ H1(k) and t is an arbitrary element of k.Then ind(γ)|ind(γ0,l) ·exp(χ), where γ0,l denotes the base extension of γ0 to l/k, where l is the �eldextension determined by χ.Proof. Let E/l be a minimal extension that splits γ0,l. Then [E : l] = ind(γ0,l). Also there is some
E′/k with [E′ : k] = exp(χ) whih splits χ and hene (χ, t); therefore EE′ will split γ, furthermoreit is not hard to see that [EE′ : k]|ind(γ0,l) · exp(χ) and hene ind(γ)|ind(γ0,l) · exp(χ).We will apply Harbater et al. [15, Theorem 5.1℄, whih states that ind(γ) = lcm(ind(γU ), ind(γP ))for eah P ∈ P. Sine we already showed that s an never lower index of Brauer lasses as in se-tion 3.4, we will be done if we ould show that ind(γ)|ind(γ̂); therefore it su�es to show that
ind(γU )|ind(γ̂) and ind(γP )|ind(γ̂) for eah P ∈ P, respetively. We will deal with them in order.We start by realling the notion of Azumaya algebras and their generalized Severi-Brauer va-rieties. The notion of a entral simple algebra over a �eld an be generalized to the notion ofan Azumaya algebra over a domain R (f. Saltman [24, Chapter 2℄, or Grothendiek [11, Part I,Setion 1℄). The degree of an Azumaya algebra A over R is the degree of A ⊗R F as a entralsimple algebra over the fration �eld F over R. The Brauer group of a domain R is de�ned as theset of equivalene lasses of Azumaya algebras with the analogous operations, where one replaesthe vetor spaes Vi with projetive modules in the de�nition of Brauer equivalenes. If A is anAzumaya algebra of degree n over a domain R, and 1 ≤ i < n, there is a funtorially assoiatedsmooth projetive R-sheme SBi(A), alled the i-th generalized Severi-Brauer variety of A (f. Vanden Bergh [28, p. 334℄). For eah R-algebra S, the S-points of SBi(A) are in bijetion with theright ideals of AS = A ⊗R S that are diret summands of the S-module AS having dimension(i.e. S-rank) ni. If R is a �eld F , so that A is a entral simple F -algebra, and if E/F is a �eldextension, then SBi(A)(E) 6= φ if and only if ind(AE) divides i (f. Knus et al. [19, Proposi-tion 1.17℄). Here AE


∼= Matm(DE) for some E-division algebra DE and some m ≥ 1, and theright ideals of E-dimension ni are in natural bijetion with the subspaes of Dm
E of DE-dimension


i/ind(AE) (f. Knus et al. [19, Proposition 1.12, De�nition 1.9℄). Thus the F -linear algebrai group
GL1(A) = GLm(DF ) ats transitively on the points of the F -sheme SBi(A). We reord Knus et al.[19, Proposition 1.17℄ here sine we will be using it over and over again in the sequel.Proposition 10. Let A be a entral simple algebra over a �eld F . The Severi-Brauer variety
SBr(A) has a rational point over an extension K/F if and only if the index ind(AK) divides r. Inpartiular, SB(A) has a rational point over K if and only if K splits A.4.1. Index Computation Over A�ne Open SetWe ompute ind(γU ) in this setion; in partiular, we show that ind(γU )|ind(γ̂). Thanks toLemma 6, it su�es to show that there exists an open a�ne subset V ⊂ X so that ind(γV )|ind(γ̂)sine we ould replae U by V if neessary in the onstrution we outlined in setion 3.1 and this







