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Abstract. Let 1 ≤ m ≤ n be integers with m|n and Alg
n,m

the class of
central simple algebras of degree n and exponent dividing m. In this paper,
we find upper bounds for the essential (2)-dimension of Alg

n,2
. Moreover,

we find a stronger upper bound for the essential 2-dimension of Alg
n,2

over
a field F of char(F ) 6= 2. As a result, we show that ed2(Alg16,2

) = 24 over
a field F of char(F ) 6= 2.

1. Introduction

Let T : Fields/F → Sets be a functor from the category Fields/F of field
extensions over F to the category Sets of sets. For fields E,E ′ ∈ Fields/F , a
field homomorphism f : E → E ′ over F and α ∈ T (E), we write αE′ for the
image of α under the morphism T (f) : T (E) → T (E ′).

Let E ∈ Fields/F and K ⊂ E a subfield over F . An element α ∈ T (E)
is said to be defined over K and K is called a field of definition of α if there
exists an element β ∈ T (K) such that βE = α. The essential dimension of α
is ed(α) = min{tr. degF (K)} over all fields of definition K of α. The essential

dimension of the functor T is ed(T ) = sup{ed(α)}, where the supremum
is taken over all fields E ∈ Fields/F and all α ∈ T (E). Hence, the essential
dimension of an algebraic structure T measures the complexity of the structure
in terms of the smallest number of parameters required to define the structure
over a field extension of F .

Let p be a prime integer. The essential p-dimension of α is edp(α) =
min{ed(αL)}, where L ranges over all field extensions of E of degree prime
to p. In other words, edp(α) = min{tr. degF (K)}, where the minimum is
taken over all field extensions L/E of prime to p and all subextensions K/F
of L which are field of definition of αL. Hence, ed(α) ≥ edp(α) for all p. The
essential p-dimension of F is edp(T ) = sup{edp(α)}, where the supremum
ranges over all fields E ∈ Fields/F and all α ∈ T (E).

Let G be an algebraic group over F . The essential dimension ed(G) (re-
spectively, essential p-dimension edp(G)) of G is defined to be ed(H1(−, G))
(respectively, edp(H

1(−, G))), where H1(E,G) is the Galois cohomology set
(equivalently, the set of isomorphism classes of G-torsors) over a field exten-
sion E of F .

For every integer n ≥ 1, a divisor m of n and any field extension E/F , let
Algn,m(E) denote the set of isomorphism classes of central simple E-algebras of
degree n and exponent dividing m. Then, for any field extension E/F , there is
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a natural bijection between H1(E,GLn /µm) and Algn,m(E) (see [1, Example
1.1]), thus ed(Algn,m) = ed(GLn /µm) and edp(Algn,m) = edp(GLn /µm).

In this paper, we compute upper bounds for the essential dimension of Algn,2.
By a theorem of Albert, a central simple algebra has exponent dividing 2 if and
only if it admits an involution of the first kind (see [3, Theorem 3.1]). Thus,
any algebra A in Algn,2(K) for any field extension K/F has involutions of the
first kind. Moreover, such A has involutions of both symplectic and orthogonal
types (see [3, Corollary 2.8(2)]). By the primary decomposition theorem and
[2, Section 6], we have ed(Algn,2) = ed(Alg 2r ,2) and ed2(Algn,2) = ed2(Alg 2r ,2),
where 2r is the largest power of 2 dividing n. Hence, we may assume that n is
a power of 2.

By [2, Remark 8.2 and Corollary 8.3], ed2(Alg 4,2) = ed(Alg 4,2) = 4 and
ed2(Alg 8,2) = ed(Alg 8,2) = 8 over a field F of char(F ) 6= 2. In general, by [2,
Theorem], the following bounds were established over a field F of char(F ) 6= 2:

2r−1(r − 1) ≤ ed2(Alg 2r ,2) ≤ 2r−1(2r−1 + 1) for all r ≥ 2.

In the present paper, we find an upper bound n(n − 1)/2 for the essential
dimension of Algn,2 in Corollary 2.2. Moreover, we find an upper bound 22r−2

for the essential 2-dimension of Alg 2r ,2 in Corollary 2.4. Both upper bounds
are valid over an arbitrary field F . In particular, the bound 22r−2 improves
the bound 22r−2 + 2r−1 as above.

