ON THE ALGEBRAIC COBORDISM SPECTRA MSL AND MSp

IVAN PANIN AND CHARLES WALTER

ABSTRACT. We construct algebraic cobordism spectra MSL and MSp. They are com-
mutative monoids in the category of symmetric T"%-spectra. The spectrum MSp comes
with a natural symplectic orientation given either by a tautological Thom class th™MSP e
MSp*?(MSp,), a tautological Pontryagin class pM'°P € MSp*?(H P>) or any of six other
equivalent structures. For a commutative monoid E in the category SH(S) we prove that
assignment ¢ — o(th™SP) identifies the set of homomorphisms of monoids ¢: MSp — E in
the motivic stable homotopy category SH(S) with the set of tautological Thom elements of
symplectic orientations of E. A weaker universality result is obtained for MSL and special
linear orientations.

1. INTRODUCTION

A dozen years ago Voevodsky [15] constructed the algebraic cobordism spectrum MGL in
the motivic stable homotopy category SH(S). This gave a new cohomology theory MGL**
on smooth schemes and on motivic spaces. Later Vezzosi [14] put a commutative monoid
structure on MGL. This gave a product to MGL**. The commutative monoid structure
can even be constructed in the symmetric monoidal model category of symmetric T-spectra,
with 7= A!/(A! — 0) the Morel-Voevodsky object (Panin, Pimenov and Rondigs [10]).

In this paper we construct the algebraic special linear and symplectic cobordism spectra
MSL and MSp. The construction of MSL is straightforward although there is one slightly
subtle point. We equip each space BSL,, and MSL, with an action of GL,, which is com-
patible with the monoid structure BSL,, x BSL,, — BSLy,,, induced by the direct sum of
subbundles. This gives an action of the subgroup ¥,, C GL,, of permutation matrices. But to
define the unit of the monoid structure we need the action on BSL, to have fixed points. The
natural action of SL,, has fixed points, but the natural action of GL,, does not. So we use an
embedding ¥,, C Spa, C SLs,. This means that our MSL is a commutative monoid in the
category of symmetric T/ %-spectra. The categories of symmetric T-spectra and of symmetric
T2-spectra are both symmetrical monoidal, and their homotopy categories are equivalent
symmetric monoidal categories (Theorem 3.2). So a symmetric 7/\?-spectrum structure is
quite satisfactory, and it seems to be a natural structure for this spectrum.

Cobordism spectra and the cohomology theories they define are expected to have some
universal properties among certain classes of cohomology theories. For instance Voevodsky’s
and Levine and Morel’s algebraic cobordism theories are universal among oriented cohomology
theories [6, 10, 14]. We should therefore expect MSL to have some degree of universality
for special linearly oriented theories. Recall that a special linear bundle (E, \) over X is a
pair consisting of a vector bundle E and an isomorphism of line bundles A: Ox = det E.
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A special linear orientation on a cohomology theory A** is an assignment to every special
linear bundle of a Thom class th(E,\) € A?*(E,E — X) = A¥"™(E) with n = rk E which
is functorial, multiplicative, and such that the multiplication maps — U th(E,\): A**(X) —
Art2ntn(B F — X) are isomorphisms. In the motivic context we generally also require that
the Thom class of the trivial line bundle over a point be Y714 € A21(T) = A21(A Al —
0). Hermitian K-theory and Balmer’s derived Witt groups are examples of special linearly
oriented theories which are not oriented.

The universality properties we show for MSL are as follows. A morphism of commuta-
tive monoids ¢: (MSL, u5%, e5%) — (A, p,e) in SH(S) determines naturally a special linear
orientation on A** with Thom classes written th?(E,\). The compatibility of ¢ with the
monoid structure ensures the multiplicativity of the Thom classes (Theorem 5.5).

Conversely, a special linear orientation on A** with Thom classes th(E,\) determines a
morphism ¢: MSL — A in SH(S) with th¥(E,\) = th(E, \) for all (E,\). This ¢ is unique
modulo a certain subgroup @1 AQ”_L”(MSL%”)) C Homgp(g)(MSL, A). The obstruction
@ o u’t — g o (¢ A ) to having a morphism of monoids lies in a similarly defined subgroup
of Homgp(s)(MSL A MSL, A) (Theorem 5.9).

It would be interesting to know if these obstruction subgroups vanish for Witt groups and
hermitian K-theory. The necessary calculations are likely very close to Balmer and Calmes’s
computation of Witt groups of Grassmannians [1].

Our MSp is defined similarly with an action of Spy, on the spaces BSpy, and MSp,,,.
The actions of the subgroups >,, C Spo, make MSp a commutative monoid in the category
of symmetric T"2-spectra. For MSp we can do much more than for MSL because we have
the quaternionic projective bundle theorem [13, Theorem 8.2] for symplectically oriented co-
homology theories. Therefore for any symplectically oriented cohomology theory A** we have
Pontryagin classes for symplectic bundles, and we can compute the cohomology of quater-
nionic Grassmannians [13, §11] and of the spaces BSps, and MSp,,. (§58-9). Our main result
is the following theorem.

Theorem 1.1. Let (A, p,e) be a commutative monoid in SH(S). Then the following sets are
i canonical bijection:

(a) symplectic Thom structures on the bigraded e-commutative ring cohomology theory
(A**,0, x,14) such that for the trivial rank 2 bundle A®> — pt we have th(A% ws) = X214
mn A4’2(T/\2),

(b) Pontryagin structures on (A**,0, x,14) for which p1(Ugp1, ¢pp1) € AY2(HPY hy) C
AY2(HPY) corresponds to —%214 in AY2(T™?) under the canonical motivic homotopy equiv-
alence (HP!, hy) ~ T2,

(¢) Pontryagin classes theories on (A**,0,x,14) with the same normalization condition
on p1(Ugpr, ¢rp1) as in (b),

(d) symplectic Thom classes theories on (A**,0,%,14) such that for the trivial rank 2
bundle A% — pt we have th(A? wy) = $214 in AY2(T"?),

(@) classes ¥ € AY2(MSp,) with 9|pre = $214 in AY2(T"?),

(B) classes 0 € AY2(HP™, hoo) with olgp1 € AY*(HP', he) corresponding to —¥2.14 €
AY2(TN?) under the canonical motivic homotopy equivalence (HP', hoo) = T2,

(8) sequences of classes 9 = (91, 09,93,...) with ¥, € AY2"(MSp,,) for each r satisfying
pr s = 0p X Og for all v, s, and V1|pre = E%lA,

() morphisms ¢: (MSp, u°P,e%P) — (A, u,e) of commutative monoids in SH(S).
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The bijections are explicit and are given in a series of theorems in the last part of the paper.
The presence of (&) among them is the universality of MSp as a symplectically oriented theory.
The equivalence of (a), (b), (c) and (d) was already shown in [13] in a different axiomatic
context. The ability of the motivic language used here to handle tautological classes such
as the (a), (B) and (9) is very useful by itself. But our main new observation is that in the
motivic unstable homotopy category He(S) we have a commutative diagram (Theorem 7.7).

BSpQr

structury W‘

MSpQr < BSer/BSPZT—Z-

AN _bundles and excision

What is surprising about this diagram is that it is the homotopy colimit of diagrams (7.5)
of finite-dimensional schemes and their quotient spaces which have a fourth side which is an
inclusion of quaternionic Grassmannians of different dimensions which is in no way a motivic
equivalence. But in the infinite-dimensional colimit the fourth side becomes A'-homotopic
to the identity map of BSps,., and the picture simplifies significantly.

The fact that this diagram is three-sided instead of four-sided helps us to see more concep-
tual proofs of two of the trickier points of [13]. One is the construction of the higher-rank sym-
plectic Thom classes and the proof of their multiplicativity. The commutativity of the diagram
and the computations of the cohomology of quaternionic Grassmannians imply that given a
symplectic Thom structure on A**, the pullback along the structure map gives an injection
A**(MSps,) — A**(BSps,), and the isomorphism A**(pt)[[p1,...,p,|]"™ = A**(BSps,)
defined by the symplectic Thom structure identifies the image of A**(MSp,, ) with the prin-
cipal two-sided ideal generated by p,.. This makes it easy to define the higher-rank tautolog-
ical symplectic Thom classes (the ¢, of (¢)) with the classes of A**(MSp,, ) identified with
(—1)"p, € A (pt)[[p1, ..., pr]]"™. Their multiplicativity is also easily established.

The other tricky point of [13] for which the diagram helps is the reconstitution of the
symplectic Thom structure from the Pontryagin structure. The tautological rank 2 Thom
class is a ¥ € A*2(MSp,), and it is tempting to identify it (up to sign) with the tautological
rank 2 Pontryagin class o € A*?(BSpy/BSpg) = A%?(H P>, hy) using the horizontal motivic
homotopy equivalence. But the Pontryagin is actually (up to sign) the pullback of ¥ along
the structure map of the Thom space. For the three-sided diagram this is no problem: in
H,(S) the structure map H P> — MSp, is the composition of the horizontal isomorphism
(HP*>, hs) = MSp, with the pointing map.

It is not difficult to define spectra MO and MSO which resemble formally MGL and our
MSL and MSp. However, our proof of even our most basic result about MSL (Theorem
5.5) uses the fact that special linear bundles are locally trivial in the Zariski topology. So we
omit MO and MSO.

2. PRELIMINARIES

Let S be a noetherian scheme of finite Krull dimension, and let 8m/S be the category of
smooth quasi-projective schemes over S. We will assume that S admits an ample family of
line bundles so that for any X in 8m/S there exists an affine bundle Y — X with Y an affine
scheme. This condition is used a number of times in this paper, and it was also used in the
proof of the symplectic splitting principle in [13, Theorem 10.2].
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The category 8mOp/S has objects (X,U) where X is in 8m/S and U C X is an open
subscheme. A morphism f: (X,U) — (X',U’) in 8mOp/S is a morphism f: X — X’ of
S-schemes with f(U) C U'. We often write X in place of (X, @).

A bigraded ring cohomology theory (A**,0,x,1) on 8mOp/S is a contravariant functor
A** from 8mOp/S to the category of bigraded abelian groups which satisfies étale excision
and A'-homotopy invariance and which has localization long exact sequences

o AYH(X,U) = AYH(X) = AYU) D AT (XL U)

The x product is assumed to be functorial, bilinear, associative, and compatible with the
bigrading with a two-sided unit 1.

In this paper we work mainly with the motivic unstable and stable homotopy categories
H,(S) and SH(S). The former is the homotopy category of a model category M,(S) of
pointed motivic spaces over S with motivic weak equivalences. There are several versions of
this model category with different underlying categories and with different choices of fibrations
and cofibrations. See [2, 4, 5, 8, 11, 15, 16] among other papers. It is not essential which of
these model category structures is used. However, we give geometric constructions symmetric
T- and T’ 2-spectra using the the Morel-Voevodsky object T = Al/(A! — 0) itself. So the
best adapted model structures is perhaps the flasque motivic model category of [4] which is
known to be cellular (so we can apply Hovey’s results [3] in the proof of Theorem 3.2) but
for which T is cofibrant.

