ON THE ESSENTIAL DIMENSION OF CYCLIC GROUPS

WANSHUN WONG

ABSTRACT. We find an upper bound for the essential dimension of finite cyclic
groups Z/ p;” .- pr"Z over a field F of characteristic different from p; contain-
ing all the primitive p;-th roots of unity, where p; are distinct prime numbers.

1. INTRODUCTION

The essential dimension of an algebraic structure is a numerical invariant that
measures the complexity of the structure. Informally, the essential dimension of an
algebraic structure over a field F' is the smallest number of algebraically independent
parameters required to define the structure over a field extension of F' (see [1] and
8)).

Let § : Fields/F — Sets be a functor (an algebraic structure) from the category
Fields/F of field extensions of F' and field homomorphisms over F' to the category
of sets. Let K € Fields/F and a € §(K). The essential dimension of a, denoted
ed(a), is the least transcendence degree tr.degr(Ky) over all subfields Ky of K over
F such that a is in the image of the map F(Ko) — §(K). The essential dimension
of the functor § is

ed(3) = sup{ed(a)}
where the supremum is taken over all K € Fields/F and all a € §F(K).

If G is a finite group, we view G as a constant group scheme over a field F'. The
essential dimension of G is defined as

ed(G) = ed(H (-, Q).

Thus the essential dimension of G measures the complexity of the category G-
torsors. If G is a finite cyclic p-group, and F is a field of characteristic different
from p containing primitive p-th roots of unity, then the essential dimension of
G is computed in [4] and [5]. In this paper we prove in Thm. 3.1 that if G =
Z/ptt---pir7Z is a finite cyclic group, p; are distinct prime numbers, and F is a
field of characteristic different from p; containing all the primitive p;-th roots of
unity, then

ed(Z/py* -+ piL) < [F(§pr) s Fl 4 -+ [F(§ppr) s F] =7 +1

where &, denotes r-th primitive root of unity for any positive integer r.
Let A be a central division F-algebra of degree ¢{" - - - ¢*, where ¢; are distinct
prime numbers, a; are non-negative integers. It is a conjecture (see [3]) that

cdim(SB(A)) =q¢i* + -+ q* — k
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where cdim(SB(A)) is the canonical dimension of the Severi-Brauer variety of A
(see Section 4 for definition). If the conjecture is valid, then we show in Thm. 4.4
that

ed(Z/p* - pr7) = [F(gp;u) CF) A A [F(pnr) c Fl =1 4 1
Acknowledgements: The author would like to thank his advisor Alexander Merkur-
jev for his help along the way.

2. AFFINE GROUP SCHEMES

References for affine group schemes are [6] and [10].

Let p be a prime number, F be a field such that char(F) #p and &, € F. Let T’
be the absolute Galois group of F, i.e. I' = Gal(F.p/F) where Fg, is a separable
closure of F.

For any non-negative integer r, let G,, = Z/p"Z be a constant group scheme over
F, F, = F(&yr) be a field extension of F and I', = Gal(F,/F') be the corresponding
Galois group. Then let T = R, /p(Gn) be the corestriction of the multiplicative
group G,, from F; to F.

For any v € T, (&) = 52,‘:(7) for some x.(y) € (Z/p"Z)*. Then x, is
a I-homomorphism x, : Iy, — (Z/p"Z)*. It extends linearly to a surjective I'-
homomorphism f, : (T} sep)* = Z[['y] = Z/p"Z = (G sep)”,

fr(z a'y'Y) = Zavxr(?/) (mOd p").

Fix a positive integer n. Let s = min{n, sup{m € N| {;zm € F}}. Define a
surjective I'-homomorphism g : Z[I',—s] & Z[I',] — Z/p™Z by

9(z,y) = p° - fos() + fu(y)
for every (z,y) € Z[Tn—s] @ Z[T'y]. Let V be the factor group scheme
V = (Tn-s x T,)/Gn
with (Viep)* = ker(g), so we have an exact sequence of group schemes
1—G, — T, sxT, —V —1.

For every K € Fields/F, passing to cohomology and applying Hilbert’s Theorem
90 give
V(K) — HYK,G,) — H K,T,_s x Ty,) = 1.

Consider the composition

(1) V(K)— HY(K,G,) —— HY(K,G,_s),

where the latter homomorphism is induced by the exact sequence
1—G, — G, — Gy — 1.

