ON THE RELATION OF SYMPLECTIC ALGEBRAIC COBORDISM TO
HERMITIAN K-THEORY

I. PANIN AND C. WALTER

ABsTRACT. We reconstruct hermitian K-theory via algebraic symplectic cobordism. In the
motivic stable homotopy category SH(S) there is a unique morphism ¢: MSp — BO of
commutative ring T-spectra which sends the Thom class th™MSP to the Thom class thB©.
Using ¢ we construct an isomorphism of bigraded ring cohomology theories on the category
8mOp/S
@: MSp**(X,U) @mspi-.2+(pr) BO™?*(pt) 2 BO™* (X, U).

The result is an algebraic version of the theorem of Conner and Floyd reconstructing real
K-theory using symplectic cobordism. Rewriting the bigrading as MSp”? = MSp[Q"'gfp, we
have an isomorphism

g: MSpll(X,U) @ KO (pt) = KO (X, 1),

Mspl I (pt)

where the KOZ["] (X,U) are Schlichting’s hermitian K-theory groups.

1. A MOTIVIC VERSION OF A THEOREM BY CONNER AND FLOYD

Our main result relates symplectic algebraic cobordism to hermitian K-theory. It is an
algebraic version of the theorem of Conner and Floyd [2, Theorem 10.2] reconstructing real
K-theory using symplectic cobordism. The algebraic version of the reconstruction of complex
K-theory using unitary cobordism was done in [5].

In [7] the current authors constructed a commutative ring T-spectrum BO represent-
ing hermitian K-theory in the stable homotopy category SH(S) for any regular noether-
ian separated base scheme S of finite Krull dimension without residue fields of character-
istic 2. (These restrictions allowed us to use particularly strong results of Marco Schlicht-
ing [9]. We leave it to the expert(s) in negative hermitian K-theory to weaken them.)
It has a standard family of Thom classes for special linear vector bundles and hence for
symplectic bundles. The symplectic Thom classes can all be derived from a single class
thBO € BO*?(Th Uy p=) = BO*?(MSp,), the symplectic Thom orientation.

In [6] we constructed the commutative ring T-spectrum MSp of algebraic symplectic cobor-
dism. It is a commutative monoid in the model category of symmetric 7/ %-spectra, just as
MSL and Voevodsky’s MGL are commutative monoids in the model category of symmetric
T-spectra. The canonical map Y3°MSp,(—2) — MSp gives the symplectic Thom orienta-
tion thMSP ¢ MSp*2(MSp,). It is the universal symplectically oriented commutative ring
T-spectrum.
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2 I. PANIN AND C. WALTER

Therefore there is a unique morphism ¢: MSp — BO of commutative monoids in SH ()
with @(thMSP) = thBO. Our main result is the following theorem. Our notation is that for a
motivic space Y and a bigraded cohomology theory we write A**(Y) = P, ;7 A7(Y') and
AY2(Y) = @,y A™2(Y). A motivic space Y is small if Homg(s)(3FY, —) commutes
with arbitrary coproducts.

Theorem 1.1. Let S be a reqular noetherian separated scheme of finite Krull dimension with
% € I'(S,Og). For all small pointed motivic spaces Y over S the map

@: MSP™*(Y) @ppgpi 2+ () BO™? (pt) = BO™*(Y).
iduced by @ is an isomorphism.

This has as a consequence the result mentioned in the abstract. For a pair (X, U) consisting
of a smooth S-scheme of finite type X and an open subscheme U, there is a quotient pointed
motivic space X, /U;. We define MSp™*(X,U) = MSp**(X,/Uy) and BO"*(X,U) =
BO**(X,/U;). There are natural isomorphisms BOP/(X,U) = KOYI_(X,U) with the
hermitian K-theory of X with supports in X — U as defined by Schlichting [11]. The weight
q is the degree of the shift in the duality used for the symmetric bilinear forms on the chain
complexes of vector bundles.

For a field k of characteristic not 2 the ring BO*?*(k) is not large. For all i one has
BO®4 (k) = GW (k) and BO®+44+2(k) = 7 All members of BO%%(k) therefore come from
composing endomorphisms in SH (k) of the sphere T-spectrum 1 = X¥pt, with the unit
e: 1 — BO of the monoid. (See Morel 3, Theorem 4.36] and Cazanave [1] for calculations of
the endomorphisms of the sphere T-spectrum.) Consequently ¢%9: MSp®?(k) — BO%°(k)
is surjective. We do not know what happens in other bidegrees.

