ESSENTIAL DIMENSION OF SIMPLE ALGEBRAS WITH
INVOLUTIONS

SANGHOON BAEK

ABSTRACT. Let 1 < m < n be integers with m|n and Alg,, ,, the class of
central simple algebras of degree n and exponent dividing m. In this paper,
we find upper bounds for the essential (2)-dimension of Alg,, . Moreover,
we find a stronger upper bound for the essential 2-dimension of Alg,, 5 over
a field F' of char(F) # 2. As a result, we show that eda(Algg ) = 24 over
a field F of char(F) # 2.

1. INTRODUCTION

Let T : Fields/F — Sets be a functor from the category Fields/F' of field
extensions over F' to the category Sets of sets. For fields E, E’ € Fields/F, a
field homomorphism f : E — E' over F and a € T(E), we write ag for the
image of a under the morphism 7 (f) : T(E) — T (E').

Let E € Fields/F and K C E a subfield over F. An element a € T(F)
is said to be defined over K and K is called a field of definition of « if there
exists an element 5 € T(K) such that g = a. The essential dimension of «
is ed(a) = min{tr. degp(K)} over all fields of definition K of a. The essential
dimension of the functor T is ed(T) = sup{ed(a)}, where the supremum
is taken over all fields E € Fields/F and all « € T(E). Hence, the essential
dimension of an algebraic structure 7 measures the complexity of the structure
in terms of the smallest number of parameters required to define the structure
over a field extension of F.

Let p be a prime integer. The essential p-dimension of o is ed,(a) =
min{ed(ay)}, where L ranges over all field extensions of E of degree prime
to p. In other words, ed,(a) = min{tr.degp(K)}, where the minimum is
taken over all field extensions L/E of prime to p and all subextensions K/F
of L which are field of definition of a;. Hence, ed() > ed,(«) for all p. The
essential p-dimension of F is ed,(T) = sup{ed,(«)}, where the supremum
ranges over all fields F € Fields/F and all o« € T(E).

Let G be an algebraic group over F. The essential dimension ed(G) (re-
spectively, essential p-dimension ed,(G)) of G is defined to be ed(H'(—,G))
(respectively, ed,(H'(—,G))), where H'(E,G) is the Galois cohomology set
(equivalently, the set of isomorphism classes of G-torsors) over a field exten-
sion F of F.

For every integer n > 1, a divisor m of n and any field extension E/F, let
Alg,, ,(E) denote the set of isomorphism classes of central simple E-algebras of

degree n and exponent dividing m. Then, for any field extension E/F, there is
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a natural bijection between H'(E, GL, /p,,) and Alg,, ..(E) (see [[, Example
1.1]), thus ed(Alg,,,,) = ed(GL, /u,,) and ed,(Alg,, ) = ed,(GL, /u,,).

In this paper, we compute upper bounds for the essential dimension of Alg,, 5.
By a theorem of Albert, a central simple algebra has exponent dividing 2 if and
only if it admits an involution of the first kind (see [B, Theorem 3.1]). Thus,
any algebra A in Alg, ,(K) for any field extension K/F has involutions of the
first kind. Moreover, such A has involutions of both symplectic and orthogonal
types (see [B, Corollary 2.8(2)]). By the primary decomposition theorem and
[B, Section 6], we have ed(Alg,, ,) = ed(Algy o) and edy(Alg,, o) = eda(Algyr o),
where 2" is the largest power of 2 dividing n. Hence, we may assume that n is
a power of 2.

By [, Remark 8.2 and Corollary 8.3], edy(Alg,,) = ed(Alg,,) = 4 and
edy(Algg,) = ed(Algg,) = 8 over a field F' of char(F) # 2. In general, by [B,
Theorem]|, the following bounds were established over a field F' of char(F") # 2:

2" (r—1) < edy(Algyr o) < 2712t 4 1) for all 7 > 2.

In the present paper, we find an upper bound n(n — 1)/2 for the essential
dimension of Alg,, , in Corollary R.9. Moreover, we find an upper bound 22 2
for the essential 2-dimension of Alg,, , in Corollary R.4. Both upper bounds
are valid over an arbitrary field F. In particular, the bound 2% ~2 improves
the bound 2% =2 + 2771 as above.