Using involutions of the first kind, we further improve the upper bound 22r−2

as follows:

Theorem. Let F be a field of characteristic different from 2. Then, for any

integers r ≥ 3,

ed2(Alg 2r,2) ≤ 2r−1(2r−3 + 1).

As a result, we find the essential 2-dimension of Alg 16,2:

Corollary. Let F be a field of characteristic different from 2. Then

ed2(Alg 16,2) = 24.

Remark 1.1. Recently, V. Chernousov and A. Merkurjev proved that

edp(SLpr /µps) = edp(Alg pr,ps) + 1

for any 0 6= s < r over a field of char(F ) 6= p (this result is communicated
to the author by A. Merkurjev). Therefore, the computation of essential p-
dimension of split simple group of type Apr−1 is reduced to the computation
of edp(Alg pr ,ps). In particular, we have ed2(SL16 /µ2) = 25 over a field of
char(F ) 6= 2.

Acknowledgements : I am grateful to my advisor A. Merkurjev for many
useful discussions and support and to Z. Reichstein for helpful comments.
Section 2 of this paper is based on the author’s doctoral thesis at the University
of California at Los Angeles.
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2. Upper bounds for the essential dimension of Algn,2

Let G be a reductive algebraic group over F , let T be a maximal torus of G
and let N be the normalizer of T in G. Then the canonical map

H1(K,N) → H1(K,G)

is surjective for any field extension K/F by Springer’s Lemma ([7, III.4 Lemma
6]). Therefore, we have

(1) ed(G) ≤ ed(N)

by [4, Proposition 1.3].
For any integer n ≥ 2, consider a reductive group GLn /µ2 and the maximal

torus Tn,2 := Gn
m /µ2 in the group.

Lemma 2.1. Let F be an arbitrary base field and Sn be the symmetric group

on n elements. Then for any n ≥ 3, we have

ed(Tn,2 ⋊ Sn) ≤ (n2 − n)/2.

Proof. Note that the character group (Tn,2)
∗ is isomorphic to

{(t1, · · · , tn) ∈ Zn| t1 + · · ·+ tn = 0 in Z/2Z}.

Let ei,j = (0, · · · , 1, · · · ,−1, 0) be an element of (Tn,2)
∗, where 1 and −1 are

placed in the ith and jth positions respectively for 1 ≤ i 6= j ≤ n and 0’s are
placed in other positions. Similarly, let fi,j = (0, · · · , 1, · · · , 1, 0), where 1’s
are placed in the ith and jth positions for 1 ≤ i 6= j ≤ n and 0’s are placed in
other positions and let gk = (0, · · · ,−2, · · · , 0) as an element of (Tn,2)

∗, where
−2 is placed in the kth position for 1 ≤ k ≤ n and 0’s are placed in other
positions.

Let X be a set consisting of fi,j and gk for all 1 ≤ i 6= j ≤ n and all
1 ≤ k ≤ n. Then X is a Sn-invariant subset of (Tn,2)

∗ and |X| = |fi,j|+ |gk| =
(n2 − n)/2 + n.

It is clear that ei,j and fi,j generate (Tn,2)
∗ as an abelian group, as the

indices i and j run over 1 to n. Since fi,j + gj = ei,j, X generates (Tn,2)
∗ as an

abelian group and hence we have a surjective Sn-equivariant homomorphism
ν : Z[X ] → (Tn,2)

∗ taking fi,j and gk to themselves.
We show that Sn acts faithfully on Ker(ν). Let σ be a nontrivial element of

Sn. Then there exists 1 ≤ i0 ≤ n such that σ(i0) 6= i0. Choose a 1 ≤ j0 ≤ n
which is different from σ(i0) and i0. Then σ does not fix 2fi0,j0 + gi0 + gj0 ∈
Ker(ν). By [5, Lemma 3.3], ed(Tn,2 ⋊ Sn) ≤ (n2 − n)/2 + n− rank((Tn,2)

∗) =
(n2 − n)/2.