4.2 Index Computation Over Closed Points 9would not hange γ ∈ H2(K(X̂) by Lemma 6. Therefore we will prove the following proposition,whih shows that there exists suh an open a�ne subset V .Proposition 11. Let T be a omplete disrete valuation ring. Let X̂ be a smooth projetive T -urvewith losed �bre X. Let F be the funtion �eld of X̂ and F̂ the ompletion of F with respet to thedisrete valuation determined by X. Then for every γ̂ ∈ H2(F̂ ), there exists an a�ne open subset
V ⊂ X suh that ind(γV )|ind(γ̂), where γV is the lift of γ̂ to FV as de�ned in setion 3.1.Proof. Reall that γ̂ = γ0 + (χ0,t) ∈ H2(F̂ ) where γ0 ∈ H2(k(X)) and χ0 ∈ H1(k(X)). Therefore
ind(γ̂) = ind(γ0,l) · exp(χ0), where l/k(X) is the �eld extension determined by χ0, by Jaob andWadsworth [17, Theorem 5.15℄, sine F̂ is a omplete disretely valued �eld.Let U be an open a�ne subset ofX suh that neither γ0 nor χ0 rami�es on any point of U . Reallthat γU = γ̃0 + (χ̃0, t) where γ̃0 ∈ H2(R̂U ) and χ̃0 ∈ H1(R̂U ). Note that exp(χ̃0) = exp(χ0) sine
H1(R̂U ) ∼= H1(k(X)). By Proposition 9, we have ind(γU )|ind(γ̃0,S) · exp(χ̃0), where S/R̂U denotesthe Galois yli extension determined by χ̃0. Note when V ⊆ U , we have Hr(k[U ]) ⊆ Hr(k[V ])by purity, and hene Hr(R̂U ) ⊆ Hr(R̂V ); so we have γ̃0 ∈ H2(R̂V ) and χ̃0 ∈ H1(R̂V ). Therefore itsu�es to �nd some a�ne open subset V ⊂ U suh that ind(γ̃0,S′)|ind(γ0,l), where S′/R̂V denotesthe Galois yli extension determined by χ̃0.Let i = ind(γ0,l) be the index of the restrition of γ0 to l. Then Proposition 10 implies that
SBi(γ0)(l) 6= φ; in other words, there is an l-rational point in the i-th generalized Severi-Brauervariety of γ0. Hene the Spec(k(X))-morphism π : SBi(γ0)×k(X)l → Spec(l) has a setion Spec(l) →


SBi(γ0) ×k(X) l over Spec(k(X)), the generi point of the losed �bre U of Spec(R̂U ). Choose aZariski dense open subset V ⊆ U suh that this setion over Spec(k(X)) extends to a setion over
V , and suh that the image of this latter setion lies in an open subset of SBi(γ0) ×k(X) l that isa�ne over R̂U . Then by Lemma 3, the setion over V lifts to a setion over Spec(R̂V ), thus weobtain an L-rational point of SBi(γ̃0)×R̂V


S′, where L/FV is the Galois yli extension determinedby χ̃0; or equivalently, L is the fration �eld of S′. This implies that ind(γ̃0,S′)|i = ind(γ0,l) byProposition 10 again.4.2. Index Computation Over Closed PointsIt remains to show ind(γP )|ind(γ̂). This is what we are going to do in this setion. Note that
γP is de�ned as sP ◦ resFp


(γU ), where resFp
an only lower index of γU . Sine we have alreadyshown that ind(γU )|ind(γ̂), we have that ind(γ) will be ompletely determined by ind(γU ) if weould show that ind(γp) does not go up under the map sP . Therefore we just need to show that sPannot inrease index of Brauer lasses, or, ind(γP ) = ind(sP (γp))|ind(γp) .We ompute ind(γp) �rst. Sine Fp is a omplete disretely valued �eld, we have ind(γp) =


ind((γ0,0 + (χ1, π))M ) · exp(χ2 + (πr)), where M/κ(p) is the Galois yli extension determinedby χ2 + (πr) ∈ H1(κ(p)) by Jaob and Wadsworth [17, Theorem 5.15℄. It is not hard to ompute
ind((γ0,0 + (χ1, π))M ): Sine M is a �nite extension of κ(p), whih is a omplete disretely valued�eld, we have that M is a omplete disretely valued �eld as well. Let e be the rami�ation indexof M/κ(p) and M̄ the residue �eld of M . Then by Serre [26, Exerise XII.3.2℄, (γ0,0 + (χ1,π))M =
(γ0,0)M̄+(e·χ1, π