Let §(K) be the image of V(K) in H'(K, G,,—s), which is the same as the image of
HY(K,G,). Then we get a subfunctor § of H'(—,G,,—s). The main result of this
section is the following

Proposition 2.1. There exists a closed subschemeY CV of dimension [F, : F]—1
such that for every infinite K € Fields/F, the image of Y (K) in HY(K,G,_s) is
equal to §(K).
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Proof. If n = s, the result follows immediately from H(K,G,_s) = 1 and [F}, :
F]=1.

If n > s, first we want to show that (1) is part of a commutative diagram.
Consider the following commutative diagram of I'-modules

(2) A/ — Ly ——— ]

}rofn T Tf“

Z[Ty) ¢—Z— ZTp_y] ® Z[Ty] «—— Z[Tyr_4]

T T T

ker(m o f,,) +———— ker(g) — ker(frn—s)

where 7 is the canonical projection, 4 is the canonical inclusion i(z) = (z,0), w
is the canonical projection w(z,y) = y for every x € Z[[',—s],y € Z[I'n]. Note
the all the rows and columns in (2) are short exact sequences. Let U = T,,/G;
with (Usep)* = ker(mo fy,), and S = T),_5/Gp—s with (Ssep)* = ker(fn—s). The
commutative diagram of group schemes dual to (2) is

Gs Gn ans

Lo

T, —— Ty s xTy —— T, 4

L]

U %4 S
which gives the following commutative diagram
(3) Ths(K) X Tp(K) —— T, —s(K)

| |

V(K) — > S(K)
HY(K,G,) — HY(K,G,_s)

for every K € Fields/F.
In order to construct Y, we consider

(4) L ] ® L —— Z[l_,]
ker(g) «——ker(fr_s)

where j is the inclusion j(z) = (,0), ¢ is defined by p(z,y) = (x,€(y)/p®) for
every (z,y) € ker(g) C Z[I'n_s] ® Z[I',], where € is the augmentation map of a
group ring.

Lemma 2.2. ¢ : ker(g) = Z[[',—s] @ Z is well-defined and surjective.
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Proof. Let (z,y) be any element in ker(g).

(1) For p # 2, and for p = 2 and s > 2, T, is a cyclic group. Let o be
the generator of I';, such that o(§,n) = EZ}:ZH. Then we can write y =
> amo™, and fu(y) = Y am(p® +1)™ (mod p™). Since (z,y) € ker(g),
P° fnes() + D am(p® +1)™ =0 (mod p™). Therefore p® divides Y an,.

(2) For p =2 and s = 1, write y = »_ a,7. Since (z,y) € ker(g), 2fn—1(z) +
> ayxn(y) = 0 (mod 2). Note that x,(y) € (Z/2"Z)* for every 7, in
particular x,(v) is odd. Hence > a is even.

Therefore ¢ is well-defined.
Claim: If €/p® : ker(f,) — 7Z is surjective, then ¢ is surjective.

To prove the claim let (,m) be any element in Z[I';,—;] @& Z. Recall that f, :
Z[I'y] — Z/p"Z is surjective. There exists y € Z[I',] such that f,(y) = —p°® -
fn—1(x), which implies (z,y) € ker(g). Let m’ = €(y)/p®. Note that for every
y' € ker(fn), (0,y') € ker(g). If ¢/p°® : ker(f,) — Z is surjective, let 3y € ker(f,)
such that e(y')/p® = 1. Then (x,y+(m—m')y’) € ker(g) and p(z,y+(m—m')y’) =
(z,m), proving the claim. It remains to show that ¢/p® : ker(f,) — Z is surjective.

(1) For p # 2, and for p = 2 and s > 2, simply note that o — p* — 1 € ker(f,).

(2) For p=2and s = 1, consider Im(x,) C (Z/2"Z)*. Note that (Z/2"7Z)* is
a direct product of two cyclic subgroups generated by 5 and —1 respectively.
We claim that —5" € Im(x,) for some integer r. Suppose not, then all
elements of I'm(y,) are powers of 5, which implies T',, fixes &4 = %:72 and
contradicts the fact that & ¢ F. Let v € T'y, such that x,(y) = —5".
Since v + 5" and 2" € ker(f,), (1 +57)/2 and 2"~ ! € Im(e/2). As 5" =
1 (mod 4), (1+5")/2 is odd. Hence (1 +5")/2 and 2”1 are coprime and
Im(e/2) = Z. O

It is clear that the diagram (4) is commutative, so we have the dual commutative
digram of group schemes

(5) Tn—s X Gm E— Tn—s

|

V—/—">S§

:

where V! = V/(Th—s x Gp,).