�

By (1), we have an upper bound for ed(Algn,2) as follows:

Corollary 2.2. Let F be an arbitrary base field. Then for any n ≥ 3,

ed(Algn,2) ≤ (n2 − n)/2.
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Let Pn be a Sylow 2-subgroup of the symmetric group Sn on n elements. In
the following Lemma, we compute an upper bound for the essential dimension
of T2r ,2 ⋊ P2r .

Lemma 2.3. Let F be an arbitrary base field. Then for any r ≥ 2, we have

ed(T2r ,2 ⋊ P2r) ≤ 22r−2,

where P2r is a Sylow 2-subgroup of S2r .

Proof. Note that a Sylow 2-subgroup P2r of S2r is isomorphic to (P2r−1)2 ⋊
Z/2Z.

Consider the ei,j , fi,j and gk as in the proof of Lemma 2.1. We divide
the set of integers {1, 2, · · · , 2r} into two subsets Λ1 := {1, 2, · · · , 2r−1} and
Λ2 := {2r−1 + 1, 2r−1 + 2, · · · , 2r}. Let X be a set consisting of fi,j and gk
for all 1 ≤ i 6= j ≤ 2r such that i and j are placed in different Λl’s and all
1 ≤ k ≤ 2r, where l is either 0 or 1. Then X is a P2r -invariant subset of (T2r ,2)

∗

and |X| = 22r−2 + 2r.
It is clear that ei,j and fi,j generate (T2r ,2)

∗ as an abelian group, as the
indices i and j run over 1 to 2r. Note that fi,j = fi,k + fj,k + gk for all i and j
which are in the same Λl’s, where l is either 1 or 2. As

ei,j =

{

fi,j + gj if i and j are in different Λl’s,

fi,k + fj,k + gj + gk otherwise,

X generates (T2r ,2)
∗ as an abelian group and hence we have a surjective P2r -

equivariant homomorphism ν : Z[X ] → (T2r ,2)
∗ taking fi,j and gk to them-

selves.
We show that P2r acts faithfully on Ker(ν). Note that the center of P2r ,

which is generated by σ := (1, 2)(3, 4) · · · (2r − 1, 2r) and it is enough to show
that σ acts faithfully on Ker(ν). In fact, σ does not fix the non-zero element
2f1,2r−1+1 + g1 + g2r−1+1 ∈ Z[X ]. By [5, Lemma 3.3], we have

ed(T2r ,2 ⋊ P2r) ≤ 22r−2 + 2r − rank((T2r ,2)
∗) = 22r−2.

�

As (2, [T2r ,2⋊S2r : T2r ,2⋊P2r ]) = 1, we have ed2(T2r ,2⋊S2r) = ed2(T2r ,2⋊P2r)
by [5, Lemma 4.1]. Therefore, by Lemma 2.3, we have the following Corollary:

Corollary 2.4. Let F be an arbitrary base field. Then for any r ≥ 2,

ed2(Alg 2r ,2) ≤ 22r−2.

3. Algebras with involutions

Let A be a central simple algebra over F . For any a ∈ A×, we denote the
inner automorphism of A by Int(a): Int(a)(x) = axa−1 for all x ∈ A. For any
subalgebra B of A, we write CA(B) for the centralizer of B in A. The following
Lemma characterizes all involutions of the first kind on A.
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Lemma 3.1. [3, Proposition 2.7] Let F be a field of char(F ) 6= 2, A be a

central simple algebra over F and σ be an involution of the first kind on A.
Then every involution σ′ of the first kind on A is of the form Int(a) ◦ σ for

some a ∈ A× uniquely determined up to a factor in F×, such that σ(a) = ±a.
Moreover, σ and σ′ are of the same type if and only if σ(a) = a.

We use the following Lemma for extension of involutions:

Lemma 3.2. [3, Theorem 4.14] Let F be a field of char(F ) 6= 2, A be a

central simple algebra over F with an involution σ of the first kind, and B be

a simple subalgebra of A with an involution τ such that τ |F = σ|F . Then A
has involutions of both types whose restriction to B is τ , unless τ is of the first

kind and deg(CA(B)) is odd.