′), where π′ is some uniformizer ofM . Let L/κ(p) be the �eld extension determinedby e · χ1 and L̄ the residue �eld of L. Then ind((γ0,0 + (χ1,π))M ) = ind((γ0,0)M̄ + (e · χ1, π
′)) =


ind((γ0,0)M̄L̄) · exp(e · χ1).Now that we have an index formula for Brauer lasses over Fp, we are ready to show the following







10Proposition 12. Let T be a omplete disrete valuation ring. Let X̂ be a smooth projetive T -urvewith losed �bre X. Suppose that U is an open a�ne subset of X and P ∈ X\U is a losed point.Let p = (U, P ) be the unique branh of U at P and let γP and γp be de�ned as above. Then we have
ind(γP )|ind(γp).Proof. By Proposition 9 we have that ind(γP )|ind((γ̃0,0+(χ̃1, π))M̃ )·exp(χ̃2+(πr)), where M̃/FP isthe Galois yli extension determined by χ̃2+(πr). We laim that exp(χ̃2+(πr)) = exp(χ2)+(πr):we have that exp(χ̃2+(πr)) = lcm(exp(χ̃2), exp((π


r))) and exp(χ2+(πr)) = lcm(exp(χ2), exp((π
r))).Sine exp(χ̃2) = exp(χ2), we have proved that exp(χ̃2 + (πr)) = exp(χ2 + (πr)). Therefore thisproposition will follow if we an show that ind((γ̃0,0 + (χ̃1, π))M̃ )|ind((γ0,0)M̄ + (e · χ1, π


′)).Next we ompute
(γ̃0,0 + (χ̃1, π))M̃ = (γ̃0,0)M̃ + (χ̃1, π)M̃


= (γ̃0,0)M̃ + ((χ̃1)M̃ , π)


= (γ̃0,0)M̃ + ((χ̃1)M̃ , (π′)e)


= (γ̃0,0)M̃ + (e · (χ̃1)M̃ , π′)By Proposition 9 again we immediately see that ind((γ̃0,0 + (χ̃1, π))M̃ )|ind((γ̃0,0)M̃L̃) · exp(e ·


(χ̃1)M̃ ), where L̃/FP denotes the Galois yli extension determined by e · χ̃1. Clearly exp(e ·
(χ̃1)M̃ )| exp(e · (χ1)), so we will be done if we an show that ind((γ̃0,0)M̃L̃)|ind((γ0,0)M̄L̄), whih wewill do in the following Lemma 13.Lemma 13. In line with the notation in 12, we have that ind((γ̃0,0)M̃L̃)|ind((γ0,0)M̄L̄).Proof. Let M̃ ′/FP be the Galois yli extension determined by χ2. Clearly it su�es to provethat ind((γ̃0,0)M̃ ′L̃)|ind((γ0,0)M̄L̄) sine ind((γ̃0,0)M̃L̃)|ind((γ̃)M̃ ′L̃). Let i = ind((γ0,0)M̄L̄). ByProposition 10, we have that SBi(γ0,0)(M̄L̄) 6= φ, or equivalently, the morphism SBi(γ0,0)×κ(P )M̄L̄has a setion Spec(M̄L̄) → SBi(γ0,0) ×κ(P ) M̄L̄. By Lemma 3, this setion lifts to a setion over
Spec(R̂P ); thus we obtain a M̃ ′L̃-rational point of SBi(γ̃0,0)×R̂P


S(note that γ0,0 ∈ H2(R̂P )), where
S is the integral losure of R̂P in M̃ ′L̃; or equivalently, a M̃ ′L̃-rational point of SBi(γ̃0,0)×FP