Using involutions of the first kind, we further improve the upper bound 2272
as follows:

Theorem. Let F' be a field of characteristic different from 2. Then, for any
integers r > 3,
edy(Algy,) < 2771270 4 1).

As a result, we find the essential 2-dimension of Alg g 5
Corollary. Let F' be a field of characteristic different from 2. Then

Remark 1.1. Recently, V. Chernousov and A. Merkurjev proved that
edp(SLpT /Iers) == edp(A/ng‘7ps) + 1

for any 0 # s < r over a field of char(F') # p (this result is communicated
to the author by A. Merkurjev). Therefore, the computation of essential p-
dimension of split simple group of type A,_; is reduced to the computation
of ed,(Alg,- ). In particular, we have eds(SLig/p,) = 25 over a field of
char(F) # 2.

Acknowledgements: 1 am grateful to my advisor A. Merkurjev for many
useful discussions and support and to Z. Reichstein for helpful comments.
Section 2 of this paper is based on the author’s doctoral thesis at the University
of California at Los Angeles.
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2. UPPER BOUNDS FOR THE ESSENTIAL DIMENSION OF Alg,, 5

Let G be a reductive algebraic group over F', let T' be a maximal torus of G
and let N be the normalizer of T"in GG. Then the canonical map

HY(K,N) - HY(K,G)

is surjective for any field extension K/F by Springer’s Lemma ([{, I11.4 Lemma
6]). Therefore, we have

(1) ed(G) < ed(N)

by [A, Proposition 1.3].
For any integer n > 2, consider a reductive group GL,, /u, and the maximal
torus 1), 2 := G, /p, in the group.

Lemma 2.1. Let F' be an arbitrary base field and S, be the symmetric group
on n elements. Then for any n > 3, we have

ed(Tpo % S,) < (n? —n)/2.
Proof. Note that the character group (7},2)* is isomorphic to
{(tr,-- tn) €Z"| ty 4 -+ -+ t, = 0 in Z/2Z}.

Lete;; = (0,---,1,---,—1,0) be an element of (T, 2)*, where 1 and —1 are
placed in the ith and jth positions respectively for 1 <17 # j < n and 0’s are
placed in other positions. Similarly, let f;; = (0,---,1,---,1,0), where 1’s
are placed in the ith and jth positions for 1 < i # j < n and 0’s are placed in
other positions and let g = (0,---,—2,---,0) as an element of (7}, )", where
—2 is placed in the kth position for 1 < k£ < n and 0’s are placed in other
positions.

Let X be a set consisting of f;; and gy for all 1 < i # j < n and all
1 <k <n. Then X is a S,-invariant subset of (T,,5)* and |X| = |fi;| + |gx| =
(n* —n)/2 +n.

It is clear that e;; and f;; generate (7),2)* as an abelian group, as the
indices ¢ and j run over 1 to n. Since f; ; + g; = e; j, X generates (1),2)* as an
abelian group and hence we have a surjective S,-equivariant homomorphism
v:Z[X] — (T,2)* taking f; ; and gi to themselves.

We show that S, acts faithfully on Ker(v). Let o be a nontrivial element of
Sy. Then there exists 1 < ig < n such that o(ig) # ip. Choose a 1 < jo <n
which is different from o(ip) and iy. Then o does not fix 2f;, j, + gi, + 9j, €
Ker(v). By B, Lemma 3.3], ed(T,, 2 ¥ S,) < (n? —n)/2 +n — rank((T},2)*) =
(n? —n)/2.

O

By ([), we have an upper bound for ed(Alg,, ,) as follows:
Corollary 2.2. Let F' be an arbitrary base field. Then for any n > 3,
ed(Alg, ) < (n* — n)/2.
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Let P, be a Sylow 2-subgroup of the symmetric group S,, on n elements. In
the following Lemma, we compute an upper bound for the essential dimension
of T2r72 X PQr.

Lemma 2.3. Let F' be an arbitrary base field. Then for any r > 2, we have
ed<T2r72 X P27‘) < 227172,
where Por is a Sylow 2-subgroup of Saor.

Proof. Note that a Sylow 2-subgroup P of Sy is isomorphic to (Par-1)% x
7]27.