From now we assume that the base field F is 2-closed (i.e., every finite
extension of F is separable of degree a power of 2) and is of characteristic
different from 2.

Proposition 3.3. Let r ≥ 3 be an integer, F a 2-closed field such that

char(F ) 6= 2 and D a division F -algebra of degree 2r and exponent 2. Then

for any biquadratic field extension K1K2/F in D with quadratic field exten-

sions K1/F and K2/F there exists a quadratic extension K3/F in D such that

K1K2K3/F is a triquadratic extension in D.

Proof. By [3, Theorem 3.1(1)], D has an involution of the first kind σ. Let
τ1 and τ2 be two distinct nontrivial automorphisms of the field K1K2. As
σ|F = τi|F for any i = 1, 2, there are two distinct involutions σ1 and σ2 of the
same type on A such that σi|K1K2

= τi by Lemma 3.2.
By Lemma 3.1, there exists d ∈ D× such that σ1 = Int(d)◦σ2 and σi(d) = d

for all i = 1, 2. In particular, d2 commutes withK1 andK2 and F (d2)∩K1K2 =
F . If F (d2) 6= F , then F (d2) contains a quadratic extension K3 over F by [6,
Proposition 1.1]. Hence we a triquadratic extension K1K2K3 in D.

Suppose that d2 ∈ F . Then there exist quaternion subalgebras Q1 :=
(K1, d

2) and Q2 := (K2, d
2) of D. As ind(CD(Q1 ⊗ Q2)) ≥ 2, CD(Q1 ⊗ Q2)

contains a quadratic extension K3/F by [6, Proposition 1.1]. Therefore, we
have K1K2K3 = K1 ⊗K2 ⊗K3 ⊂ Q1 ⊗Q2 ⊗ CD(Q1 ⊗Q2) = D. �

Corollary 3.4. Let r ≥ 3 be an integer and F be a 2-closed field such that

char(F ) 6= 2. Then for any division F -algebra D of degree 2r and exponent 2
and an étale subalgebra K1K2 := K1 ⊗ K2 of D such that dimF (Ki) = 2 for

i = 1, 2, there exists a maximal étale subalgebra K1K2K := K1 ⊗K2 ⊗K of

D with dimF (K) = 2r−2.

Proof. By Proposition 3.3, there exists a triquadratic field extension K1K2K3

over F . Induction on r. If r = 3, then K = K3 satisfies the conclusion of
Corollary. For r ≥ 3, the centralizer CD(K3) is a division K3-algebra of degree
2r−1. By the induction hypothesis with K1K3/K3 and K2K3/K3, CD(K3)
contains a subfield K/F with [K : K3] = 2r−3. Hence D contains a field
extension K1K2K over F such that dimF (K) = 2r−3 · 2. �
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4. Essential 2-dimension of Algn,2

Let n ≥ 2 be an integer, G be a subgroup of Sn and X be a G-set of n
elements (G acts on X by permutation). For any divisor m of n, we consider
the surjective G-modules homomorphism ε̄ : Z[X ] → Z/mZ, defined by ε̄(x) =
ε(x) +mZ, where ε : Z[X ] → Z is the augmentation homomorphism given by
ε(x) = 1 for all x ∈ X . Set J = Ker(ε̄). Then we have an exact sequence

(2) 0 → J → Z[X ]
ε̄
−→ Z/mZ → 0.

We shall need the following lemma (see also the proof of [2, Theorem 8.1]):

Lemma 4.1. Let F be a field of char(F ) 6 | n and T = SpecF [J ] be the split

torus with the character group J . Then

H1(F, T ⋊G) =
∐

Gal(E/F )=G

Brm(E/F ),

where the disjoint union is taken over all isomorphism classes of Galois G-

algebras E/F .