This is the fourth in a series of papers about symplectically oriented motivic cohomology
theories. All depend on the quaternionic projective bundle theorem proven in the first paper

[8]-
2. PRELIMINARIES

Let S be a Noetherian separated scheme of finite Krull dimension. We will be dealing with
hermitian K-theory, and we prefer avoiding the subtleties of negative K-theory, so we will
assume as we did in [7] that S is regular and that 2 € I'(S, Og). Let 8m/S be the category of
smooth S-schemes of finite type. Let 8mOp/S be the category whose objects are pairs (X, U)
with X € 8m/S and U C X an open subscheme and whose arrows f: (X,U) — (X',U’) are
morphisms f: X — X’ of S-schemes with f(U) C U’. Note that all X in 8m/S have an
ample family of line bundles.

A motivic space over S is a simplicial presheaf on 8m/S. We will often write pt for the base
scheme regarded as a motivic space over itself. Inverting the motivic weak equivalences in
the category of pointed motivic spaces gives the pointed motivic unstable homotopy category
H,(S).

Let T = A'/(A! — 0) be the Morel-Voevodsky object. A T-spectrum M is a sequence of
pointed motivic spaces (Mg, My, Mo, . ..) equipped with structural maps o,,: My AT — My 41.
Inverting the stable motivic weak equivalences gives the motivic stable homotopy category
SH(S). A pointed motivic space X has a T-suspension spectrum X3°X. For any T-spectrum
M there are canonical maps of spectra

Up: DF My (—n) — M. (1)
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Both He(S) and SH(S) are equipped with closed symmetric monoidal structures, and
YF: He(S) — SH(S) is a strict symmetric monoidal functor. The symmetric monoidal
structure (A,1g = XPpty) on the homotopy category SH(S) can be constructed on the
model category level using symmetric T-spectra.

Any T-spectrum A defines a cohomology theory on the category of pointed motivic spaces.
Namely, for a pointed space (X, z) one sets AP9(X,z) = Hompy, () (XF (X, x),XP9(A)) and
A (X, 2) = D, ez API(X, z). We write (somewhat inconsistently)

A2 (X, .1‘) _ @ A4i,2i(X’ .%')
1€EZL

For an unpointed space X we set AP4(X) = AP4(X, +), with A**(X) and A*?*(X) defined
accordingly. We will not always write the pointings explicitly.

Each Y € 8m/S defines an unpointed motivic space which is constant in the simpli-
cial direction Homyg,,/s(—,Y). So we regard smooth S-schemes as motivic spaces and set
APYY) = APY(Y,,+). Given a monomorphism U < Y of smooth S-schemes, we write
APA(Y,U) = API(Y, JU, U UL ).

A commutative ring T-spectrum is a commutative monoid (A, u,e) in (SH(S), A, 1).

The cohomology theory A** defined by a commutative ring T-spectrum is a ring cohomology
theory satisfying a certain bigraded commutativity condition described by Morel. Namely, let
e € A%0(pt) be the element such that X2¢ € Homgp sy (TAT, TAT) is the map exchanging the

two factors T. Then for o € AP9(X,z) and § € AP (X, x) we have aU S = (—1)P' <% U .
In particular, A*?*(X, x) is contained in the center of A**(X,x).

We work in this text with the algebraic cobordism T-spectrum MSp of [6, §6] and the
hermitian K-theory T-spectrum BO of [7, §8]. The spectrum MSp is a commutative ring
T-spectrum because it is naturally a commutative monoid in the category of symmetric 7/\2-
spectra. The T-spectrum BO has a commutative monoid structure as shown in [7, Theorem
1.3].

3. THE FIRST PONTRYAGIN CLASS p1(E, ¢)

Let V' be a vector bundle over a smooth S-scheme X with zero section z: X — V. The
Thom space of V is the quotient motivic space ThV = V/(V — z(X)). It is pointed by the
image of V' — z(X). It comes with a canonical structure map z: X, — ThV induced by the
zero section. For the trivial bundle A™ — pt one has Th A" = T"",

We write H for the trivial rank 2 symplectic bundle ((‘)@2, (_01 (1))) The orthogonal direct
sum H®™ is the trivial symplectic bundle of rank 2n.