The category M, (S) is equipped with a symmetric monoidal structure (Me(S), A, SY). The
smash-product is taken sectionwise, and S is the constant simplicial zero-sphere. This smash-
product induces a smash-product on He(S) such that the natural functor Me(S) — He(S)
becomes a strict symmetric monoidal functor (Me(S), A, S?) — (He(S), A, SO).

We set T = A'/(A' —0). A T-spectrum E is a sequence (Ep, E1,...) of pointed mo-
tivic spaces equipped with a sequence of structure maps o,: E, AT — E,;1 of pointed
motivic spaces. A morphism of T-spectra E — E’ is a sequence of maps f,: E, — E, of
pointed motivic spaces which commute with the structure maps. The category of T-spectra
Sp(Me(S),T) can be equipped with a motivic stable model structure as in [5, 15, 16]. Its
homotopy category is SH(S). This category can be equipped with a structure of a symmetric
monoidal category (SH(S), A, 1), satisfying the conclusions of [15, Theorem 5.6]. The unit 1
of that monoidal structure is the T-sphere spectrum S = (SO, T, T AT, ...).

Every T-spectrum E = (Ey, F1,...) represents a cohomology theory on the category of
pointed motivic spaces M, (S). Namely, let S” and Sj* be as in [15, (16)]. Let SP? = SYIAS.
We write

EPA(A) = Homgp(s) (57 A, E A SP?)
as in [15, §6]. There is a canonical element in E**"(E,,), denoted as
YPE,(-n) X E.

It is represented by the canonical map (x,...,*, E,, By, AT,...) = (Eo,E1,...,Ep,...) of
T-spectra.

A T-ring spectrum is a monoid (F,u,e) in (SH(S),A,1). The cohomology theory E**
defined by a T-ring spectrum is a ring cohomology theory on M,(S). To see recall the
standard isomorphism S% A Skt = §it+kJ+l given by the composition

(STINSI)Y A (SEEASY 2 (ST A SEHY A (ST A SY) 22 gidth=l A git
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For X,Y € M,(k) let a: ¥°(X) — S AE and B: ¥°(Y) — SMAE be elements of E%(X)
and E®!(Y) respectively. Following Voevodsky [15] define a x 3 € EF*Ji+ (X AY) as the
composition

SR(XAY) 2 ER(X)ARP(Y) L BASHAEANSH 2 BAEASTHRIT S p A gtk

This gives a functorial product which is associative, has a two-sided unit, and takes cofibration
sequences to long exact sequences.

A commutative T-ring spectrum is a commutative monoid (E, u,e) in (SH(S),A,1). To
describe the properties of the associated cohomology theory we make some definitions.

Definition 2.1. Let inp: T — T be a morphism of pointed motivic spaces induced by the
morphism A' — A! sending ¢ — —t. One has the equality

Homgp(s)(pty,pt+) = Homgps)(T,T).
We write in for iny regarded as an element of Homgp(s)(pty,pty). For a commutative
monoid (A, m,e) set € = in*(e) € A% (pty).
Remark 2.2. The morphism A? — A2 which sends (t1,t2) — (—t1, —t2) is Al-homotopic
to the identity morphism because (Bl _01) € SLs9(Z) is a product of elementary matrices.
Whence we have € x ¢ = e € A%0(pt,).

Definition 2.3. A ring cohomology theory on M, (S5) is e-commulative if for a € E% (X)),
B € EFY(Y) one has oxylaxp) = (-1)*el(Bx a) € EFRIH(XAY) where oxy: X AY —
Y A X switches the factors.

Thus e-commutativity is a specific form of bigraded commutativity.

Theorem 2.4 (Morel). Let (E,p,e) be a commutative monoid in SH(S). Then the data
(E**,0,%,e) is an associative and e-commutalive ring cohomology theory on Me(k); e €
E%0(89) is the two-sided unit of the ring structure.

Note, that if (i,7) = (2m,2n) or (k,1) = (2m, 2n), then oy p(a x B) = B x a.

3. COMMUTATIVE T- AND T/2-MONOIDS

We compare the categories of symmetric T-spectra and symmetric 7/\?-spectra. Recall the
definition for K = T or K = T2

Definition 3.1. A symmetric K-spectrum E is a sequence of pointed spaces (Ey, E1, Ea, ... )
with each F, equipped with an action of the symmetric group ¥, x E, — E, and with a
morphism o,,: B, AK — E, 11 such that the induced maps E, AK""™ — E,, 1, are (3, X 3, )-
equivariant for all n and m.

The categories of symmetric T- and T"?-spectra both have a symmetric monoidal product
A. They are symmetric monoidal model categories for the stable model structure [3, 5].

Theorem 3.2. The homotopy categories of Sp™(M,(S),T) and of Sp™(M,(S),T"?) are
equivalent symmetric monoidal categories.

Proof. The proof of this theorem is essentially the same as that given for topological S'- and
S2-spectra in [11, Theorem A.44]. The inclusion Sp* (M, (S),T) — Sp™(Sp™(M.(S),T), T"?)
is a Quillen equivalence by [3, Theorem 9.1] because — A 7”2 is a Quillen self-equivalence of
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Sp*(M,(S),T). Similarly the inclusion Sp*(M,(S),T"?) — Sp*(Sp*(M,(S),T"?),T) is
a Quillen equivalence. The two categories of symmetric bispectra are isomorphic with the
identical stable model structure by arguments like those used in the proof of [3, Theorem
10.1]. Hovey’s work requires that the model structure have certain properties, but in the
flasque model structure [4] these properties hold, and T" and 7"\ are cofibrant.

The symmetric monoidal structures are the same because (i) the inclusions of the categories
of symmetric spectra in the categories of symmetric bispectra are symmetric monoidal functors
like any inclusion X%: € — Sp*(€, K), and (ii) the symmetric monoidal structures on the
two isomorphic categories of symmetric bispectra are the same. O

For natural numbers m,n we denote by ¢y, € Xpyqp the (m,n)-shuffle permutation. It
acts by ¢ppn(i) =i+nfor 1 <i<mand ¢pn(i) =i—mform+1<i<m-+n.

Definition 3.3. A commutative K-monoid E in Me(S) is a sequence of pointed motivic
spaces (Eg, E1, Eo,...) with each space equipped with an action ¥, x E, — FE, of the
symmetric group, plus morphisms

€ep: 1M.(S) — EQ,
e1: K — F; (31)
Momn, - Em VAN En — Em+n

in M,(.S) such that each i, is (3, X X, )-equivariant and such that the compositions

En = By Ay sy —% E, A By 2% E,

o (3.2)
En S 1) A En 2% Eg AE, 2 B,
are the identity maps, and the diagrams
HZmAl Hmn
Eg/\Em/\En e Eg+m/\En Em/\En e Em+n
1AanJ/ J/MZ-&-m,n SWitChJ/ NJ/Cm,n (33)
He,mA4n Hnm
E@ AN Em+n EEEEE— E€+m+n En VAN Em e En+m

commute in M, (S) with ¢, ,, the isomorphism given by the action of the (m,n)-shuffle per-
mutation.

Theorem 3.4. Let E be a commutative K-monoid. Define maps o, as the compositions

On: BEn NK 2% B AN By 25 By (3.4)
Then the spaces (Eg, E1, Ea,...) equipped with the actions ¥, X E, — E, and the bonding
maps op, form a symmetric K-spectrum E. Moreover, the morphisms u: EANE — E induced
by the pimn and e: X1z, (5) — E composed of the maps ey, : K" — B, induced by eg, e
and the fiyn, make (E, p,€) a commutative monoid in Sp™(M,(S), K).

Sketch of proof. To show that E is a symmetric K-spectrum one has to verify that the induced
maps E, A KN — E,j are (3, x Xj)-equivariant. To show that the maps fi,,, define a
morphism E'A E — E one has to verify that they are K-linear and K-bilinear in the sense of
[5, (4.6)—(4.7)]. One has to verify that each e, is ¥,-equivariant. Finally, one has to verify
the commutative monoid axioms. All the verifications are formal, straightforward and left to
the reader. O
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4. THE SYMMETRIC T"2-sPECTRUM MSL

We construct a commutative T-monoid MSL. Each space MSL,, comes equipped with an
action of GL,, such that the multiplication maps i, of the monoid structure are (GL,, X
GL,)-equivariant. We then get actions of the ¥, from the embeddings ¥,, — GL,, given by
permutation matrices. The need for an action of GL,, with fixed points — necessary for the
proper definition of the unit maps — rather than merely of SL,, is the delicate part of the
construction.

We begin by reviewing the construction of MGL originally done in [15, §6.3] and of its
monoid structure given in [10, 14].

For each integer n > 0 let I, = OGSB” be the trivial rank-n vector bundle. For each integer
p > 11let Gr(n,np) = Gr(n,Ty"). Let TGLy, np — Gr(n,np) be the tautological subbundle.
The inclusions (1,0): If? — I'¥? @ T, = I'y?™ induce closed embeddings Gr(n,np) —
Gr(n,np + n) and monomorphisms ThTGL,, ,, = ThTGL,, pp4rn of Thom spaces. We set

BGL,, = colimyen Gr(n,np),
TG Ly, noo = colimpen TG Ly, pp,
MGL,, = colimpey Th TG Ly np.

The diagonal action of GL, = GL(',) on each Gr(n,np) = Gr(n,T'y?) is compatible with
the inclusions over increasing p. Moreover, the TGL,, ,,, are G L,-equivariant vector bundles.
This induces actions

¥n X MGL,, € GL,, x MGL,, - MGL,, .
Concatenation of bases induces isomorphisms I, @ T, = 'y, which induce (GL,, x GLy)-
equivariant maps
@: Gr(m,mp) x Gr(n,np) — Gr(m + n,mp + np)
and therefore (GL,, x GL,)-equivariant maps
@: BGLy, x BGLy — BGLyin,
pSl. MGL,, AMGL,, = MGL,,, .
Finally each Gr(n,np) is pointed by the point corresponding to the trivial rank-n subbundle

Fn (170370) ng.
In the colimit this gives a S-valued point z,, of BGL,,, which is fixed by the action of GL,,.
The Thom space of the fiber of T(n,noco) over z,, is I';, = A", and the inclusion z,, — BGL,
induces a map of Thom spaces

Gl TN 5 MGL, .

Definition 4.1. The algebraic cobordism spectrum MGL is the commutative monoid in the
category of symmetric T-spectra associated to the commutative T-monoid composed of the
spaces MGL,,, the actions ¥, x MGL,, — MGL,,, the maps eg;L: pty — MGLg and
¢l T — MGL; and the maps pGL: MGL,, AMGL, — MGLy,,.

We now move on to defining MSL. We begin with the spaces. For n = 0 we have
SLy = GLy = {1}. So we set BSLy = pt. The Thom space of a zero vector bundle over a
scheme X is the externally pointed space X,. So we set MSLg = pt.,.
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Now suppose n > 0. Over each Gr(n,np) there is the line bundle Ogy(ynp)(—1) =
det TG L, »p. Removing the zero section gives a smooth scheme

SGr(n,np) = Ocr(nmnp)(—1) — Gr(n,np).
The projection
T = Tynp: SGr(n,np) — Gr(n,np)
is a principal G,,-bundle. Write
TSLpnp = 7 TG Ly np.