Let E = F(V’) be the function field of V. From the exact sequence of cohomol-
ogy

V(E) — V/(E) — HYE,T)—s x G,,) =1,

the generic point of V', Spec (E) — V' factors through V. Therefore there exists
a rational map « : V/ — V such that the composition with the projection 7 is the
identity map on the largest open set U which « is defined. Let Y = I'm(«). Clearly
dimY =dimV’' = dimV — dim(T,,—s X G,,) = [Fy, : F] — 1. Tt remains to check
that the images of Y (K) and V(K) in H(K,G,,—s) are equal.

Lemma 2.3. For every v € V(K), there exists u € Y (K) such that the images of
v and u in HY(K,G,_s) are equal.
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Proof. Since T,,_s x T}, is a quasi-split torus, it is an open subset of an affine space.
Therefore T;,_ (K )X T, (K), viewed as the set of K-rational points, is a dense subset
of T,,_s x T}, because K is infinite. Then the image of T,,_s(K) x T,(K) in V(K)
is dense, and V/(K) is dense in V'. As U is open in V', U(K) = UNV'(K) # (.
We can find some v in the image of T;,_s(K) x T},(K) such that w(v-v') € U(K).
By (3) v and v -9’ have the same image in H'(K,G,,). Therefore by replacing v by
v - v’ we may assume 7(v) € U(K).

Let u = aom(v) € Y(K). As m(u) = 7(v), by (5) u and v differ by an element in
Th—s(K) X G, (K). Then by commutativity of (5) the images of u and v in S(K)
differ by the image of an element in T;,_s(K). Hence by (3) u and v have the same
image in H'(K,Gp—s). O

This completes the proof of the proposition. O
Corollary 2.4. ed(F) < ed(Z/p"Z) — 1.

Proof. First we show that ed(F) < ed(Y). Let K € Fields/F and a € §(K). If K
is a finite field, then tr.degr(K) = 0 and ed(a) = 0 < ed(Y). If K is infinite, by
Prop. 2.1 Y(K) — §(K) is a surjection. Then ed(a) < ed(Y") by the proof of [1]
Lemma 1.9.

By [1] Prop. 1.17 and [5] Cor. 5.2, we have

ed(F) <ed(Y)=dim(Y) =[F, : F] —1=ed(Z/p"Z) — 1. O

3. MAIN THEOREM

Theorem 3.1. Let p1,...,pr be distinct prime numbers, ni,...,n, be positive
integers. Let F be a field such that char(F) # p; and &, € F for every i. Then

ed(Z/py* - pyrZ) < ed(Z/pY'Z) + -+ +ed(Z/py L) — T + 1
=[F(&r) : Fl+- -+ [F(&nr) : Fl—r+ 1.

Proof. Let s; = min{n;, sup{m € N| {;m € F'}} for every i. For each prime number
pi, let F; be the corresponding § defined above. Let Cn = Z/py" - - - pI'"7Z be a con-
stant group scheme over F', Cs = Z/pi* -+ -pirZ and Cny_g = Z/py* ™% -+ - plm 5" 7.
The exact sequence of group schemes

1—Cs —Cny —Cny_g —1
induces an exact sequence
(6) oo — HYK,Cg) — HY(K,Cn) — H'(K,Cn_g) — -
for every K € Fields/F. Note that
H'(K,Cn) = B\K,Z/pZ) x - x H\(K,Z/p}" L),
and similarly
HYK,Cn_g) = HY(K,Z/p}*~*'Z) x --- x H'(K,Z/p! " 7).

Then the exact sequence (6) implies that we have a fibration of functors ([1] Def.
1.12)

Hl(f,CS)—>H1(*,CN)—»S'1 X o X Fp.
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By Cor. 2.4, [1] Lemma 1.11 and Prop. 1.13, and [5] Cor. 5.2,
ed(Cn) <ed(Cs) +ed(F1 X -+ X Fr)
< 14ed(F) + - +ed(Sy)

<1+ (ed(Z/py'Z) = 1) + -+ + (ed(Z/p}"Z) — 1)
=ed(Z/p'Z) + -+ +ed(Z/p"Z) —r + 1
= [F(gp;u) CF) - [F (&)t Fl =7+ 1,

where ed(Cs) =1 as gpil‘upir cF. O

Example 3.2. If s; = n; for 2 < ¢ < r, then §pgr € Ffor2<i¢<r. Thm. 3.1
implies

ed(Z/pyt - P L) S [F () s Fl+ -+ [F(§nr)  F] =7 +1
=[F(&m) : F]
e (Z/p?IZ

On the other hand,
HY (=, Z/p" - -ppr) = H' (=, L/p" L) X - - x H' (=, Z/p}" Z.).

v [1] Remark 1.16 max{ed(Z/p;")} < ed(Z/p}" - -- p}~Z) where the maximum is
taken over 1 < ¢ < r. Therefore

ed(Z/py" - pprZ) = ed(Z/p' 7).