The most basic form a symplectic orientation is a symplectic Thom structure [8, Definition
7.1]. We will use the following version of the definition.

Definition 3.1. Let (A, i, e) be a symmetric ring T-spectrum. A symplectic Thom structure
on the cohomology theory A™* is a rule which assigns to each rank 2 symplectic bundle (E, ¢)
over an X in 8m/S an element th(E, ¢) € A*2(Th E) = A*2(E, E — X) with the following
properties:
(1) For an isomorphism u: (F,¢) = (E1, ¢1) one has th(E, ¢) = u* th(Eq, ¢1).
(2) For a morphism f:Y — X with pullback map fg: f*E — E one has fjth(E,¢) =
th(f*E, f*¢).
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(3) For the rank 2 trivial symplectic bundle H over pt the map
— X th(H): A%*(X) — AT P2(X x A% X x (A? —0))

is an isomorphism for all X.

The Pontryagin class of (E, ) is p1(E,¢) = —2*th(E,¢) € A%?(X) where z: X — E is the
zero section.

The sign in the Pontryagin class is simply conventional. It is chosen so that if A®* is an
oriented cohomology theory with an additive formal group law, then the Chern and Pontryagin
classes satisfy the traditional formula p;(E, ¢) = (—1)co; (E).

From Mayer-Vietoris one sees that for any rank 2 symplectic bundle

Uth(E,¢): A**(X) = A™*(E,E — X)
is an isomorphism.

The quaternionic Grassmannian HGr(r,n) = HGr(r,H®™) is defined as the open sub-
scheme of Gr(2r,2n) = Gr(2r,H®") parametrizing subspaces of dimension 2r of the fibers
of H®™ on which the symplectic form of H®" is nondegenerate. We write UgGr(rn) for the
restriction to HGr(r,n) of the tautological subbundle of Gr(2r,2n). The symplectic form
of H®™ restricts to a symplectic form on UgGr(r,n)y which we denote by ¢pgy(rn). The pair
(UerGr(rm)s PHGr(rn)) 18 the tautological symplectic subbundle of rank 2r on HGr(r,n).

More generally, given a symplectic bundle (E, ¢) of rank 2n over X, the quaternionic Grass-
mannian bundle HGr(r,E, ¢) is the open subscheme of the Grassmannian bundle Gr(2r, E)
parametrizing subspaces of dimension 2r of the fibers of £ on which ¢ is nondegenerate.

For r = 1 we have quaternionic projective spaces and bundles HP™ = HGr(1,n + 1) and
HP(E,¢) = HGr(1,E, ).

The quaternionic projective bundle theorem is proven in [8] using the symplectic Thom
structure and not any other version of a symplectic orientation. It is proven first for trivial
bundles.

Theorem 3.2 ([8, Theorem 8.1]). Let (A, u,e) be a commutative ring T-spectrum with a
symplectic Thom structure on A**. Let (Ugpn,pppn) be the tautological rank 2 symplectic
subbundle over HP™ and t = py(Ugpn,pgpn) € AY2(HP™) its Pontryagin class. Then for
any X in 8m/S we have an isomorphism of bigraded rings

A (HP™ x X) = AS*(X)[t]/ (™).
A Mayer-Vietoris argument gives the more general theorem [8, Theorem 8.2].

Theorem 3.3 (Quaternionic projective bundle theorem). Let (A, u,e) be a commutative ring
T-spectrum with a symplectic Thom structure on A**. Let (E, ¢) be a symplectic bundle of rank
2n over X, let (U, ¢|y) be the tautological rank 2 symplectic subbundle over the quaternionic
projective bundle HP(E, ¢), and let t = p1(U, ¢|y) be its Pontryagin class. Then we have an
isomorphism of bigraded A**(X)-modules

(Lt ") A (X) @ A (X) - - B AY(X) — A (HP(B, 8)).