The inclusion SG7(n,np) = Ogr(nnp)(—1) and the cartesian diagram

7T*OGr(n,np) (_1) EE— OGr(n,np) (_1)

oo

SGr(n,np) ———— Gr(n,np)

gives a nowhere vanishing section of ™ Ogy(nnp)(—1) = det TSLyyp. The corresponding
isomorphism Ap np: OsGr(nnp) = det TS Ly, np makes (TSLynp, Annp) the tautological special
linear bundle over SGr(n,np).

We set

BSL,, = colimpen SGr(n,np),
TS Ly, noo = colimpen TS Ly, pp,
MSL,, = colimpen Th TS Ly, pp-
We next define the multiplication maps. Morphisms of S-schemes X — SGr(n,np) are in

bijection with pairs (f,A) with f: X — Gr(n,np) a morphism and A: Ox = det f*TGLy, np
an isomorphism. There are unique maps

(®,®): SGr(m,mp) x SGr(n,np) — SGr(m + n, mp + np)
corresponding to the morphisms of representable functors

Hom(X,SGr(m,mp)) x Hom(X,SGr(n,np)) — Hom(X,SGr(m + n,mp + np))
((fv)‘)v(gv)‘l)) — (f@g,)\®)\1)

They induce maps
(®,®): BSLy, x BSL, = BSLy1n
pSL MSL,, A MSL,, = MSLy, .

We now discuss the group actions. Since TGLy, p, is a GLp-equivariant bundle over
Gr(n,np), there is an induced action of GL,, on the complement of the zero section of the
determinant line bundle. This is an action GL,, x SGr(n,np) — SGr(n,np). In the colimit
this gives an action GL, x BSL, — BSL,. But there is a problem.

The unit maps eSL : TN — MGL,, were defined using points x,,: pt — BGL,, which were
fixed under the action of GL,,. To define unit maps for a T-monoid MSL we need fixed points
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for the action of at least X, on BSL,, preferably lying over x,. We have a cartesian diagram

G,, —— BSL,

Lo ]

The action of GL,, = GL(I',) on the fiber I',, of TGL,, poo over the fixed point z, is the
standard representation of GL,. So the induced action on the fiber G,, over z,, is g -t =
det(g)t. Thus there are fixed points for the action of the alternating group 2, C SL, on
BSL,, lying over the fixed point x,, € BGL,(pt) used to define the unit maps on MGL,, but
not for the action of ¥,, C GL,, (except in characteristic 2).

So we use the embedding ¥,, C Sps, C SLo, which sends o € X, to the permutation
matrix associated to & € Yo, where we have 6(2i — 1) = 20(i) — 1 and 7(2i) = 20(i). This
gives us an action Y, x BSLo, — BS Lo, which fixes pointwise the fiber over x,.

Therefore we define the spaces of the commutative 7/?-monoid MSL to be the MSLs,,.
Each is equipped with the action of 3, x MSLsy, — MSL,, induced by the action of SLo,.

We now define the unit maps. Points pt — BSL, lifting the point z,: pt — BGL,
are in bijection with isomorphisms A\: Og = det ;TG Ly, poo = A"I'y,. Let fi,..., fn be the
standard basis of I';, = (‘)?”. We let y,: pt — BSL, be the lifting of z, corresponding to
A= fiN--- A fn. The fiber of TSL,, 5,00 over y, is I', = A", and we let

St 7" — MSL,

be the map of Thom spaces induced by y,,. It is SL,-equivariant. Note that egL tply —
MSLj = pt is the identity.

Having identified the components of the structure MSL, we have to assemble them. It
appears as if MSL is a commutative monoid in the category of alternating T-spectra. We do
not know how to work in that category. But there is underlying structure.

Definition 4.2. The algebraic special linear cobordism spectrum IMSL refers to three related
objects.

(a) The commutative monoid in the category of symmetric T"2-spectra associated to the
commutative T/2-monoid composed of the spaces MSLy,, the actions ¥, x MSLy, —
MSLy,,, the maps egL: pt+ — MSLg and egL: T"? — MSL; and the maps :“grﬁgn: MSLy,,, A
MSLQn — MSL2m+2n.

(b) The T-spectrum with spaces MSL,,, bonding maps MSL,, AT — MSL,, A MSL; —
MSL,,;; induced by elsL and ,ugﬁ, equipped with the morphism of T-spectra e: X7Fpt; —
MSL and the structural maps p>L .

(¢) Their common underlying 7"\?-spectrum.

The properties of the commutative monoid structure that we require are given in the
following theorem.

Theorem 4.3. The (MSL, 1%, e51) is a commutative monoid in SH(S), and the canonical
maps up: LFMSL,,(—n) — MSL and the MTSnI;L make the following diagram commute for all
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m and n

SL
BF tii

$°MSL,,(—m) A £ MSL,,(—n) $9°MSLyy, 4 (—m — 1)

um/\unl lumjLn (41)
SL

MSL A MSL MSL.

Proof. A commutative monoid in Sp*(M,(S),T"?) gives a commutative monoid in SH(S)
by Theorem 3.2. When m and n are even, the diagram in Sp™(M,(S),T"\?) corresponding
to (4.1) commutes by formal arguments. When say m is even and n is odd, the diagram

SF AL

$°MSL,, (—m) A S°MSL,,(—n) A £°T

1/\25’90nl

S9MSLy i (—m — n) A DFT

lz%oo'm-kl
o0 SL

S5O MSLy (—1m) A B°MSLy, 1 (—n) —— " 520 MS L1 (—m — 1)
Um/\un+1J/ lum-&-n-ﬂ
,U‘SL
MSL A MSL(1) MSL(1)

commutes because m and n+1 are even. One may desuspend. The other cases are similar. [J

5. SPECIAL LINEAR ORIENTATIONS

We now investigate the relationship between special linear orientations on a ring coho-
mology theory E, as defined in [12, Definition 3.1] and homomorphisms ¢: MSL — A of
commutative monoids in SH(S).

A special linear vector bundle over X is a pair (E,\) with E — X a vector bundle and
A: Ox = det F an isomorphism of line bundles. An isomorphism ¢: (E,\) = (E', \') of special
linear vector bundles is an isomorphism ¢: E = E’ of vector bundles such that (det ¢p)oX = X,

Definition 5.1. A special linear orientation on a bigraded e-commutative ring cohomology
theory A** on 8mOp/S is a rule which assigns to every special linear vector bundle (E, \)
of rank n over an X in 8m/S a class th(E,\) € A>""(E, E — X) satisfying the following
conditions:
(1) For an isomorphism f: (E,\) = (E1, A1) we have th(E,\) = f*th(Eq, \1).
(2) For u: Y — X we have u* th(E,\) = th(u*(E,\)) in A*»"(u*E,u*E —Y).
(3) The maps — U th(E,\): A**(X) — A*P2n*+(E F — X) are isomorphisms.
(4) We have
th(Ey & Ea, A\t ® A2) = g th(E1, A1) U g5 th(Ea, A2),
where q1, ¢ are the projections from E; @ Es onto its summands. Moreover, for the
zero bundle 0 — pt we have th(0) = 14 € A%0(pt).
The class th(E, ) is the Thom class of the special linear bundle, and e(E, \) = z* th(E, \) €
AP (X)) is its Euler class.

This definition is analogous to the Thom classes theory version of the definition of an
orientation [9, Definition 3.32].
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For any n the functor — A T"": SH(S) — SH(S) is a self-equivalence. So it induces
isomorphisms

—~ AT Homgpsy(X, AN SPT) = Homg sy (X AT, A A SPEATN

for any X and (p, ¢) and any cohomology theory on 8m/S defined by a commutative monoid
(A, pu,e) in SH(S). We also write these isomorphisms as

S0 AP(X) Sy APFR (X 5 AT X % (A™ - 0))

This isomorphism coincides with — x 3%14. Thus A** automatically has Thom classes for
trivial bundles: the pullbacks of ¥7.14.

Definition 5.2. A special linear orientation on a bigraded ring cohomology theory A** on
8mOp/S which is representable by a commutative monoid in SH(S) is normalized if

(5) for the trivial line bundle A! — pt we have th(Al 1) = Y14 € A2 (AL Al —0).

From the multiplicativity and functoriality conditions (4) and (2) in the definition of a
special linear orientation one deduces the following result.

Lemma 5.3. Suppose A** is a bigraded ring cohomology theory on 8mOp/S representable by
a commutative monoid in SH(S) with a normalized special linear orientation. For X € 8m/S
let (0%, \n) be the trivial special linear bundle of rank n over X. Then th(O%",\,) is the
pullback to X of X714, and

— Uth(OT", Ap): A% (X) S A2 (X 5 A" X x (A" - 0))
s an isomorphism.

Now suppose ¢: MSL — A is a morphism in SH(S). We associate to ¢ and a special
linear bundle (E, \) of rank n over an X in 8m/S a class th?(E,\) defined as follows. By
assumption the scheme X admits an ample family of line bundles. So there exists an affine
bundle f: Y — X with Y an affine scheme. Then for some p there exist global sections
$1,...,8np Of f*EY generating f*EY. The data (f*E,s1,...,S,p) determine a morphism

Y — Gr(n,np), and the data (¢, f*\) determine a morphism ¢: Y — SGr(n,np). We
have Y*TSL,, np = f*E. We deduce maps

ThE < Th f*E = Th{*TSLyuy 2 ThTS Ly (5.1)
~1M0
of pointed motivic spaces, which can be composed with the maps
ThTS Ly np 2250 MSL,, 2% MSL A T 2% A AT, (5.2)

in SH(S). The composition of (5.1) and (5.2) gives a class
th?(E,\) € Homgps)(Th E, ANT") = A*"(E,E — X).

Lemma 5.4. The classes th?(E, \) depend only on the special linear bundle (E,\) and the
morphism ¢: MSL — A in SH(S).

Proof. First suppose f fixed. Let (s1,...,8pp) and (t1,...,t,q) be two families of sections gen-
erating f*EY with p > ¢. There are A'-homotopies between the morphisms Th f*E — MSL,,
in M,(S) defined by the family (s1,...,Spp), the family (s1,...,snp,t1,...,tnq), the family
(t1,..,tng,0,...,0,t1,...,tnq), and the family (¢1,...,t,4). So we get the same morphism
Th f*E — MSL,, in He(S) and the same morphism Th E — AAT"" in SH(S).
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Now suppose given a second affine bundle g: Z — X with Z affine and sections (u1, ..., Un;)
generating ¢*EV. Let ¢': Y xx Z — Y and f': Y xx Z — Z be the projections. The mor-
phisms Th E — MSL,, in H,(S) defined by f and (s1,...,Snp), by ¢'f and (¢"*s1,..., 9" snp),
by f'g and (f™uq,..., f*u,.) and by g and (u, ..., u,,) are then the same. So we again get
the same morphism Th E — A AT in SH(S). O

Theorem 5.5. For a homomorphism ¢: MSL — A of commutative monoids in SH(S), the
classes th?(E, \) define a normalized special linear orientation on the bigraded ring cohomol-
ogy theory A** on 8mOp(S).

In particular the identity homomorphism induces a normalized special linear orientation
on MSL**.

Proof. The functoriality conditions (1) and (2) follow easily from the construction of the
classes th?(E,A). The multiplicativity condition (4) holds because of Theorem 4.3 and be-
cause ¢ is a homomorphism of monoids. The normalization condition (5) holds because
th?(A',1) and X714 are both equal to the composition

SL

T MSL; 5 MSLAT 224 AAT.