Remark 3.3. Let m = pi*---pP, and G = Z/mZ. If V is a faithful linear
representation of G over F then ed(G) < dim(V) ([1] Prop. 4.15). We want to
compare the least dimension of a faithful representation of G over F' with the upper
bound of ed(G) given by Thm. 3.1.

Let n;, > s; for 1 < ¢ < a, and n; = s; for a < ¢ < r for some integer
1 < a < r. By Maschke’s Theorem ([7] Ch. XVIII Thm. 1.2), F[G] is semisim-
ple. Since F[G] is a commutative ring, F[G] = F[t]/{t™ — 1) is isomorphic to a
product of fields Fy x ... x Ej. For every divisor d of m, there exists a surjection
Flt]/{t™ — 1) —» F(&q) , t —> &q. Therefore F(&;) = E; for some i. On the

other hand, for every E; clearly there exists a surjection F[t]/{t™ — 1) —» E; .
Let & be the image of ¢ under this surjection. Then E; = F[¢] = F(§), and {™ = 1.
Hence E; = F(&q) for some divisor d of m. Therefore F[G] is isomorphic to a
product of F(&4),d|m. Note that there can be more than one copy of a particular
F(&q) in the product.

For every divisor d of m, the kernel of the natural representation G — GL(F(£4)),
1 —— &4, is the subgroup (d). Then the kernel of the natural representation
G — GL(J] F(&;)) is N({d;) = (lem{d,}), where d; divides m for every j. By
choosing d; to be pi*,...,pi*7", pte - - - pl'*, we can see that the natural represen-
tation of G in the F-space V = F(fp;u) © - @ F(§ra) is a faithful representation
of the least dimension, as F'(§,na) = F(§,ra..,nr). We have

dim V' = [F(§m) : Fl 4+ [F(§ypa) : F]
> [F(gp;?'l):F]+"'+[F(§p:}7‘):F]_/r—‘l_l

where equality holds if and only if a = 1 (see Example 3.2). In particular, if a > 2,
then ed(G) < dim(V). This is different from the case for p-groups, where the
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essential dimension of a p-group G’ is equal to the least dimension of a faithful
representation of G’ over F' (see [5] Thm. 4.1).

4. A CONJECTURE FOR ed(Z/p}" ---pI'"7Z)

4.1. Canonical dimension. Let F' be a field and € be a class of field extensions
of F. A field E € € is called generic if for any K € € there exists an F-place of E
with values in K. The canonical dimension of the class € is

cdim(€) = min{tr.degrE}
where the minimum is taken over all generic fields E € €.

Example 4.1. If X is a separated scheme of finite type over F', let €x be the class
of field extensions K of F' such that X (K) # (. The canonical dimension of X is
defined as cdim(X) = c¢dim(€x). It can be shown that edim(X) < dim(X) (see [3]
and [8]).

Example 4.2. If 6 is an element of Br(F') the Brauer group of F, let €y be the
class of splitting fields of #. The canonical dimension of € is defined as cdim(6) =
Cdim(@g).

Similarly, if D is a finite subgroup of Br(F), let €p be the class of common
splitting fields of all elements in D. The canonical dimension of D is defined as
cdim(D) = cdim(€p).

Let 0 € Br(F) be represented by a central simple F-algebra A. Let SB(A) be
the Severi-Brauer variety of A. K € Fields/F splits A if and only if SB(A)(K) # )
([6] Prop. 1.17). Therefore cdim(f) = cdim(SB(A)).

Conjecture 4.3. Let A be a central division F-algebra of degree ¢i" - - - ¢;*, where
q; are distinct prime numbers, a; are non-negative integers. Write A as a tensor
product 4; ® --- ® Ay, where A; is a central division F-algebra of degree ¢;*. Let
X = SB(A) be the Severi-Brauer variety of A, and let Y = SB(A1) x---x SB(Ay).
K € Fields/F splits A if and only if it splits A; for every 4, therefore X (K) # 0 if
and only if Y/(K) # (). Hence

(7) cdim(SB(A)) = cdim(Y) < dim(Y) = ¢i* +-- -+ qp* — k.