M̃ ′L̃.Therefore ind((γ̃0,0)M̃ ′L̃)|i again by Proposition 10, whih proves this lemma.The following Corollary is immediate:Corollary 14. The homomorphism s : H2(F̂ ) → H2(F ) preserves index of Brauer lasses.Proof. This is simply Corollary 8 plus Proposition 12.5. Indeomposable and nonrossed produt Division Algebras over Curves over om-plete Disrete Valuation RingsLet T be a omplete disrete valuation ring. Let X̂ be a smooth projetive T -urve withlosed �bre X . Let F be the funtion �eld of X̂ and F̂ the ompletion of F with respet to thedisrete valuation determined byX . We onstrut indeomposable division algebras and nonrossedprodut division algebras over F of prime power index for all primes q where q is di�erent fromthe harateristi of the residue �eld of T . Note that the existene of suh algebras are alreadyknown when residue �eld of T is a �nite �led, f. Brussel et al. [6℄. Our onstrution here is almostidential to Brussel et al. [6, Setion 4℄, we list it here for the reader's onveniene.







5.1 Indeomposable Division Algebras over F 115.1. Indeomposable Division Algebras over FFirst we reall the onstrution of indeomposable division algebras over F̂ , this is done inBrussel et al. [6, Proposition 4.2℄.Proposition 15. Let T be a omplete disrete valuation ring and let X̂ be a smooth projetiveurve over Spec(T ) with losed �bre X. Let F be the funtion �eld of X̂ and F̂ the ompletion of Fwith respet to the disrete valuation indued by X. Let e, i be integers satisfying l ≤ e ≤ 2e−1. Forany prime q 6= char(k), there exists a Brauer lass γ̂ ∈ H2(F̂ ) satisfying ind(γ̂) = qi, exp(γ̂) = qeand whose underlying division algebra is indeomposable.Then we lift γ̂ to F by using the splitting map s we de�ned in setion 3, and show that the liftis in fat indeomposable.Theorem 16. In the notation of Theorem 15. Then there exists an indeomposable division algebra
D over F suh that ind(D) = qi and exp(D) = qe .Proof. By Proposition 15, there exists γ̂ ∈ Br(F̂ ) with ind(γ̂) = qi and exp(γ̂) = qe and whoseunderlying division algebra is indeomposable. By Corollary 14, γ = s(γ̂) has index qi too. Sine
s splits the restrition map, we have exp(γ) = qe. We show the division algebra underlying γ isindeomposable.We proeed by ontradition. Assume γ = β1 + β2 represents a nontrivial deomposition,then γ̂ = res


F̂
(β1) + res


F̂
(β2). Sine the index an only go down under restrition, we have that


ind(γ̂) = ind(res
F̂
(β1)) · ind(resF̂ (β2)), whih represents a nontrivial deomposition of the divisionalgebra underlying γ̂, a ontradition.5.2. Nonrossed Produts over FAgain we will onstrut nonrossed produt division algebras over F̂ and use the splitting map


s to lift it to F and show that the lift represents a nonrossed produt division algebra over F .The onstrution over F̂ is in line with Brussel [5℄ where nonrossed produts over Q(t) and
Q((t)) are onstruted. In order to mimi the onstrution in Brussel [5℄, we need only note thatboth Chebotarev density theorem and the Gruwald-Wang theorem hold for global �elds whih areharateristi p funtion �elds. Then the arguments in Brussel [5℄ apply diretly to yield nonrossedproduts over K̂(X̂) of index and exponent given below:The following is Brussel et al. [6, Theorem 4.7℄.Theorem 17. Let T be a omplete disrete valuation ring with residue �eld k and let X̂ be a smoothprojetive urve over Spec(T ). Let F be the funtion �eld of X̂ and let F̂ be the ompletion of Fwith respet to the disrete valuation indued by the losed �bre. For any positive integer a, let ǫabe a primitive a-th root of unity. Set r and s to be maximum integers suh that µqr ⊂ k(X)× and
µqs ⊂ k(X)(ǫqr+1). Let n,m be integers suh that n ≥ 1, n ≥ m and n,m ∈ r ∪ [s,∞). Let a, lbe integers suh that l ≥ n +m + 1 and 0 ≤ a ≤ 1 − n. (See Brussel [5, Page 384-385℄ for moreinformation regarding these onstraints.) Let q 6= char(k) be a prime number. Then there existsnonrossed produt division algebras over F̂ with index ql+1 and exponent ql.Corollary 18. Let R, k, X̂,X, F, F̂ , q, a, l be as in Theorem 17. Then there exists nonrossed prod-ut division algebras over F of index ql+a and exponent ql.