The isomorphism condition (3) holds for trivial special linear bundles because of the nor-
malization condition and Lemma 5.3. It then holds for general special linear bundles by
a Mayer-Vietoris argument because special linear bundles are locally trivial in the Zariski
topology. O

Now suppose that M and A are (symmetric) T-spectra. Then we have an inverse system
of abelian groups

ey A2y S A2 (ML) < e AYO (M) (5.3)

where the map a,, associates to the map v: M, .1 — AA T in SH(S) the composition

My, 7% QpMyr % Qp(AA TN 22 A A T
in SH(S). There is a similar inverse system
o AMTARITZNL A M) — AT (M, A M) = - — AYO(Mo A Mp).  (5.4)
For the following theorem see for example [11, Corollaries 3.4 and 3.5].

Theorem 5.6. For any (symmetric) T- or T"\?-spectra M and A we have exact sequences of
abelian groups

0 — lim" A*" 1" (My,) — Homgp(s)(M, A) — lim A*"(M,) — 0,
0 — Lim" A2 (M, A My) — Homgpsy(M A M, A) — lim A2 (M, A My) = 0.
This theorem is actually a special case of the following result [11, Lemma 3.3].

Theorem 5.7. Let E = hocolim;ey B be a sequential homotopy colimit of T-spectra. Then
for any T-spectrum A and any (p,q) we have an exact sequence of abelian groups

0 — lim" AP~ M(EW) — AP4(E) = lim AP9(EY) — 0.
1€EN 1€N
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We wish to apply Theorem 5.6 when A is a commutative monoid in SH(S) with a normal-
ized special linear orientation on A™* and when M is a commutative monoid isomorphic to
MSL in SH(S). (Note that the exact sequences depend on the levelwise weak equivalence
class of M, which is a finer invariant than its isomorphism class in SH(S).) However, the spe-
cial linear orientation provides Thom classes for special linear bundles over finite-dimensional
smooth schemes and not over the infinite-dimensional ind-schemes BSL,,. So the orientation
does not provide us with classes in the A?»"(MSL,). But we can solve this problem as
follows.

For each n and p write

MSLP = Th TS Ly pp-

For n = 0 this is M SLép ) — pt4. The actions of 3, on MSL,, and the structural maps eﬁL
and pSL constructed in the previous section are colimits of actions and structural maps
Sp X MSLP — MSL®P),
elP): TN — MSLP),
w?) s MSL®) A MSL®) — MSLP

n m+n-*

We thus get a direct system of commutative T-monoids
MSLY — MSL® — ... MSL®P — ...

whose colimit is MSL. We can now define a “diagonal” commutative T-monoid MSL/ with
spaces
MSL/" = MsLiM

with the actions %, x M SL%”> - M SL%”> and unit maps eﬁfw given above and with multipli-
cation maps the compositions

i sion {motn)
pfin s MSLI A MSL 2SO0 g min) A prgpimen fmm __y prgpimin)

A cofinality argument now gives the nontrivial part of the following result.

Theorem 5.8. The inclusion MSL™ < MSL defines a homomorphism of commutative
monoids in the category of symmetric T-spectra which is a motivic stable weak equivalence.

Thus the inclusion becomes an isomorphism of commutative monoids in SH(S). So The-
orem 5.6 gives us an exact sequence

0 — lim" A** P (MSL{Y) = Homgpy(s)(MSL, A) = lim A (MSLZY) =0 (5.5)
and a similar exact sequence for Homgp(s)(MSL A MSL, A).

Theorem 5.9. Suppose (A, pa,ea) is a commutative monoid in SH(S) with a normalized
special linear orientation on A™* given by Thom classes th(E,\). Then there exists a mor-
phism ¢: MSL — A in SH(S) such that th?(E,\) = th(E,\) for all special linear bundles
over all X in 8m/S. This ¢ is unique modulo the subgroup

lim" A** M (MSLEY) C Homgpy(s)(MSL, A),

It satisfies p(emsr,) = ea. The obstruction popunst, —pac (@A) to ¢ being a homomorphism
of monoids lies in the subgroup

lim" A" P2 (MSL{Y A MSL{) C Homgyy(s)(MSL A MSL, A).
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Proof. For every n and p the tautological special linear bundle (TSLy, np, Apnp) over the
scheme SGr(n,np) has a Thom class, which we will abbreviate to thy, ,, € A*“"(M SLP >).
Pullback along the inclusion M SLﬁLp - — M SLﬁLp ) sends

thn,np — thn,n(p—l) . (56)

Pullback along the bonding map MSLP AT = MSL;%D> induced by e§p> and ,uflpll?l sends

n—1
thp = thy—1 (n-1)p X th(AY, 1) = S th, 1 (-1 - (5.7)
So as n and p vary, we get an element

= (thnnp)np € lim A" (MSLP)) = lim A" (MSL{Y).
n’p

n

Let o € Homgp(s)(MSL, A) be an element mapping onto ¢ under the surjection in the exact
sequence (5.5).
The image of ¢ under the composition

Homgp (s)(MSL, A) — lim A*"(MSL{Y) — A*"(MSLS)

is the composition

~

ThTSL, 2 = MSLE 2% MSL™ A T = MSL AT 225 A p T

which is the th?(TSL,, ,2, A, ,2) defined by (5.1)-(5.2). Thus we have th?(E,\) = th(E, \)
for (E,\) = (TSLy, p2, Ay p2). The Thom classes for the (TSL,, .2, A,, ,2) determine the Thom
classes for all (TSLy, np, Annp) by formulas (5.6)-(5.7). These in turn determine the Thom
classes for all (E,\) by formulas (5.1)—(5.2). So we have th¥(E,\) = th(E, \) for all special
linear bundles.

Similarly for 1/: MSL — A we have th¥(E,\) = th?(E,\) for all special linear bundles if

and only if ¢ and ¢ have the same image in @Azn’"(M SLS{”). This happens if and only if

¥ — ¢ is in the kernel, which is the first lim! of the statement of the theorem.

By construction enmsy, is the canonical map YX7Fpt, = YFPMSLg — MSL. Therefore we
have p(emsL) = thoo = th(0) = eq € A*0(pt) as declared.

By multiplicativity and functoriality we have an equality

thpy 2 X thy, p2 = th(piTSLy, 2 ® P5TSLy, p2, Pi Az @ P3N, p2) = (i thyy, 4n2
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of members of A7 (M SLM A M SLflm). This equality means that the outer perimeter of
the diagram

i

220 MSLIY (—n) A S MSLEY (—n) " £ MSLEY (~2n)

Un AUnp, U2n
h “{\i/?SL -
MSL/™ A MSL/™ > MSL/™
th,, ,2 Ath, o inclusion inclusion thy, 4n2
MSL A MSL s MSL
PP ®
ANA = A

commutes. The half-circles commute by the previous calculations, and the top two squares
commute. Therefore we have

(¢ o pmsL — pa o (¢ A ) oinclusion o (u, Au,) =0
for all n. So the image of the obstruction class ¢ o umsr — 114 © (¢ A @) under the surjection

Homgp(s)(MSL A MSL, A) — lim A*™*"(MSL{" A MSL{") — 0

vanishes. Therefore the obstruction class lies in the kernel, which is the second yLnl of the
statement of the theorem. O

6. THE SYMMETRIC T"2-SPECTRUM MSp

We now define the commutative 7"%-monoid and symmetric 7"2-spectrum MSp.
We write the standard symplectic form on the trivial vector bundle of rank 2n as

0 1

-1 0 0

Wan =

From the symplectic isometry (OGSBQ”, waop,) = (O%Q, wy)®™ we see that the action of 3, given by
permutations of the n orthogonal direct summands (0@2, wo) gives an embedding ¥,, — Spay,.
Hence Spo,-actions restrict to X,,-actions.

In [13] we defined the quaternionic Grassmannian HGr(r,n) as the open subscheme of the
Grassmannian Gr(2r,2n) parametrizing rank 2r subspaces of O%Q” on which the restriction
of wa,, is nondegenerate. The restriction of the tautological subbundle over the Grassmannian
is the tautological symplectic subbundle TSp, ,. It is equipped with the symplectic form
br.n = Wanl7Sp,.,- For r =1 we write HP" = HGr(1,n + 1) and HP* = colim,, HP".

To construct MSp we look at the particular schemes HGr(n,np) = HGr(n, (O%Qn, wan ) FP).
Each has a natural action of Spo, induced by the diagonal action of Spy, on the p summands of
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(O?Qn, wan ). The vector bundles TSpy, ,,, — HGr(n,np) and the inclusions HGr(n,np) —
HGr(n,np +n) are Spa,-equivariant. We set

BSpay, = colimyeny HGr(n, np),
TSpn,noo = COhmpEN r-Tspn,npa
MSp,,, = colim,eny Th TSpy, pp-

As with MGL and MSL the isomorphisms
(O™, wom) ® (OF™, wan) 2= (0T " wom2n)
and the direct sum induce (Spa,, X Spay,)-equivariant maps
@: BSpom X BSpay, — BSpam+on,

. (6.1)
/.,Lmn: MSme A MSp2n — MSp2m+2n.

Each HGr(n,np) is pointed by the point corresponding to the symplectic subbundle which
is the first direct summand (05", way,) ® 0¥P~1 € (05", wo,)®P. In the colimit this yields
points zo,: pt — BSpa,. The point zy, is fixed by the Spop,-action. The action of Spa, on
the fiber of TSpy, neo OVer za, is the standard representation of Spo,. The inclusion of the
fiber induces an inclusion of Thom spaces

esP: T"?" — MSpy, (6.2)

which is Spo,-equivariant. The action of the subgroup ¥, C Spg, on T"\?" = (T/2)\n
permutes the n factors T/2.

The spaces MSp,,, with the actions and structural maps verify the axioms of a commutative
T"%-monoid.

Definition 6.1. The algebraic symplectic cobordism spectrum MSp is the commutative
monoid in the category of symmetric T"\?-spectra associated to the commutative 7/>-monoid
composed of the spaces MSp,,,, the actions 3,, x MSp,,, — MSp,,, the maps egp Cpty —

MSp, and egp: T2 s MSp, and the maps (5% : MSp,,, A MSp,,, — MSpPo,ion-
This MSp defines a commutative monoid in SH(S) by Theorem 3.2.

7. QUATERNIONIC GRASSMANNIAN BUNDLES

We review the geometry of quaternionic projective bundles and Grassmannian bundles
studied in [13, §§3-5]. We then translate some of the results into a more motivic language.

Given (E, ¢) a symplectic bundle of rank 2n over a scheme X and an integer 0 < r < n,
there is a quaternionic Grassmannian bundle p: HGr(r, E,¢) — X whose fiber over x € X
is the quaternionic Grassmannian parametrizing 2r-dimensional subspaces of E, on which
¢, is nondegenerate. We write U, p C p*E for the tautological rank 2r subbundle over
HGr(r,E,¢). Morphisms f: Y — HGr(r,E,¢) are in bijection with pairs (g,U) where
g: Y — X is a morphism and U C ¢g*(F, ¢) is a symplectic subbundle of rank 2r over Y.