Consider the e;;, f;; and gy as in the proof of Lemma P.I. We divide
the set of integers {1,2,---,2"} into two subsets A; := {1,2,---,2"} and
Ay = {271 +1,271 +2,... 2"}, Let X be a set consisting of f;; and gy
for all 1 < i # j < 2" such that i and j are placed in different A;’s and all
1 <k <27, where [ is either 0 or 1. Then X is a Psr-invariant subset of (T5r 2)*
and | X | =2%"2 42"

It is clear that e;; and f;; generate (T 2)* as an abelian group, as the
indices ¢ and j run over 1 to 2". Note that f; ; = fir + fjx + gx for all ¢ and j
which are in the same A;’s, where [ is either 1 or 2. As

. fij+ 9 if  and j are in different A;’s,
" fix + fjx +9; +gr otherwise,

X generates (Tor2)* as an abelian group and hence we have a surjective Pyr-
equivariant homomorphism v : Z[X] — (Tar2)* taking f;; and g, to them-
selves.

We show that P acts faithfully on Ker(v). Note that the center of Pyr,
which is generated by o := (1,2)(3,4)---(2" — 1,2") and it is enough to show
that o acts faithfully on Ker(v). In fact, o does not fix the non-zero element
2f190-111 + g1 + gor—141 € Z[X]. By [, Lemma 3.3], we have

ed(Tyr o ¥ Pyr) <2272 42" — rank((Tyrp)*) = 2% 2.
O

As (2, [Tor 92 Sor = Tor 9 X Pyr]) = 1, we have eda(Tor 94 Sor) = eda(Tor o X Pyr)
by [, Lemma 4.1]. Therefore, by Lemma B3, we have the following Corollary:

Corollary 2.4. Let F' be an arbitrary base field. Then for any r > 2,
edQ(A/g2r72) S 227’—2.

3. ALGEBRAS WITH INVOLUTIONS

Let A be a central simple algebra over F'. For any a € A*, we denote the
inner automorphism of A by Int(a): Int(a)(z) = axa™! for all z € A. For any
subalgebra B of A, we write C4(B) for the centralizer of B in A. The following
Lemma characterizes all involutions of the first kind on A.
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Lemma 3.1. [{, Proposition 2.7] Let F' be a field of char(F) # 2, A be a
central simple algebra over F and o be an involution of the first kind on A.
Then every involution o' of the first kind on A is of the form Int(a) o o for
some a € A* uniquely determined up to a factor in F*, such that o(a) = *a.
Moreover, o and o' are of the same type if and only if o(a) = a.

We use the following Lemma for extension of involutions:

Lemma 3.2. [}, Theorem 4.14] Let F be a field of char(F) # 2, A be a
central simple algebra over F with an involution o of the first kind, and B be
a simple subalgebra of A with an involution T such that T|p = o|p. Then A

has involutions of both types whose restriction to B is T, unless T is of the first
kind and deg(Ca(B)) is odd.

From now we assume that the base field F' is 2-closed (i.e., every finite
extension of F' is separable of degree a power of 2) and is of characteristic
different from 2.

Proposition 3.3. Let r > 3 be an integer, F a 2-closed field such that
char(F) # 2 and D a division F-algebra of degree 2" and exponent 2. Then
for any biquadratic field extension K1Ks5/F in D with quadratic field exten-
sions K1/ F and K/ F there ezists a quadratic extension K3/ F in D such that
K\ KyK3/F is a triquadratic extension in D.

Proof. By [B, Theorem 3.1(1)], D has an involution of the first kind o. Let
71 and 7 be two distinct nontrivial automorphisms of the field K{Ks5. As
o|rp = 7|F for any i = 1,2, there are two distinct involutions oy and o5 of the
same type on A such that o;|k, x, = 7 by Lemma B.2.

By Lemma B.1], there exists d € D* such that o7 = Int(d) o o9 and o;(d) = d
for all i = 1,2. In particular, d> commutes with K; and K, and F(d*)NK, Ky =
F. If F(d®) # F, then F(d?) contains a quadratic extension K3 over F by [f,
Proposition 1.1]. Hence we a triquadratic extension K; K> K3 in D.