Deﬁnition 3.4. Under the hypotheses of Theorem 3.3 there are unique elements p;(F, ¢) €
A%2(X) for i = 1,2,...,n such that

" _pl(E7 ¢) U tnil +p2(E7 ¢) U tn72 -t (_1)npn(E7 ¢) =0.
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The classes p;(E, ¢) are called the Pontryagin classes of (E, ¢) with respect to the symplectic
Thom structure of the cohomology theory (A4,0). For i > n one sets p;(E,¢) = 0, and one
sets po(E, ¢) = 1.

Corollary 3.5. The Pontryagin classes of a trivial symplectic bundle vanish: p;(H®"™) = 0.
The Cartan sum formula holds for Pontryagin classes [8, Theorem 10.5]. In particular:

Theorem 3.6. Let (A, u,e) be a commutative ring T-spectrum with a symplectic Thom struc-
ture on A**. Let (E,¢) and (F,v) be symplectic bundles over X. Then we have

pi((E,¢) ® (F,9)) = p1(E, ¢) + p1(F, ). (2)
We also have the following result [8, Proposition 8.5].

Proposition 3.7. Suppose that (E,¢) is a symplectic bundle over X with a totally isotropic
subbundle L C E. Then for all i we have

pi(B,9) =p (/L@ (Lor, (5, %),
This is because there is an A'-deformation between the two symplectic bundles.

Definition 3.8. The Grothendieck-Witt group of symplectic bundles GW = (X) is the abelian
group of formal differences [E, ¢] — [F, 1] of symplectic vector bundles over X modulo three
relations:

(1) For an isomorphism u: (E, ¢) = (Eq, ¢1) one has [E, ¢] = [Ey, ¢1].

(2) For an orthogonal direct sum one has [(E, ¢) & (E1, ¢1)] = [E, ¢| + [En, ¢1].

(3) If (E, ¢) is a symplectic bundle over X with a totally isotropic subbundle L C E, then

we have [E,¢] = [L+/L,¢]+ [La LY, (% {)]
The Grothendieck- Witt group of orthogonal bundles GW T (X) is defined analogously.

Theorem 3.9. Let (A, u,e) be a commutative ring T-spectrum with a symplectic Thom struc-
ture on A**. Then the associated first Pontryagin class induces a well-defined additive map

p1: GW(X) = AM(X)
which is functorial in X.

In [10] Schlichting constructed hermitian K-theory spaces for exact categories. This gives
hermitian K-theory spaces KO(X) and KSp(X) for orthogonal and symplectic bundles on
schemes. Their my are GWT(X) and GW ™ (X) respectively. In [11] he constructed Hermitian
K-theory spaces KO (X,U) for complexes of vector bundles on X acyclic on the open
subscheme U equipped with a nondegenerate symmetric bilinear form for the duality shifted
by m. For an even integer 2n an orthogonal bundle (U,v) gives a chain complex U|[2n]
equipped with a nondegenerate symmetric bilinear form ¢[4n]: U[2n] ®¢, U[2n] — Ox[4n] in
the symmetric monoidal category D®(V By). For an odd integer 2n + 1 a symplectic bundle
(E, ¢) gives a chain complex E[2n+1] equipped with a nondegenerate symmetric bilinear form
¢[An+2]: E2n+1] ®p, E[2n+1] — Ox[4n+2]. These functors induce homotopy equivalences
of spaces KO(X) — KOW(X) and KSp(X) — KO +2/(X) [11, Proposition 6].

The simplicial presheaves X — KO (X) are pointed motivic spaces. Dévissage gives
schemewise weak equivalences KOM(X) — KOPHI(X x A', X x (A' — 0)) which are
adjoint to maps KOM x T — KO, These are the structural maps of a T-spectrum
(KO, KoM KOWP | . ) of which our BO is a fibrant replacement [7, §§7-8]. One has
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KOZW(X, U) = BO™ #(X, /U,) for all i > 0 and n. Hence BO*™?"(X, /U,) is the
Grothendieck-Witt group for the usual duality shifted by n of symmetric chain complexes of
vector bundles on X which are acyclic on U.