Since U, g is a subbundle on which the symplectic form is fiberwise nondegenerate, it has an
orthogonal complement such that U, g ® U*E = p*E. The symplectic subbundle U%E Cp*E

classifies an isomorphism

HGr(r,E,¢) = HGr(n —r,E, ¢). (7.1)
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Now let (F,1) = (O??Q,WQ) @ (F, ¢). We have a natural embedding
HGr(r,E,¢) — HGr(r, F,1) (7.2)

classified by the symplectic subbundle 0 ® U, g C O?@Q @® E = F. The normal bundle of

this embedding can be naturally identified with the vector bundle N = Hom(U, g, O??Q) over
HGr(r,E,¢). This bundle is a direct sum decomposition N = N* & N~ where

NT :ﬂ{om(unE,Ox@O), N~ :ﬂ{om(unE,O@OX).
The basic result concerning the geometry of the closed embedding (7.2) is the following.

Theorem 7.1 ([13, Theorem 4.1]). (a) The normal bundle of the embedding (7.2) has a
canonical open embedding v: N — Gr(2r,F). The zero section is sent identically onto
HGr(r, E, ).

(b) We have v(NT) = HGr(r,F,%) N Grg(2r,0x & 0@ E). Consequently v(NT) C
HGr(r, F,v) is a closed subscheme, as is v(N~) C HGr(r, F, ).

(¢) There are natural isomorphisms of vector bundles NT = N~ = uxE = U E.

(d) There is a natural section sy of U, p intersecting the zero section transversally in Nt
and similarly for N—.

(e) Let my: N* — HGr(r, E, ¢) be the structural map. Then 7 (U, g, ¢y, ) is isometric
to (Up,r, Yy, ) |In+ and similarly for N~

The second basic result about the geometry of symplectic Grassmannian bundles involves
the following embeddings
HGr(r - 1,B,¢) —Z— HGr(r, F,)) — v(N*) —=—— HGr(r, F,¢), (7.3)

The composition is the closed embedding classified by the symplectic subbundle %2 @
UT,LEC(‘)@Q@E:F.

Theorem 7.2 ([13, Theorems 5.1 and 5.2]). There are morphisms over X
HGr(r, F,¢) —v(NT) & v &Y, 4 HGr(r — 1, E, ¢)
with g1 an A*" ~'-bundle, go an A% ~2-bundle, and q an A1 -bundle. Moreover, there is a

section s of q such that the composition g1ges: HGr(r — 1, E,¢) — HGr(r, F,4) — v(NT) is
the closed embedding o of (7.3).

The section s appears at the end of the proof of [13, Theorem 5.2]. The statement of the
theorem only contains the consequence that ¢ induces isomorphisms of cohomology groups.
These two theorems have the following consequence.

Theorem 7.3. Let (E, ¢) be a symplectic bundle of rank 2n over a smooth S-scheme X, and
let (F,) = (0%, w2) @ (E, ¢). For1 <r < nlet U, g be the tautological symplectic subbundle
over HGr(r, E,¢). Let HGr(r — 1,E,¢) — HGr(r, F,1) be the closed embedding of (7.3).

Then there is a canonical zigzag of motivic weak equivalences
ThlW, g — HGr(r, F,¥)/(HGr(r, F,%) —v(N1)) < HGr(r, F,¢)/HGr(r — 1, E, $)

inducing an isomorphism in the motivic unstable homotopy category He(S). These isomor-
phisms commute with the maps induced by inclusions (E, ¢) — (E, ) ® (E1, ¢1) of symplectic
bundles and with the maps induced by base changes Y — X.



18 IVAN PANIN AND CHARLES WALTER

Proof. In the geometry of Theorem 7.1 we identify N, N* and N~ with their images in
Gr(2r, F) under the open embedding v. Then there are motivic weak equivalences

~

N/(N = N¥) ¢+——=——— (N HGr(r, F,4))/(N N HGr(r, F, ) — N'*)

section of vector bundleTN / Nlexcision

ThU,p=N"/(N~ —HGr(r, E, ¢)) HGr(r,F,¢)/(HGr(r,F,4) — NT)

inclusion

The arrows not explicitly labeled ~ are nevertheless motivic weak equivalences by the 2-out-
of-3 axiom. The morphisms g;, g2 and g of Theorem 7.2 are affine bundles, so they, the
section s, the composition o, and the map

HGr(r,F,9)/HGr(r —1,E,¢) = HGr(r, F,4)/(HGr(r, F,3)) — N*)

of quotient spaces induced by o are all motivic weak equivalences.
The functoriality is straightforward. 0

Because of (7.1) the quotient appearing in Theorem 7.3 is also isomorphic to
HGr(n—r+1,F,¢¥)/HGr(n —r+1,E, ¢).

The case r = n of Theorem 7.3 therefore gives the following result. The corresponding result
for ordinary Grassmannian bundles is [8, Proposition 3.2.17(3)].

Theorem 7.4. Suppose that (E, ¢) is a symplectic bundle of rank 2n over a smooth S-scheme
X. Let HP(E,$) — HP(OY* @ E,ws @ ¢) be the natural closed embedding. Then we have
isomorphisms in He(S)

Th E = HGr(n, (O?@z,wz) @ (F,9))/HGr(n — 1,E,¢) = HP((O??Q’WQ) @ (F,¢))/HP(E, ).
For X = pt and trivial £ Theorem 7.3 gives the following result.
Theorem 7.5. There are canonical isomorphisms
ThUgarrn = HGr(r,1+n)/HGr(r —1,n)

in He(S). These isomorphisms are compatible with the inclusions of quaternionic projective
spaces. Therefore we have commutative diagrams of inclusions and isomorphisms in He(S)

Sp
T2 = MSp,,
51 lg (7.4)
HP"/HP™! BSpa,/BSpar—2

inclusion

The motivic weak equivalences of Theorem 7.5 fit into a commutative diagram

HGr(r,n) inclusion HGr(r,1+n)

section mapl lquotient (7.5)
ThUncr(rn) SO Y, SN HGr(r, 1 +n)/HGr(r — 1,n)
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The section map is the structure map of the Thom space induced by a section of the vector
bundle. We have a colimit as n — oc:

shift

BSpy, = HGr(r,00) > BSpo, = HGr(r,1 + 00)
section mapl lquotient (76)

MSp2r ~mot Yr,oo ~mot BSPQT/BSpZ"fZ

Doo

The shift map is the map induced by the shift endomorphism of (O%2 ws) acting on

sequences of sections of O by

(81) 52,583,584, ... ) — (O)Oa 51,52,53,54, ... )

Lemma 7.6. There is an A'-homotopy of symplectic endomorphisms of (092, w9)®> linking
the shift endomorphism of (0%2,wy)®> to the identity.

Proof. Any matrix in any Sps,(Z) is a product of elementary symplectic matrices. So there
exists an M (t) € Spa(Z[t]) with

10 0 0 0010

010 0 00 0 1
M(O)_0010’ M(l)_1000’

00 01 010 0

for example

1—¢2 0 —2t 4+ 133 — 14¢° + 47 82 — 12t* + 448

M(t) = 0 1-¢ —2¢2 + 2t —t+42t3
- t 0 1—7t24+10t* — 446 —4¢ + 83 — 440

0 2% — 3 2t — 4t3 + 2t° 1 — 3t 4+ 2t

Consider the sequence of infinite matrices

Isp—o 0 0
fa®=1{ 0 M) 0

Then f,(1) acts on (0%2 wy)®>® by exchanging the n'™ and (n + 1) summands (O%2,w,),
while f,,(0) is the identity. The infinite product

F(t) = f1(#t)f2(t) f3(t) - -~

is well-defined because the first 2n columns of fi fo--- fy are independent of N for all N > n.
Each column of F(t) contains only a finite number of nonzero entries. (More precisely, writing
F(t) = (a;(t)), we have a;2,—1(t) = a;2,(t) = 0 for i > 2n + 2.) The endomorphism F'(t)
is preserves the symplectic form w$> because the automorphisms f,,(t) all do. Clearly F(0)
is the identity. The finite product fi(1)f2(1)--- fx(1) permutes cyclically the first N 4 1
summands of (092, w,)> and fixes the others. The infinite product F (1) is the shift map. O
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Theorem 7.7. In the motivic unstable homotopy category He(S) we have a commutative
diagram

BSpQr
structury W‘
MSp,, < — BSpQT/BSp2T72-

AN _bundles and excision

8. THE QUATERNIONIC PROJECTIVE BUNDLE THEOREM

The most basic form a symplectic orientation is a symplectic Thom structure [13, Definition
7.1]. The version of the definition for bigraded e-commutative theories is as follows.

Definition 8.1. A symplectic Thom structure on a bigraded e-commutative ring cohomology
theory (A**,9,x,14) on 8mOp/S is a rule which assigns to each rank 2 symplectic bundle
(E, ¢) over an X in 8m/S an element th(E, ¢) € AY?(E, E— X) with the following properties:
(1) For an isomorphism u: (E,¢) = (E1, ¢1) one has th(E, ¢) = u* th(E1, ¢1).
(2) For a morphism f:Y — X with pullback map fg: f*E — E one has fjth(E,¢) =
th(f*E, [*).
(3) For the trivial rank 2 bundle A% — pt with the symplectic form wy = (_01 1) the map
— X th(A% wy): AY*(X) — A F2(X x A2 X x (A% -0))
is an isomorphism for all X.

The Pontryagin class of (E,¢) is p1(E,¢) = —2*th(E,¢) € A%?(X) where z: X — F is the
zero section.

The quaternionic projective bundle theorem is proven in [13] using the symplectic Thom
structure and not any other version of a symplectic orientation. It is proven first for trivial
bundles.

Theorem 8.2 ([13, Theorem 8.1]). Let (A**,0,x,14) be a bigraded e-commutative ring
cohomology theory with a symplectic Thom structure. Let (Ugpn,drpn) be the tautological
rank 2 symplectic subbundle over HP™ and ( = p1(Ugpn, drprn) its Pontryagin class. Then
for any X in 8m/S we have an isomorphism of bigraded rings

A (HP" x X) 2 A (X)[]/(¢™H).
A Mayer-Vietoris argument gives the more general theorem [13, Theorem 8.2].

Theorem 8.3 (Quaternionic projective bundle theorem). Let (A**,0, x,14) be a bigraded
e-commutative ring cohomology theory with a symplectic Thom structure. Let (E, ¢) be a sym-
plectic bundle of rank 2n over X, let (U, ¢|y) be the tautological rank 2 symplectic subbundle
over the quaternionic projective bundle HP(E,¢), and let ¢ = p1(U, ¢ly) be its Pontryagin
class. Then we have an isomorphism of bigraded A**(X)-modules

(1,C,. o, ) AMH(X) @ A (X) @ - @ A (X) — A (HP(E, ¢)).

Definition 8.4. Under the hypotheses of Theorem 8.3 there are unique elements pi(E,¢) €
A%2(X) for i = 1,2,...,n such that

¢" =B, @) UC"T 4 pa(B, ) UCTTE =+ (=1)"pu(E, ) = 0.
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The classes p;(E, ¢) are called the Pontryagin classes of (E, ¢) with respect to the symplectic
Thom structure of the cohomology theory (A, d). For ¢ > n one sets p;(F,¢) = 0, and one
sets po(E, ¢) = 1.