Suppose that d> € F. Then there exist quaternion subalgebras Q; :=
(K1, d?) and Qo = (K3, d?) of D. As ind(Cp(Q1 ® @2)) > 2, Cp(Q1 ® Q2)
contains a quadratic extension K3/F by [B, Proposition 1.1]. Therefore, we
have K1 KoK = K1 @ Ko ® K3 C Q1 ® Q2 ® Cp(Q1 ® Q2) = D. O

Corollary 3.4. Let r > 3 be an integer and F' be a 2-closed field such that
char(F') # 2. Then for any division F-algebra D of degree 2" and exponent 2
and an €tale subalgebra K1 Ky == Ky ® Ky of D such that dimp(K;) = 2 for
1 = 1,2, there exists a mazximal €tale subalgebra K1 KoK = K1 ® Ko ® K of
D with dimp(K) = 272,

Proof. By Proposition B.3, there exists a triquadratic field extension K;K,K3
over F'. Induction on r. If r = 3, then K = K3 satisfies the conclusion of
Corollary. For r > 3, the centralizer Cp(K3) is a division K3-algebra of degree
2=1. By the induction hypothesis with K;K3/K3 and KyK3/K3, Cp(K3)
contains a subfield K/F with [K : K3] = 2773, Hence D contains a field
extension KKK over F such that dimp(K) =273 - 2. O
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4. ESSENTIAL 2-DIMENSION OF Alg,, o

Let n > 2 be an integer, G be a subgroup of S,, and X be a G-set of n
elements (G acts on X by permutation). For any divisor m of n, we consider
the surjective G-modules homomorphism & : Z[X| — Z/mZ, defined by &(z) =

e(x) + mZ, where ¢ : Z[X] — Z is the augmentation homomorphism given by
e(z) =1for all z € X. Set J = Ker(¢). Then we have an exact sequence

(2) 0—J—Z[X]S Z/mZ — 0.
We shall need the following lemma (see also the proof of [B], Theorem 8.1]):
Lemma 4.1. Let F be a field of char(F') fn and T = Spec F[J] be the split
torus with the character group J. Then
HY(F,TxG) =[] Brum(E/F),
Gal(E/F)=G

where the disjoint union s taken over all isomorphism classes of Galois G-
algebras E/F.

Proof. Let T, (respectively, G,) be the twist of T' (respectively, G) by the
l-cocycle v € Z'(F,G). Then by [, Proposition 28.11], there is a natural
bijection between the fiber of H'(F,T x G) — H'(F, &) over [y] and the orbit
set of the group G, (F) in H'(F,T,), i.e

(3) H'(F,T x G)~ [ H'(F,T,)/G(F),

where the coproduct is taken over all [y] € H'(F, Q).
Let E be the corresponding Galois G-algebra over F to . From (B), we
have the corresponding exact sequence of algebraic groups
l—=-p, =G, —-T—1
and then the exact sequence
(4) 1— K", — RE/F(Gm,E) — T’\/ — 1,

each term of which is twisted by . The exact sequence (f]) induces an exact
sequence of Galois cohomology

(5) 1— HYF,T,) — H*(F,p,,) =Br,,(F) —» H*(E,G,, r) = Br(E)

by Eckmann-Faddeev-Shapiro’s Lemma and Hilbert’s 90. The G-action on
R 7 (G, p) restricts to the trivial action on the subgroup u,,. Let o € G, (F)
acts on T, = Rp/r(Gy 5)/ My, The action of ¢ and () induce the following
diagram

H\(F,T.)— H*(F,p,)

H'(F,T,)—= H*(F,p,,).
Therefore, G.,(F) acts trivially on H'(F,T,), hence the result follows by ().
U
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Let r > 3 be an integer. Let G, = S5 X Sy X Syr—2 be a subgroup of the
symmetric group Sy on 2" elements and let H, = Sy X S5 x Pyr—2 be a Sylow
2-subgroup of G,, where P,—2 is a Sylow 2-subgroup of Syr—2. Let X, be a
G,-set of 2" elements (G, acts on X, by permutations). The action of H, may
be described as follows: we subdivide the integers 1,2, ---,2" into four blocks
By, By, B, By such that each block consists of 2”72 consecutive integers. The
Pyr—2 permutes the elements of B; for all 1 < i <4, .S, interchanges By; 1 and
By; for all i = 1,2, and another S, interchanges By U By and B3 U By.