Proof. Let Tγ (respectively, Gγ) be the twist of T (respectively, G) by the
1-cocycle γ ∈ Z1(F,G). Then by [3, Proposition 28.11], there is a natural
bijection between the fiber of H1(F, T ⋊G) → H1(F,G) over [γ] and the orbit
set of the group Gγ(F ) in H1(F, Tγ), i.e.,

(3) H1(F, T ⋊G) ≃
∐

H1(F, Tγ)/Gγ(F ),

where the coproduct is taken over all [γ] ∈ H1(F,G).
Let E be the corresponding Galois G-algebra over F to γ. From (2), we

have the corresponding exact sequence of algebraic groups

1 → µm → Gn
m → T → 1

and then the exact sequence

(4) 1 → µm → RE/F (Gm,E) → Tγ → 1,

each term of which is twisted by γ. The exact sequence (4) induces an exact
sequence of Galois cohomology

(5) 1 → H1(F, Tγ) → H2(F,µm) = Brm(F ) → H2(E,Gm,E) = Br(E)

by Eckmann-Faddeev-Shapiro’s Lemma and Hilbert’s 90. The G-action on
RE/F (Gm,E) restricts to the trivial action on the subgroup µm. Let σ ∈ Gγ(F )
acts on Tγ = RE/F (Gm,E)/µm. The action of σ and (5) induce the following
diagram

H1(F, Tγ)

σ∗

��

�

�

// H2(F,µm)

H1(F, Tγ)
�

�

// H2(F,µm).

Therefore, Gγ(F ) acts trivially on H1(F, Tγ), hence the result follows by (3).
�
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Let r ≥ 3 be an integer. Let Gr = S2 × S2 × S2r−2 be a subgroup of the
symmetric group S2r on 2r elements and let Hr = S2 × S2 × P2r−2 be a Sylow
2-subgroup of Gr, where P2r−2 is a Sylow 2-subgroup of S2r−2 . Let Xr be a
Gr-set of 2

r elements (Gr acts on Xr by permutations). The action of Hr may
be described as follows: we subdivide the integers 1, 2, · · · , 2r into four blocks
B1, B2, B3, B4 such that each block consists of 2r−2 consecutive integers. The
P2r−2 permutes the elements of Bi for all 1 ≤ i ≤ 4, S2 interchanges B2i−1 and
B2i for all i = 1, 2, and another S2 interchanges B1 ∪ B2 and B3 ∪ B4.

We set Jr = Ker(Z[Xr]
ε̄
−→ Z/2Z), where ε̄ is the map with m = 2 as in (2).

Applying Lemma 4.1 with n = 2r, m = 2, G = Gr, X = Xr, J = Jr, and
T = Tr := Spec(F [Jr]), we have a morphism

θ : H1(−, Tr ⋊Gr) → Alg 2r ,2

defined by θ(N)([A]) = B for a field extension N over F , where [A] ∈ Br2(L/N)
for some field extension L/N with Gal(L/N) = Gr and B is the central simple
N -algebra of degree 2r such that [A] = [B] in Br2(L/N).

We also have a morphism

(6) Θ : H1(−, Tr ⋊Gr)
∐

(

∐

1≤i≤r−1

Alg2i,2

)

→ Alg 2r ,2

defined by

[A] 7→ θ(N)([A]), Ai 7→ M2r−i(Ai)

over a field extension N over F , where Ai ∈ Alg 2i,2(N) for 1 ≤ i ≤ r − 1.

Lemma 4.2. If the base field F is 2-closed and is of characteristic different

2, then Θ is surjective.

Proof. We show that Θ(N) is surjective for a field extension N/F . By the
definition of Θ, we only need to check the surjectivity for a division N -algebra
D of degree 2r and exponent 2. By [6, Theorem 1.2], there exists an étale
subalgebra K1K2 in D such that dimN(Ki) = 2 for i = 1, 2. By Corollary 3.4,
there exists a maximal étale subalgebra K1K2K in D such that dimN(K) =
2r−2. Hence θ is surjective, so is Θ. �

Example 4.3. (see [2, Remark 3.10]) Let r = 3. Then G3 = H3 = S2 ×
S2 × S2 := 〈τ1〉 × 〈τ2〉 × 〈τ3〉. As the action of H3 on X3 is simply transitive,
X3 ≃ H3 as H3-sets, hence J3 is generated by 2 and τi − 1 for i = 1, 2, 3.
Set Λ3 := Z[H3/〈τ1〉]⊕ Z[H3/〈τ2〉]⊕ Z[H3/〈τ3〉]⊕ Z[H3/〈τ1τ2〉]. Define a map
ρ : Λ3 → J3 by

ρ(x1, x2, x3, x4) =
3

∑

i=1

(τi + 1)xi + (τ1τ2 + 1)x4.