For a rank 2 symplectic bundle (E, ¢) the classes p;(F, ¢) defined by Definitions 8.1 and
8.4 coincide.

Corollary 8.5. The Pontryagin classes of a trivial symplectic bundle vanish.

Among the consequences of the quaternionic projective bundle theorem is the symplectic
splitting principle [13, Theorem 10.2]. We used it to prove the Cartan sum formula for
Pontryagin classes [13, Theorem 10.5].

Theorem 8.6. Let (A**,0, x,14) be a bigraded e-commutative ring cohomology theory with
a symplectic Thom structure. Suppose (F,v) = (E1,$1) @ (E2, ¢2) is an orthogonal direct
sum of symplectic bundles over an X in 8m/S. Then for all i we have

1—1

pi(F,y) = pi(Br,¢1) + Y piej(Br, é1)p; (B2, ¢2) + pi( Ea, ¢2). (8.1)
=1

The quaternionic projective bundle theorem also allowed us to compute the cohomology
of quaternionic Grassmannians. To explain our results we need to recall a number of facts
about symmetric polynomials. They may be found in for example [7, Chap. 1, §§1-3].

Let A, C Z[x1,...,z,] be the ring of symmetric polynomials in 7 variables. Let e; denote the
ith elementary symmetric polynomial, and h; the itt complete symmetric polynomial, the sum
of all the monomials of degree i. Set eg = hg = 1 and ¢; = h; = 0 for ¢ < 0 and also e; = 0 for
i >r. We have A, = Zley, ..., ey]. There is a recurrence relation h,, +>;_;(—1)"€jhpm—; = 0.

Let

II, = {partitions A = (A1, A2, ..., A;) of length [(\) <r}.

Write 6 = (r — 1,7 — 2,...,1,0). For A\ € I, let ay;s = det(ac)‘jﬂfj)lgi,jgr. Then ay,s is a

1
skew-symmetric polynomial and therefore divisible by the Vandermonde determinant ag5. The
quotient sy = ayys/as is the Schur polynomial for A. It is symmetric of degree |A| = >  A;.
One has (1) = €; and s(;) = h;. The ayys with I(A\) < r form a Z-basis of the skew-symmetric
polynomials in 7 variables, so the sy with [(\) < r form a Z-basis of A,. Denote by A the
partition dual to \. We have formulas

sx = det(ex _iyj)1<ij<m = det(hy—itj)1<ij,<rs (82)
for m > (X)) and r > [(X). Set
11, ,,—, = {partitions A of length {(\) = \| <7 and with \; <n —r}
The set I, ,—, has (Z) members. We will use the following results.
Proposition 8.7. The quotient map
Zley,...,ex) = Zler,...,ex]/(hn—ri1,y ..., hp)

sends {sy | A € I, =1L, ,,_,} — 0, and it sends {sx | A € II, ,,_} onto a homogeneous Z-basis
of the quotient ring.
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Proof. For A € II, — II,,,_, the first line of the determinant sy = det(hy,_i4;) consists of
hi with k > n —r + 1. These are all in (hy—p41,...,hy,) because of the recurrence relation
satisfied by the hi. So they are sent to 0 in the quotient.

The rank of the quotient as a Z-module is [ deg h;/ [T dege; = (7). Since this is the same
as the cardinality of II,.,,_,, and since the images of the sy with A € II,.,_, generate the
quotient as a Z-module, they form a Z-basis of the quotient. O

Let the €; and the h; be, respectively, the elementary and complete symmetric polynomials
inr—1 Variables. The natural quotient map sends e; — €; for ¢ < r and e, — 0, while it
sends h; — h; for all 1.

Proposition 8.8. The kernel of the quotient map

Z[el, R ,e,«]/(hn_r_H, R 7hn) — Z[El, R 7€r—1]/(hn—r+17 . ,hn_l) — 0
is the image of the injection
0— Z[el, e ,er]/(hnfr, . ,hnfl) % Z[el, e ,er]/(hn,TJrl, ey hn)

Proof. The kernel is the free Z-module with basis {sy | A € II, ,,_, — II,_; ,—}. These are
the A with A, > 1 and thus A} = r. The formula s = det(ey_;; ;) shows that for such A one

has sy = e;s, with p= (A —1,..., A\ = 1) € II,.,_,_1. These s, form a basis of the ring on
the left of the second displayed line. O

Theorem 8.9 ([13, Theorem 11.2]). Let (U, ., ¢rpn) be the tautological symplectic bundle
of rank 2r on HGr(r,n). Then for any bigraded e-commutative ring cohomology theory
(A**,0, x,14) with a symplectic Thom structure and any X in 8m/S the map

A (X)]er, ... er]/(hn—ri1y.-y hp) =N A (HGr(r,n) x X) (8.3)
sending e; — pi(Uppn, ¢rrn) for all i is an isomorphism of bigraded rings.

Theorem 8.10 ([13, Theorem 11.4]). Let ayp: HGr(r,n) — HGr(r,n + 1) be the usual
inclusion. For any bigraded e-commutative ring cohomology theory (A**,0,x,14) with a
symplectic Thom structure and any X in 8m/S the map

(app x 1) A (HGr(r,n+1) x X) - A (HGr(r,n) x X)
is a surjection which the isomorphisms (8.3) identify with the natural surjection
A (X)]er, ... er]/(hn—ri2y oy by hng1) = A (X)e1, ..o er]/(hn—rs1, Bn—rt2, - s hp).

Theorem 8.11 ([13, Theorem 11.4]). Let B, ,: HGr(r,n) - HGr(1+r,1+n) be the usual
inclusion. For any bigraded e-commutative ring cohomology theory (A**,0,x,14) with a
symplectic Thom structure and any X in 8m/S the map

(B x 1)t AY*(HGr(1+7,14+n) x X) - A (HGr(r,n) x X)
is a surjection which the isomorphisms (8.3) identify with the surjection
A*7*(pt)[elv <oy Gy er—i—l]/(hn—r—l—h NN hn+1) - A*’*(Pt)[GL s 7er]/(hn—r+17 s 7hn)

of A**(pt)[e1,...,er]|-algebras sending ;11 — 0.
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9. THE COHOMOLOGY OF BSps,. AND MSp,,

Theorem 9.1. Let (A, u,e) be a commutative T-ring spectrum with a symplectic Thom struc-
ture on A**. Then the isomorphism BSps, = colim, HGr(r,n) induces isomorphisms

A (BSpay) = lim A™(HGr(r,n)) < A**(pt)[[ps, .., p,]]""

n—00

of bigraded rings. The second isomorphism sends the variable p; to the inverse system of it
Pontryagin classes (pi(Uy.r))n>r-

Here A**(pt)[[p1,...,p,]]"°™ is the bigraded ring of homogeneous power series. The Jim is
taken in the category of bigraded rings.

Proof. We have BSpo, = colim,, HGr(r,n), so by Theorem 5.7 we have an exact sequence

0— @1 AV (HGr(r,n)) — A (BSpa,) — lim AY*(HGr(r,n)) — 0.
neN neN
The connecting maps are the a;,, of Theorem 8.10, which are surjective. So the @1 vanishes,
and the first map of the statement of the theorem is an isomorphism.

Let I; C A%*(pt)[p1, ..., pr] be the two-sided ideal generated by the monomials p{*p5* ... p&r
with »ia; > d. We have inclusions I,.¢,—)41 C (Bn—rt1,- .., hn) C In_ry1 because all parti-
tions A\ € II, ,,—, have |[A| < r(n —r). So we have

@A*’*(HGT(T, n)) = Um A" (pt)[p1, ..., pr]/(hn—rs1s- -, hn)

n

<_
n

= lim A (pt)[p1, .., pr] /Lo = A (p)[[pr, ... p )P O
d

Theorem 9.2. Let (A, u,e) be a commutative T-ring spectrum with a symplectic Thom struc-
ture on A**. Then for any r and n the motivic homotopy equivalence

ThUparrn) = HGr(r,1+n)/HGr(r —1,n)
of Theorem 7.5 induces isomorphisms

*, % Upr * rok+21
A p0)[p1s - o]/ (Bt ) 5 AT (Th U ) (9.1)

of two-sided bigraded modules over A**(HGr(r,n)) = A**(pt)[p1,...,0r)/(Fn—rii,--., hn).
Moreover, the isomorphism MSp,, = colim, ThUyg,(rn) induces isomorphisms of bigraded
modules over A**(BSpa,) = A% (pt)[[p1, ... ,pr]]"™

AP (NS, ) 5 lim AT (T U6, ) < prA™ (D)1 91" (9.2)

n—o0
Proof. Applying A®* to the cofiber sequence

HGr(r—1,n) Frotim, HGr(r,14+n) — ThUggr(rn)
gives a long exact sequence of cohomology. The map 3,1, induces a surjection of cohomology
groups by Theorem 8.11, so we have A**(ThUpg(rn)) = ker B;_; ,,. This kernel is identified
by Proposition 8.8, giving the isomorphism (9.1). In principle this is an isomorphism of two-
sided modules over A**(HGr(r,1 +n)) = A**(pt)[p1,--.,pr]/(hn—rt2,...,hnt1). But the
modules are annihilated by h,_,11, so they are also two-sided modules over the quotient ring
AS*(HGr(r,n)).
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The inclusion ThUygr(r,n) < ThUgar(rne1) Induces a commutative diagram

Upr *+4rx+2r
A*’*(pt) [Pl, v ’pr]/(hnfrJrQ’ ooy i, thrl) 417) Artarxz (Th uHGr(r,nJrl))

i |

Upr *+4Ar,* r
A O0)P1, - 0] ity B+ ) ——as A2 (Th Uy )-

1%

R

The inverse limit gives the righthand isomorphism of (9.2). The vertical map on the left is
surjective, so the vertical map on the right is as well. Therefore the @1 vanishes in the exact
sequence

0— @;{1 A*iL*(Th uHGr(r,n)) - A*7*(Msp2r) - %A&*(Th uHGr(r,n)) — 0.
ne ne

obtained from Theorem 5.7. U

For any r let 2o, : BSpa, — ThUpgsp,, = MSps, be the structure map induced by the zero
section of the tautological symplectic bundle Upgy,, — BSpa,.

Theorem 9.3. Let (A,u,e) be a commutative T-ring spectrum with a symplectic Thom
structure on A®*. The map z5,.: A**(MSp,y,) — A**(BSpar) of two-sided A**(BSpa)-
modules is injective and identifies A**(MSps,.) with the two-sided principal ideal generated
by pr € A2 (BSpy,).