We set J, = Ker(Z[X,] = Z/2Z), where & is the map with m = 2 as in ([).
Applying Lemma L. with n = 2", m =2, G = G,, X = X,, J = J,, and
T =T, := Spec(F[J,]), we have a morphism

6:H' (~, T, xG,) = Algy ,

defined by 6(NV)([A]) = B for a field extension N over F', where [A] € Bry(L/N)
for some field extension L/N with Gal(L/N) = G, and B is the central simple
N-algebra of degree 2" such that [A] = [B] in Bry(L/N).

We also have a morphism

(6) O:H' (=T, xG)[[( [] Algas) — Algars
1<i<r—1
defined by
[A] = O(N)([A]),  Ai = Myr—i(Aj)
over a field extension N over F', where A; € Algyi o(N) for 1 <i <r —1.

Lemma 4.2. If the base field F' is 2-closed and is of characteristic different
2, then © is surjective.

Proof. We show that ©(N) is surjective for a field extension N/F. By the
definition of ©, we only need to check the surjectivity for a division N-algebra
D of degree 2" and exponent 2. By [{, Theorem 1.2], there exists an étale
subalgebra K7 K, in D such that dimy(K;) = 2 for i = 1,2. By Corollary B.4,
there exists a maximal étale subalgebra K;K>K in D such that dimy(K) =
27=2. Hence 0 is surjective, so is O. O

Example 4.3. (see [B, Remark 3.10]) Let » = 3. Then G3 = H3 = Sy X
Sy X Sy :=(11) X (T9) X (13). As the action of H3 on X3 is simply transitive,
X3 ~ Hj3 as Hs-sets, hence J3 is generated by 2 and 7, — 1 for ¢ = 1,2, 3.
Set Az := Z[H3/{(11)] ® Z[H3/(12)] ® Z[Hs3/(73)] ® Z[H3/(T172)]. Define a map
p: A3 — J3 by

3

p(T1, T2, T3, T0) = Y (7o + D + (m72 + D,

i=1
As2 = (mm+1) =7 (2 +1)+ (11 +1), p is surjective. It is easy to check that
Hj; acts on Ker(p) faithfully. Therefore, by [, Lemma 3.3] and [, Corollary
4.2], edy(Alggs) < A+ 4+4+4 -2 =8,
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For an x € X,, let H,, be the stabilizer of z in H, = Sy X Sy X Pyr—2 =
<T1> X <7'2> X P2r—2. We set P2r—2 = (PQr—S)Z X <TT>-

Lemma 4.4. For any r > 3 and any v € X,., we have
(1) HT,:B = Hp_1, X P27‘—3.
(2) H, = (11,72, Ty, Hy. ).
(3) Jp = 2z, mx — T, T — T, T, — T).
(4) TrHr,xTr N Hr,a: = Hp_1, X Hr—l,a:-

Proof. (1) The stabilizer of x in H, is the stabilizer of z under the action of
Pyr—2 on the block B; containing x for some i. As Pyr—2 = (Pyr-3)% % (7,), the
stabilizer of z in Pyr—2 is Hy_1 5 X Por-s.

(2) Induction on r. The case r = 3 comes from Example [.3. By induction
hypothesis we have Py-s = (7,1, H,—1,). As 7,_1 is generated by 7, and
Py—3, the result follows immediately.

(3) As H, acts on X, transitively, the result follows from Lemma [I.4 (2) and
the sequence (f)).

(4) As 7. H, .7, = H, ;, (2, the result follows from (1). O

Theorem 4.5. For any r > 3, there exists a 2"~ (2" 3+ 3)-dimensional gener-
ically free representation for T, X H,. Hence edy(Algy o) < 27712772 +1).
Proof. For r > 3 and x € X,., we set
A, :=7Z[H, /(") X H,,] ® Z[H, /{12) X H, | ® Z[H,/{T172) X H, .|
®ZH, [(1.H, o7 N H,») X (T2)].