It is conjectured in [3] that the inequality in (7) is actually an equality.

4.2. Algebras and Representations. Let G be a finite group, C' be a central
subgroup of G and set H = G/C'. Then we have an exact sequence

(8) l1—-C—G—H—1.

Let E — Spec(L) be a generic H-torsor, L € Fields/F (see [1] section 6, [5] section
4). Let C* denote the character group Hom(C, G,,) of C. Define a homomorphism
BE . C* — Br(L) by taking x : C — G, to the image of the class of E under the
composition

HY (L, H) -% HX(L,C) 2 H2(L,G,,) = Br(L),

where 9 is the connecting homomorphism for the exact sequence (8).

Let x : C — G,, be a character, RepX) (@) be the category of all finite dimen-
sional representations p of G such that p(c) is multiplication of x(c) for any ¢ € C.
It is proved in [5] Thm. 4.4 that

ind (8% (x)) = ged dim(V)
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over all representations V € Rep™)(Q).

4.3. Gerbes. Let X be a gerbe over F (see [8] section 3, [9] p. 144). Define a
functor X : Fields/F — Sets by mapping K to the set of isomorphism classes of
objects in the category X' (K ). The essential dimension of X is defined as ed(X) =
ed(X). Let €x be the class of field extensions K of F such that X'(K) # (. Then
the canonical dimension of X is defined as cdim(X) = cdim(€x).

4.4. A conjecture for ed(Z/p}* ---pZ).

Theorem 4.4. Let p1,...,pr be distinct prime numbers, ni,...,n, be positive
integers. Let F be a field such that char(F) # p; and &y, € F for every i. If
Conjecture 4.3 is valid, then

ed(Z/py* -+ pi"Z)

ed(Z/pT'Z) + -+ ed(Z/p}7Z) —1r + 1
= [F (&)t Fl4 -+ [F(&pr) : Fl—r+ L

Proof. By Thm. 3.1 we only need to prove
ed(Z/py* - L) Z [F(§m) s Fl 4o+ [F(§pr) s Fl =7 41
when Conjecture 4.3 is valid.

Let m = p}*---pl', G = Z/mZ, C = Z/p1 - - - prZ be a subgroup of G, and set
H = G/C. Let E — Spec(L) be a generic H-torsor, L € Fields/F. Recall that we
have a homomorphism 8% : C* — Br(L).

Consider the gerbe E/G banded by C. Since &,, € F for every i and L €
Fields/F,C = pp, ..., and H*(L,C) = Bry,...,.(L). Then the element in H*(L,C)
corresponding to E//G can be represented by a central division L-algebra A with
[A] € Bry,...p.(L). Note that Im(B%) is generated by the class of A. It follows that

cdimy,(E/G) = cdimy (Im(37)).
By [5] Thm. 4.2 and [2] Thm. 7.1, we have
(9)  ed(G) >edr(G) > edr(E/G) = cdimp(E/G) + 1 = cdimy (Im(87)) + 1.
Let x : C — G,, be the character such that 3 (x) = [A], and
o = ind (8% (x)) = ged dim(V)

over all V. € Rep™(G). For every V € Rep™(G), by the calculation in Remark
33V = [[F(&,;), d; divides m for every j. For every ¢ € C, c acts on V by

-1
—pl

nq
multiplication of x(c). Therefore 55; is a primitive pq - - - p.-root of unity.

Combining with the fact that d; divides m, we have d; = m for every j, which
implies
a=[F(&n): F] = [[[F (&) : Fl,
where the second equality follows from the fact that §,, € F, [F({,n) : F] is a
power of p; for every 1.
If Conjecture 4.3 is valid,
edimy, (Im(B%)) = cdimy (6% (x)) = cdim(SB(A))
= [F(&m) s Fl+ -+ [F(&pnr) : Fl =
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By combining the above inequality with (9), we have

ed(G) > cdimg (Im(B7)) + 1> [F(&na) : F] 4+ [F(&pr) : F] =7+ 1. O

Example 4.5. Let &,&3 € F but &4,& ¢ F. Consider ed(Z/36Z) = ed(Z/2%3%Z).
In this case ind(8¥(x)) = 6, and Conjecture 4.3 is proven when A is of degree 6 by
[3] Thm. 1.3. Therefore ed(Z/36Z) = 4 (see [2] Remark 14.2).

1]
2]

[10]
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