Proof. By Theorem 7.7 we have cofiber sequence BSpo,_o tar, BSpy, 2 MSp,, yielding a
long exact sequence of cohomology groups. By the previous theorems these are isomorphic
to (in simplified notation)

cem ATl 2 A ([py, ]l 25 A )] o (9.3)

Since iy, is the colimit of the inclusion maps 8,_1,: A(r —1,n) — A(r,1 + n) of Theorem
8.11, i3, is the quotient by the ideal generated by p,.. It is surjective in all bidegrees. It follows
that 23, is injective in all bidegees and is the inclusion of that ideal. O

The direct sum of symplectic bundle induces compatible monoid structures on the BSpo,.
and the MSp,,. So the following diagram commutes for all r and s

BSp2r X BSp2s L) BSpQrJrQs

22r XZQSJ/ lz2r+2s (9.4)

Hrs
MSp2r N MSsz E— Msp2r+23'

Theorem 9.4. Let (A, u,e) be a commutative T-ring spectrum with a symplectic Thom struc-
ture on A**. Then the isomorphisms

BSpy,. x BSpys = colim,, (HGr(r, rn) X HGr(s, sn))
MSp,, AN MSp,, = COllmn(Th UHGT(T’M) A Th UHGT(&S”))
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induces a commutative diagram of isomorphisms and monomorphisms of two-sided graded
A**(BSpa, X BSpas)-modules

A**(MSp,, AMSp,,) —— lim A (Thlyrn AThUs sn) <—— prpl A [py, - o0t - Pl

n—oo

(229 X225)" 1 inclusion

A**(BSpa, x BSpas) — im A®*(HGr(r,rn) x HGr(s, sn)) — A, A A I
n—oo

Moreover, these isomorphisms identify the diagram obtained by applying A®* to (9.4) with
the diagram of rings and ideals

PrasAY*(p)[[p1, - - - pras))o™ ——— pLpl A (pt)[[p), - o Pl P

| |

A (pt)[[pr, - D))" ———— A ()[[PY, - 2 P )
where the horizontal maps send p; — p} + 23;11 pi_;pj +pj. Moreover, the horizontal maps
of the last diagram are also injective.

Proof. The construction of the first diagram is much the same as in the previous theorems.
The second diagram follows. For the last statement of the theorem, let tq,..., ¢, be inde-
pendent indeterminates of bidegree (2,1). Then the composition of the bottom horizontal
map with the map

A PO[PY - o P B = A [[E ]

sending p} — e;(t1, ..., %) and pj = €;(tr41,. .., tr4s) is the inclusion of the ring of symmetric
homogeneous power series in the ring of homogeneous power series. That is injective. O

The final calculation in this section ought to be that of A**(MSp). However, we will put
this off until Theorem 13.1 because we wish to make the calculation using a symplectic Thom
classes theory and not just a symplectic Thom structure.

10. TAUTOLOGICAL THOM ELEMENTS

Suppose that (4, p,e) is a commutative T-ring spectrum. Let ¥ € A*2(MSp,).

We associate to ¥ and a symplectic bundle (E, ¢) of rank 2 over an X in 8m/S a class
thﬂ(E, ¢) defined as follows. By assumption the scheme X admits an ample family of line
bundles. So there exists an affine bundle f: Y — X with Y an affine scheme. Then for some
p there exist global sections si,...,s, of f*EY generating f*EY. There then exist global
functions a;; on Y such that f*¢ = Zlgiqu a;js; N\ sj. We set t; = Z?’:Hl a;js; so that
we have >, s; At; = f*¢. The map (s1,t1,...,8p,tp): [FE — O?Zp embeds (f*F, f*¢) as a
symplectic subbundle of (O?Qp ,wap). So it is classified by a map ¢: Y — HGr(1,p) = HPP~?
such that ¢¥*(TSp1p, ¢1,) = [*(E, ¢). This gives us maps of (ind)-schemes

XLy ¥ gprt nduion pg, _ pp (10.1)

AN _bundle
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and of pointed motivic spaces

ThE «J— Thf*E = Th¢*TSpr, > ThTSpy, (10.2)

~mot

of pointed motivic spaces, which can be composed with the maps
ThTSp1, MSp, % ANT"2. (10.3)
in SH(S). The composition of (10.2) and (10.3) gives a class
th’(E,¢) € Homgy(s)(ThE,AANT"?) = A**(E,E - X).
The following lemma is proven in the same way as Lemma 5.4.

Lemma 10.1. The classes th”(E, ¢) depend only on the rank 2 symplectic bundle (E, ¢) and
the morphism ¥: X3 MSpy(—2) — A in SH(S).

inclusion

Recall the inclusion €57 : T2 — MSp, of (6.2).

Theorem 10.2. Let (A, p,e) be a commutative T-ring spectrum. Then the map which assigns
to a class ¥ as above the family of classes thﬁ(E, @) is a bijection between the sets of

(o) classes ¥ € AY2(MSp,) with V| = X314 in AY2(T"?), and

(a) symplectic Thom structures on the bigraded e-commutative ring cohomology theory
(A**,0, x,14) such that for the trivial rank 2 bundle A?> — pt we have th(A% ws) = Y214
in AY2(TN?).

Proof. A proof similar to that of Theorem 5.5 shows that for a 9 as in («), the family of classes
th?(E, ¢) form a symplectic Thom structure with the stated normalization condition. Note
that this uses the fact that all symplectic bundles are locally trivial in the Zariski topology.

Now suppose we have a symplectic Thom structure with the stated normalization condition.
For every n the tautological rank 2 symplectic bundle bundle over HP"~! has a Thom class
which we will abbreviate as

thy = th(Ugpn-1, pgpn-1) € AY2(Th Uy pn-1).

Pullback along the inclusion ThUgprn-1 — Th Uy pn sends thy,1 +— th,. So as n varies, we
get an element B
¥ = (thy)nen € yLnA“(Th Wpypn—1).

We have MSp, = colim Th Uy pn-1, and by Theorem 9.2 the natural map
A" (MSpy) = lim A" (Th Uggpar).

is an isomorphism. Let ¥ € A*2(MSp,) be the unique class lifting ©J. As in the proof of
Theorem 5.9 we have th”(E, ¢) = th(E, ¢) for all rank 2 symplectic bundles. Moreover, for 1
and ¢ in A%2(MSp,) we have th”(E, ¢) = th*(E, ¢) for all symplectic bundles if and only if
¥ and & have the same image in the inverse limit. But that happens only for ¢ = £. O

Definition 10.3. The class ¥ € A%?(MSp,) is the tautological Thom element of the sym-
plectic orientation on A** whose rank 2 symplectic Thom classes are the thﬂ(E, b).

The canonical morphism ug: XMSp,(—2) — MSp which is part of the counit of the
adjunction between ¥°(—2) and its right adjoint the forgetful functor Evy defines an element
UMsp € MSp*?(MSp,). It satisfies UMsplrrz = E2T1Msp because both elements correspond

to the composition us o egp: T"? — MSp A T"2.
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*, %

Definition 10.4. The standard symplectic Thom structure on MSp™* is the one whose

universal Thom element is the ¥psp we have just described.

11. TAUTOLOGICAL PONTRYAGIN ELEMENTS

The bigraded version of the definition of a Pontryagin structure [13, Definition 12.1] is as
follows.

Definition 11.1. A Pontryagin structure on a bigraded e-commutative ring cohomology
theory (A**,0,%x,14) on 8mOp/S is a rule which assigns to each rank 2 symplectic bundle
(E,¢) over an X in 8m/S an element pi(E, ¢) € A%?(X) with the following properties:

(1) For (Eq, ¢1) = (E2, ¢2) we have p1(E1, ¢1) = p1(E2, ¢2).

(2) For a morphism f: Y — X we have f*pi(E,¢)) = pi(f*E, f*¢).

(3) For the tautological rank 2 symplectic subbundle (Ugp1, g p1) on HP the map

(L,p1 (Ugrpr, dpr)): A (X) @ A4 2(X) —» A*(HP' x X)

is an isomorphism for all X in 8m/S.
(4) For the trivial rank 2 symplectic bundle (A2 wy) over pt we have pi(A
A2 (pt).

The Pontryagin classes associated to a symplectic Thom structure by the formula p; (E, ¢) =
—2*th(E, ¢) € A*?(X) of Definition 8.1 form a Pontryagin structure because of the func-
toriality of the Thom classes, the quaternionic projective bundle theorem 8.2 and Corollary
8.9.

For r = 1 the diagram (7.4) of morphisms in He(.S) becomes

2 W) = 0 in

ey?
72 ——— MSp,

% F (11.1)

(HP', hoo) ——— (HP>, hy)
inclusion
with heo = pt — HP' a point such that h% (Uyp1,dgpr) is a trivial symplectic bundle. We
will call the two vertical arrows the canonical motivic homotopy equivalences.

Suppose that (4, i, e) is a commutative T-ring spectrum. Let o € A%?(H P>, hy,). For a
rank 2 symplectic bundle (E, ¢) over X the construction of (10.1) composed with the quotient
by the pointing and with p gives us a zigzag

N
x Abwde L gpee Ly (HP™ hoo) & ANT™? (11.2)

~

in which the pullbacks to Y of (E, ¢) and of (Ug pe, ¢ p) are isomorphic. The composition
is a class p{(E, ¢) € A%?*(X). This class depends only on (E,$) and o by arguments similar
to those of Lemmas 5.4 and 10.1.

Theorem 11.2. Let (A, p,e) be a commutative T-ring spectrum. Then the map which assigns
to a class g as above the family of classes p{(E, $) is a bijection between the sets of

(B) classes 0 € AY2(HP™, hoo) with olgp1 € AY*(HP', he) corresponding to —¥2.14 €
A%2(T2) under the canonical motivic homotopy equivalence (H P!, hoo) = T2, and

(b) Pontryagin structures on (A**,0, x,14) for which p1(Ugp1, dpp1) € AY2(HPY hy) C
AY2(HPY) corresponds to —%214 in AY2(T™?) under the canonical motivic homotopy equiv-
alence (HP!, hy) ~ T2
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The proof is like that of Theorem 10.2. The classes p{(F, ¢) satisfy condition (3) of Defi-
nition 11.1 because of an argument like Lemma 5.3 and the isomorphism 7% = (HP!, hy.).
They satisfy condition (4) because p$(A2,wy) = hi o = 0. The proof that there is a

unique g corresponding to each Pontryagin structure invokes the isomorphism A**(H P>)
@A*’*(HP”) which is the case r = 1 of Theorem 9.1.

Definition 11.3. The class o € A%?(HP> hy,) is the tautological Pontryagin element of
the symplectic orientation on A** whose rank 2 Pontryagin classes are the p{(E, ¢).

Theorem 11.4. Let (A, u,e) be a commutative T-ring spectrum. Then the canonical motivic
homotopy equivalence MSp, = (HP>, hoo) plus change-of-sign gives a bijection between the
sets of

(cv) the tautological Thom elements ¥ of Theorem 10.2 and

(B) the tautological Pontryagin elements o of Theorem 11.2.

The composition (a) <> () <> () <> (b) with the bijections of Theorems 10.2 and 11.2 is
the same as the rule which assigns to a symplectic Thom structure with classes th(E, ) the
Pontryagin structure with classes p1(E,¢) = —z*th(E,¢) for z: X — ThE the structural
map of the Thom space.

Proof. The first statement follows from the existence and compatibility of the canonical mo-
tivic homotopy equivalences of (11.1). For the second, given a rank 2 symplectic bundle (E, ¢)
on X we have a diagram

X Y » HP>® —— (HP*>,h

| J/J

ThE <— Th f*E —— MSp, % AATN2

in which the squares commute by compatibility of the structural maps of Thom spaces with
pullbacks, the upper triangle commutes by Theorem 7.7, and the lower triangle commutes
because of the rule giving the bijection (a) < (8). We deduce the equality p{(E,¢) =
—2*th"(E, ¢) in Homgps)(X,ANT"?) = A*?(X). O

The bigraded version of the definition of a Pontryagin classes theory [13, Definition 14.1]
is as follows.