5.2 Nonrossed Produts over F 12Proof. Let γ̂ be the Brauer lass representing a nonrossed produt over F̂ of index ql+a andexponent ql. Let D be the division algebra underlying the Brauer lass s(γ̂). By Corollary 14, weknow that ind(D) = ind(γ̂).Assume that D is a rossed produt with maximal Galois sub�eld M/F . Then MF̂ splits γ̂, isof degree ind(γ̂) and is Galois. This ontradits the fat that γ̂ is a nonrossed produt.Referenes[1℄ S. S Abhyankar. Resolution of singularities of algebrai surfaes, algebrai geometry (Internat.olloq., tata inst. fund. res., bombay, 1968), 1969. 3:1�11, 1969.[2℄ S. A Amitsur. On entral division algebras. Israel Journal of Mathematis, 12(4):408�420,1972.[3℄ S. A Amitsur, L. H Rowen, and J. P Tignol. Division algebras of degree 4 and 8 with involution.Israel Journal of Mathematis, 33(2):133�148, 1979.[4℄ E. S Brussel. Deomposability and embeddability of disretely henselian division algebras.Israel Journal of Mathematis, 96(1):141�183, 1996.[5℄ Eri Brussel. Nonrossed produts and nonabelian rossed produts over Q(T) and Q((T)).Amerian Journal of Mathematis, 117(2):377�393, 1995.[6℄ Eri Brussel, Kelly MKinnie, and Eduardo Tengan. Indeomposable and nonrossed produtdivision algebras over funtion �elds of smooth p-adi urves. 0907.0670, July 2009. URLhttp://arxiv.org/abs/0907.0670.[7℄ M. Cipolla. Remarks on the lifting of algebras over henselian pairs. Mathematishe Zeitshrift,152(3):253�257, 1977.[8℄ J. L. Colliot-Thélène. Birational invariants, purity and the gersten onjeture, in �K-theory andalgebrai geometry: onnetions with quadrati forms and division algebras (Santa barbara,CA, 1992)�, 1-64. In Pro. Sympos. Pure Math, volume 58, Santa Barbara,CA, 1992.[9℄ I. B Fesenko and S. V. Vostokov. Loal �elds and their extensions. Amer Mathematial Soiety,2002.[10℄ S. Garibaldi, A. Merkurjev, and J. P Serre. Cohomologial invariants in Galois ohomology,university leture series, vol. 28. In Amer. Math. So, 2003.[11℄ A. Grothendiek. Le groupe de Brauer I, II, III. Dix exposés sur la ohomologie des shémas,Adv. Stud. Pure Math, 3:46�188, 1968.[12℄ Alexander Grothendiek and Mihele Raynaud. Revêtements étales et groupe fondamental(SGA 1). math/0206203, June 2002. URL http://arxiv.org/abs/math/0206203.[13℄ Alexandre Grothendiek and Jean Dieudonné. Éléments de géométrie algébrique (rédigés avela ollaboration de jean dieudonné) : II. Étude globale élémentaire de quelques lasses demorphismes. Publiations Mathématiques de l'IHÉS, 8:5�222, 1961.[14℄ D. Harbater and J. Hartmann. Pathing over �elds. preprint arXiv, 710, 2007.
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