Define a map p : A, — J, by taking a generator of the first component (re-
spectively, the second component) of A, to mz + x (respectively, Tz + z), a
generator of the third component of A, to Tz + x, and a generator of the
last component of A, to 7, +x. By construction, this map is well defined. As
20 = (mmx + x) — 1 (nx + ) + (mx + x), p is surjective by Lemma [.4] (3).

As H, acts faithfully on Ker(p) by Lemma [.§, there exists a generically free
representation for T, x H, by [[, Lemma 3.3]. Therefore, by [fl, Corollary 4.2],
we have
edo(7, x H,) <rank(Z[H,/(r) x H,,]) + rank(Z[H,/(m2) x H,.])

+ rank(Z[H, /(m17e) x H,,|) +rank(Z[H, /(7. H, .7 N Hy ) % (7,)])

— rank(J,)
=or-t gl por=t L ort(r=D=2-1 _ o (hy Lemma [[4(1),(4))
— 27’—1 + 227’—4.

By [, Lemma 4.1], eds (7} x G,) = edy(T, x H,). As the morphism © in ([
is surjective by Lemma [L.9, we get

edy(Algyr 5) < max{edy(T; 3 G),eda(Algys), - - - eda(Algyr-15)}.
By induction on 7, we finally have edy(Algy, ) < edy(T, X G,) < 2771 422774,



ESSENTIAL DIMENSION OF SIMPLE ALGEBRAS WITH INVOLUTIONS 9

t

Lemma 4.6. Let p: A, — J, be the morphism in proof of Theorem [[.J. The
action of H, on Ker(p) is faithful.

Proof. Note that J, ® Q = Q[X,] by the exact sequence (B). Hence, by the
exact sequence

Ker(p) = A, 5 J,,

we have
QX,] @ (Ker(p))g = Q[H,/(T1) x Hm:] © Q[H, /(T2) X Hm:] © Q[H, /{T1T2) X Hm&]
(7) © QH, /(1. H, o7 N Hy ) X (7).

By the actions of 7 and 75, the natural map
i ZIXy] = ZIX /()] @ ZIX, /(2)] © Z[X,/{T172)]
is injective, hence we get the exact sequence
0= Z[X,] 5 Z[X,/ (1)) ® Z[X, /()] ® Z[X, ) (1173)] — Coker(i) = 0
and

(8)  Q[X,] @ (Coker(i))o = Q[X,/(m)] ® QX /(72)] & QX /(T172)].
By ([) and (§), we have
(Ker(p))(@ = (COker(i))Q D Q[Hr/(TrHr,xTr N Hr,a:) X <Tr>]>
thus it is enough to show that H, = (1) X (12) X [(Pyr-3)? x {7,.)] acts faithfully
onY, :=Q[H, /(1 H, .7 N Hy ) % (1,)]:

Case 1: h=7h' or ymh” € H, for i = 1,2 and b/, h" € (Pyr-3)* x (1,.).

If h = ;) € H, for some h' € (Py-3)2x (1) andi = 1,2, then h7; = b # 7
in Y,. Similarly, if h = k" € H, for some h" € (Py-3)*> x (7,), then
W = W' #7775 in Y,

Case 2: h € (Por—3)? x (T )\ (7o Hy o7y N Hy ) X (T2,

If h € (Py—3)* X (1, )\(7Hy. o7 N H,. ) X (7,), then h1 = h#T1inY,.

Case 3: h € (1. H, ;7. N Hy i) X (1)\ (7. Hy w7 N H, ).

Let h = hyhotr, € (Hy—12 X Hy—1,) ¥ (7). We may assume that h; # 1.
Choose a transposition 6 € Py—s which does not fix . Then hd = hihot,0 =
hihod' 1, = 0'hihet, = & # &, where ¢’ is the transposition such that 7,0 = §'7,..

Case 4: he . H, ;7. N H, .

Let h = hihy € Hy_y . X Hy_y , = 1. H, 7, N H,,. We may assume that
hy # 1. Let 7,_1 be the permutation which acts on the same block with h;.
Then h7,—1 = hi71 # 7,1 in Y,.

This completes the proof of faithfulness.

Corollary 4.7. Let F' be a field of characteristic different 2. Then
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Proof. The lower bound 24 < edy(Algs,) follows from [, Theorem 6.1].
Therefore, the statement follows from Theorem [LF. O

[1]
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