Definition 11.5. A Pontryagin classes theory on a bigraded e-commutative ring cohomology
theory (A**,0,x,14) on 8m0Op/S is a rule assigning to every symplectic bundle (F, ) over
every X in 8m/S elements p;(F,1) € A%2(X) for all i > 1 satisfying

(1) For (F1,¢1) = (FQ,’(/)Q) we have pi(F1,¢1) = pl'(FQ,’l]Z)Q) for all 7.
(2) For a morphism f:Y — S we have f*p;(F,v) = p;(f*E, f*) for all i.
(3) For the tautological rank 2 symplectic subbundle (U p1, ¢y p1) on HP the maps

(L,pr(Ugrpr, prpr)): AVH(X) @ A4 72(X) — A™*(HP' x X)

are isomorphisms for all X.

(4) For the trivial rank 2 symplectic bundle (A2 wy) over pt we have pi(A
A*2(pt).

(5) For an orthogonal direct sum of symplectic bundles (F,v) = (F1,11) @ (Fa,12) we
have p;(F,v) = pi(F1,¢1) + Z] L iej (F1,01)p; (Fo, 4b2) + pi(Fa, o) for all d.

2 W) = 0 in
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(6) For (F,v) of rank 2r we have p;(F,) = 0 for i > r.

One may also set po(F, 1)) =1 and even p;(F, ) =0 for i < 0.

Definition 8.4 associates Pontryagin classes to a symplectic Thom structure on (A**,9, x,14).
They form a Pontryagin classes theory because the quaternionic projective bundle Theorems
8.2 and 8.3, Corollary 8.5 and the Cartan sum formula (Theorem 8.6).

Theorem 11.6. Let (A, u,e) be a commutative T-ring spectrum. Then the forgetful map
gives a bijection between the sets of

(¢) Pontryagin classes theories on (A** 0, x,14) with the normalization condition on
p1(Ugpt, ¢gp1) of Theorem 11.2 and

(b) Pontryagin structures on (A**,0, x,14) with the same normalization condition.

The inverse bijection is given by assigning to a Pontryagin structure first the symplectic
Thom structure associated to it by Theorem 11.4 and then the the Pontryagin classes theory
associated to the symplectic Thom structure by Definition 8.4.

Proof. The chain of associations (b) — (a) — (¢) — (b) gives the identity because for rank
2 symplectic bundles the classes p;(E, ¢) given in Definitions 8.1 and 8.4 coincide.

The chain of associations (¢) — (b) — (a) — (c) gives the identity because for a symplectic
bundle (F,v) of rank 2r on X if we let m: HP(F,1)) — X be the associated quaternionic
projective bundle with rank 2 tautological subbundle (U, ¢), then from the orthogonal direct
sum 7 (F,v) = (U, ¢) ® (U, ¢)* and the axioms we get

0= (_1)7’pT((u’ ¢)L) = pl(u’ ¢)7’ - W*pl(Fa¢) Upl(u’ ¢)7’—1 +oet (_1)T7T*pr(Fa¢)
Hence the Pontryagin classes defined by (¢) — (b) — (a) — (c¢) coincide with the original
ones. 0

12. HIGHER RANK SYMPLECTIC THOM CLASSES

The bigraded version of the definition of a symplectic Thom classes theory [13, Definition
14.2] is as follows.

Definition 12.1. A symplectic Thom classes theory on a bigraded e-commutative ring co-
homology theory (A**,0,x,14) on 8mOp/S is a rule assigning to every symplectic bundle
(F,%) over every scheme X in 8m/S an element th(F,1) € AY?"(F,F — X) with 2r =k F
with the following properties:

(1) For an isomorphism u: (F,v) = (Fy,v1) we have th(F, ) = u* th(Fy,1).

(2) For f:Y — X, writing fp: f*F — F for the pullback, we have fjth(F,¢) =
th(f*F, [*)) € A2 (fF, f*F V).

(3) The maps Uth(F,v): A**(X) — A*H4r*+2r(F F — X)) are isomorphisms.

(4) We have th((Fi,¢1) ® (Fp,v2)) = qf th(F1,91) U g5 th(Fy,12), where q1,qz are the
projections from F} 6 F5 onto its factors. Moreover, for the zero bundle 0 — pt we
have th(0) = 14 € A%O(pt).

The classes th(F, ) are symplectic Thom classes.

Let (A, u,e) be a commutative T-ring spectrum. Suppose we have a sequence of classes
9 = (¥1,92,93,...) with 9, € A¥2"(MSp,,) for each r. Then for any symplectic bundle
(F, 1)) of rank 2r over X one can use 9, to define a class th? (F,) by the construction already
described in (10.1)—(10.3) for rank 2. For a rank 0 bundle 0x — X we set th(0x) = 1x €
A%0(X). These classes are well-defined by the same argument as in Lemma 5.4 and 10.1.
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Recall the inclusion egp : T"? — MSp, of (6.2) and the monoid maps ji,s: MSpy, A
MSp2s - MSpQr—I—ZS of (61)

Theorem 12.2. Let (A, p,e) be a commutative T-ring spectrum. Then the map which assigns
to a sequence of classes ¥ = (91,92,7Us,...) as above the family of classes thﬂ(F,w) s a
bijection between the sets of

(8) sequences of classes 9 = (V1,99,93,...) with ¥, € A*2"(MSp,,) for each r satisfying
prOrts = 0r X Js for all v, s, and 91|pr2 = X214, and

(d) symplectic Thom classes theories on (A**,0,%,14) such that for the trivial rank 2
bundle A% — pt we have th(A? wy) = $214 in AY(T"?).

The proof is essentially the same as that of Theorem 10.2. The class ¥, is the tautological
symplectic Thom element of rank 2r.

Recall that for a commutative T-ring spectrum (A, p, €) with a symplectic Thom structure
on (A%* 0, x,14) the Thom space structural map z,: BSpa, — MSp,, has the property that
2t AV (MSpy,) — A**(BSpa,) is injective, and that the isomorphism

A" (BSpa) & A (pt)|[p1, ..., py]] (12.1)

derived from the symplectic Thom structure identifies the image of z; with the two-sided
ideal generated by p, (Theorems 9.1, 9.2 and 9.3).

Theorem 12.3. Let (A, p,e) be a commutative T-ring spectrum. Then the assignment ¥ =
(01, 02,03,...) — U1 gives a bijection between the sets of

(0) sequences of classes ¥ = (91,102,033, ...) satisfying the conditions of Theorem 12.2 and

(cv) the tautological rank 2 Thom elements O of Theorem 10.2.

The inverse bijection sends ¥ +— 9 = (01,992,93,...) where 229, € AY2"(BSpa,) is the
element corresponding to (—1)"p, under the isomorphism (12.1) derived from the symplectic
Thom structure associated to ¥ by Theorem 10.2.

Proof. Clearly the mapping (§) — («) is well-defined.

We will show that (a) — (0) is well-defined. Suppose 9 satisfies the conditions of («). The
classes (¥1,99,73,...) verify the condition u:,9,1s = ¥, X ¥5 because in Theorem 9.4 the
classes in the second diagram verify p, s — pl.p”. The class ¥; is obtained by the construction
corresponding to the assignments («) — () — («) of Theorem 11.4. So by that theorem we
have 91 = ¥. So we have ¥;|;r2 = $214. Therefore (o) — (§) is well-defined. In addition
this shows that («) — (§) — («) is the identity.

Now suppose given 9 = (U1, 92,93, ... ) satisfying (), and let ¥ = (97,995,935, ...) be the
result obtained by applying (6) — (a) — (§). We have already seen that we have ¥ = 9.
The equalities 9, = 9/ follow by induction using the injectivity of the maps m, of Theorem
9.4. O

For a symplectic bundle (F,v) of rank 2r over X the Pontryagin classes () and the
symplectic Thom classes (J) are related by

pr(F,9) = (=1)" 2" th(F, ). (12.2)
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13. THE UNIVERSALITY OF MSp

Theorem 13.1. Let (A, p,e) be a commutative T-ring spectrum with a symplectic Thom
classes theory on A**. Then we have isomorphisms of bigraded rings

A*’*(MSp) i @A*+4r,*+2T(MSp2T) & A*’*(pt)[[p1,p2,p3, o Hhom’
A" (MSp A MSp) = lim A™ 847 (MSp,, A MSps,,) < A" (pt)[[p}, P, -, Pl 1, - ]|

Proof. By Theorem 12.2 the symplectic Thom classes theory has associated to it a sequence
9 = (91,99,9s,...) of tautological symplectic Thom classes with the property that ¥, €
A2 (MSps,,.) is the Thom class of the tautological symplectic subbundle (Upsps,, s ®BSps. )
over BSpy, = HGr(r,00) and with ¥1|pae = Y214, Set also ¥g = 14 € A%O(pt) =
A% (MSpy).
By Theorem 5.6 the group A**(MSp) fits into the short exact sequence
0 — Hm!' AL (MSpy, ) — A (MSp) — lim A +2 (MSp,,) — 0

where the connecting maps in the tower are given by the top line of the commutative diagram

»2 *
A*+4r74,*+2r72(MSp2r_2) : T A*+4r,*+2r(MSp2T_2 /\T/\2) PR A*+47’=*+2T(MSPQT)

%TU&A_I %TUJ*&T %Tuﬁr

A**(BSpay_s) L A (BSpar—2) 2 A**(BSpy,).

The map o* is the pullback along the bonding map

1xeq Hr—1,1

MSp,, o AT"? =25 MSp,, 5 A MSpy, ——= MSp,,

of the symmetric 7"?-spectrum. Thus we have 0*9, = ¥,_1 x ¥214. The diagram therefore
commutes. The vertical maps are isomorphisms by condition (3) of the definition of a symplec-
tic Thom classes theory. The map 5, is the surjection A**[[p1,...,p.]] = A%*[[p1,-..,pr—1]]
of (9.3). This gives us the second isomorphism of the theorem, while the surjectivity of the
connecting maps in the inverse system gives the vanishing of the @11 and the first isomor-
phism.

The calculations for A**(MSp A MSp) are similar. O

Let ¢: MSp — A be a morphism in SH(S). For each 7 > 1 let ¥f € A¥2"(MSp,,) be
the composition
SPMSp,, (—2r) =2 MSp 5 A,
and let 9% = (97, 95,9%,...).

Theorem 13.2. Suppose (A, u,e) is a commutative monoid in (SH(S),A,1). Then the
assignment p — 99 = (97,95.9%,...) gives a bijection between the sets of
() morphisms @: (MSp, 1P, e%P) — (A, p,e) of commutative monoids in SH(S), and
(0) sequences of classes ¥ = (¥1,U2,Vs,...) satisfying the conditions of Theorem 12.2.

The proof of this theorem is substantially the same as that of Theorem 5.9. The differences
are, first, that the ¥ comes from a unique ¢: MSp — A because the map A%Y(MSp) —
yLnA‘l’VQT(MSpQT) of Theorem 13.1 is an isomorphism. Second, the obstruction to ¢ being a
morphism of monoids vanishes because A%°(MSp A MSp) — lim ABTAT(MSpy, A MSpy,.) is
also an isomorphism.
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