As 2 = (τ1τ2+1)− τ1(τ2+1)+ (τ1+1), ρ is surjective. It is easy to check that
H3 acts on Ker(ρ) faithfully. Therefore, by [5, Lemma 3.3] and [4, Corollary
4.2], ed2(Alg8,2) ≤ 4 + 4 + 4 + 4− 23 = 8.
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For an x ∈ Xr, let Hr,x be the stabilizer of x in Hr = S2 × S2 × P2r−2 :=
〈τ1〉 × 〈τ2〉 × P2r−2 . We set P2r−2 = (P2r−3)2 ⋊ 〈τr〉.

Lemma 4.4. For any r ≥ 3 and any x ∈ Xr, we have

(1) Hr,x = Hr−1,x × P2r−3.

(2) Hr = 〈τ1, τ2, τr, Hr,x〉.
(3) Jr = 〈2x, τ1x− x, τ2x− x, τrx− x〉.
(4) τrHr,xτr ∩Hr,x = Hr−1,x ×Hr−1,x.

Proof. (1) The stabilizer of x in Hr is the stabilizer of x under the action of
P2r−2 on the block Bi containing x for some i. As P2r−2 = (P2r−3)2 ⋊ 〈τr〉, the
stabilizer of x in P2r−2 is Hr−1,x × P2r−3.

(2) Induction on r. The case r = 3 comes from Example 4.3. By induction
hypothesis we have P2r−3 = 〈τr−1, Hr−1,x〉. As τr−1 is generated by τr and
P2r−3 , the result follows immediately.

(3) As Hr acts on Xr transitively, the result follows from Lemma 4.4 (2) and
the sequence (2).

(4) As τrHr,xτr = Hr,τr(x), the result follows from (1). �

Theorem 4.5. For any r ≥ 3, there exists a 2r−1(2r−3+3)-dimensional gener-

ically free representation for Tr ⋊Hr. Hence ed2(Alg 2r ,2) ≤ 2r−1(2r−3 + 1).

Proof. For r ≥ 3 and x ∈ Xr, we set

Λr := Z[Hr/〈τ1〉 ×Hr,x]⊕ Z[Hr/〈τ2〉 ×Hr,x]⊕ Z[Hr/〈τ1τ2〉 ×Hr,x]

⊕ Z[Hr/(τrHr,xτr ∩Hr,x)⋊ 〈τr〉].

Define a map ρ : Λr → Jr by taking a generator of the first component (re-
spectively, the second component) of Λr to τ1x + x (respectively, τ2x + x), a
generator of the third component of Λr to τ1τ2x + x, and a generator of the
last component of Λr to τrx+x. By construction, this map is well defined. As
2x = (τ1τ2x+ x)− τ1(τ2x+ x) + (τ1x+ x), ρ is surjective by Lemma 4.4 (3).

As Hr acts faithfully on Ker(ρ) by Lemma 4.6, there exists a generically free
representation for Tr ⋊Hr by [5, Lemma 3.3]. Therefore, by [4, Corollary 4.2],
we have

ed2(Tr ⋊Hr) ≤ rank(Z[Hr/〈τ1〉 ×Hr,x]) + rank(Z[Hr/〈τ2〉 ×Hr,x])

+ rank(Z[Hr/〈τ1τ2〉 ×Hr,x]) + rank(Z[Hr/(τrHr,xτr ∩Hr,x)⋊ 〈τr〉])

− rank(Jr)

= 2r−1 + 2r−1 + 2r−1 + 2r+(r−1)−2−1 − 2r (by Lemma 4.4(1),(4))

= 2r−1 + 22r−4.

By [5, Lemma 4.1], ed2(Tr ⋊Gr) = ed2(Tr ⋊Hr). As the morphism Θ in (6)
is surjective by Lemma 4.2, we get

ed2(Alg2r ,2) ≤ max{ed2(Tr ⋊Gr), ed2(Alg 2,2), · · · , ed2(Alg 2r−1,2)}.

By induction on r, we finally have ed2(Alg 2r ,2) ≤ ed2(Tr ⋊Gr) ≤ 2r−1 + 22r−4.
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�

Lemma 4.6. Let ρ : Λr → Jr be the morphism in proof of Theorem 4.5. The

action of Hr on Ker(ρ) is faithful.

Proof. Note that Jr ⊗ Q = Q[Xr] by the exact sequence (2). Hence, by the
exact sequence

Ker(ρ) → Λr
ρ
−→ Jr,

we have

Q[Xr]⊕ (Ker(ρ))Q = Q[Hr/〈τ1〉 ×Hr,x]⊕Q[Hr/〈τ2〉 ×Hr,x]⊕Q[Hr/〈τ1τ2〉 ×Hr,x]

⊕Q[Hr/(τrHr,xτr ∩Hr,x)⋊ 〈τr〉].(7)

By the actions of τ1 and τ2, the natural map

i : Z[Xr] → Z[Xr/〈τ1〉]⊕ Z[Xr/〈τ2〉]⊕ Z[Xr/〈τ1τ2〉]

is injective, hence we get the exact sequence

0 → Z[Xr]
i
−→ Z[Xr/〈τ1〉]⊕ Z[Xr/〈τ2〉]⊕ Z[Xr/〈τ1τ2〉] → Coker(i) → 0

and

(8) Q[Xr]⊕ (Coker(i))Q = Q[Xr/〈τ1〉]⊕Q[Xr/〈τ2〉]⊕Q[Xr/〈τ1τ2〉].

By (7) and (8), we have

(Ker(ρ))Q = (Coker(i))Q ⊕Q[Hr/(τrHr,xτr ∩Hr,x)⋊ 〈τr〉],

thus it is enough to show that Hr = 〈τ1〉×〈τ2〉× [(P2r−3)2⋊〈τr〉] acts faithfully
on Yr := Q[Hr/(τrHr,xτr ∩Hr,x)⋊ 〈τr〉]:

Case 1: h = τih
′ or τ1τ2h

′′ ∈ Hr for i = 1, 2 and h′, h′′ ∈ (P2r−3)2 ⋊ 〈τr〉.
If h = τih

′ ∈ Hr for some h′ ∈ (P2r−3)2⋊ 〈τr〉 and i = 1, 2, then hτi = h′ 6= τi
in Yr. Similarly, if h = τ1τ2h

′′ ∈ Hr for some h′′ ∈ (P2r−3)2 ⋊ 〈τr〉, then
hτ1τ2 = h′′ 6= τ1τ2 in Yr.

Case 2: h ∈ (P2r−3)2 ⋊ 〈τr〉\(τrHr,xτr ∩Hr,x)⋊ 〈τr〉.

If h ∈ (P2r−3)2 ⋊ 〈τr〉\(τrHr,xτr ∩Hr,x)⋊ 〈τr〉, then h1 = h 6= 1 in Yr.

Case 3: h ∈ (τrHr,xτr ∩Hr,x)⋊ 〈τr〉\(τrHr,xτr ∩Hr,x).
Let h = h1h2τr ∈ (Hr−1,x × Hr−1,x) ⋊ 〈τr〉. We may assume that h1 6= 1.

Choose a transposition δ ∈ P2r−3 which does not fix x. Then hδ = h1h2τrδ =
h1h2δ′τr = δ′h1h2τr = δ′ 6= δ, where δ′ is the transposition such that τrδ = δ′τr.

Case 4: h ∈ τrHr,xτr ∩Hr,x.
Let h = h1h2 ∈ Hr−1,x × Hr−1,x = τrHr,xτr ∩ Hr,x. We may assume that

h1 6= 1. Let τr−1 be the permutation which acts on the same block with h1.
Then hτr−1 = h1τr−1 6= τr−1 in Yr.

This completes the proof of faithfulness.
�

Corollary 4.7. Let F be a field of characteristic different 2. Then

ed2(Alg 16,2) = 24.
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Proof. The lower bound 24 ≤ ed2(Alg 16,2) follows from [2, Theorem 6.1].
Therefore, the statement follows from Theorem 4.5. �
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