Definition 3.10. The right isomorphisms are
unsign.trans,,,: GW™T(X) =, KO%‘W (X) = B08n,4n(X)
U,y — [U[Qn],w[éln]]
and
sign.transy, . o: GW ™ (X) =, KO([)4n+2] (X) = BOSH44n+2( x)
[B,¢] — —[E[2n+ 1], ¢[4n + 2]]

The sign in sign.transy, 5 is chosen so that it commutes with the forgetful maps to Ky(X),

where we have [E] = —[E[2n + 1]]. Most authors of papers on Witt groups do not use this
sign because Witt groups do not have forgetful maps to Ky(X).
Definition 3.11. The periodicity elements Bz € BO®*(pt) and ﬁgl € BO 8 4(pt) corre-
spond to the unit 1 = [Ox, 1] € GWT(X) under the isomorphisms BO®*(pt) = GW+ (pt) =
BO~%~4(pt) of Definition 3.10.

We have the composition

sign.trans,

B BOM(X) ¢ _—= QW™ (X) = AY*(X) (3)

The Thom classes for hermitian K-theory are constructed by the same method that Ne-
nashev used for Witt groups [4, §2]. Suppose we have an SL,-bundle (E, \) consisting of a
vector bundle 7: F — X of rank n and A: Ox = det E' an isomorphism of line bundles. The
pullback 7*FE = E@® E — FE has a canonical section Apg, the diagonal. There is a Koszul
complex

K(E)= (0 - A"m*EY - A" '7EY - ... - A*7*EY - EY — O — 0)
in which each boundary map the contraction with Ag. It is a locally free resolution of the
coherent sheaf 2,0x on E. There is a canonical isomorphism O(E,\): K(E) — K(E)"[n]
induced by A which is symmetric for the shifted duality.

Definition 3.12. In the standard special linear Thom structure on BO the Thom class of the
special linear bundle (E, \) of rank n is

thBO(E,\) = [K(E),0(E,\)] € KO (E,E — X) = BO*"(E,E — X)

In the standard symplectic Thom structure on BO the Thom class of the symplectic bundle
(E, ¢) of rank 2r is

thBO(E, ¢) = thBO(E, \;) € BO"?(E,E — X)
for Ay = (Pf ¢)~! where Pf ¢ € I'(X,det EV) denotes the Pfaffian of ¢ € I'(X,A?EY).
The corresponding first Pontryagin class of a rank 2 symplectic bundle is therefore
prO(E,¢) = —[K(E),0(E,A\)][x € BO"*(X).

A short calculation shows that this is the class which corresponds to [E, ¢] — [H] € GW~(X)
under the isomorphism sign.trans,. The symplectic splitting principle [8, Theorem 10.2] and
Theorem 3.6 now give the next proposition.
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Proposition 3.13. Let (E,¢) be a symplectic bundle of rank 2r on X. Then pB©(E,¢) €
BO"2(X) is the class which corresponds to [E,¢] — r[H] € GW~(X) under the isomorphism
sign.trans,.

Let X =| | X; be the connected components of X. We consider the elements and functions
1x, € BO%(X), rkyx,: BOY(X) — Z, h € BO*(pt). (4)

The first is the central idempotent which is the image of the unit 1x, € BO%?(X;). The second

is the rank function on the Grothendieck-Witt group K O([)z} (X) of bounded chain complexes
of vector bundles. The third is the class corresponding to [H] € GW ™ (pt) under the right
isomorphism sign.trans,: GW = (pt) = BO*?(pt).

Let pBO: BO*?(X) — BO*?(X) be the map of (3).

Corollary 3.14. For all o € BO**(X) we have o = pPO(a) + h [[; 1 (tkx,a)1x,.

4. SYMPLECTICALLY ORIENTED COMMUTATIVE RING T-SPECTRA

Embed H®" C H®>® as the direct sum of the first n summands. The ensuing filtration
H C H®2 c H®3 C ... for each r a direct system of schemes

pt = HGr(r,r) = HGr(r,r +1) = HGr(r,r +2) < --- .
The ind-scheme and motivic space
BSpay = HGr(r,00) = colim, >, HGr(r,n)

is pointed by h,: pt = HGr(r,r) < BSps,. Each HGr(r,n) has a tautological symplectic
subbundle (U HGr(rmn) ® HGr(nn)), and their colimit is an ind-scheme Upggy,, which is a vector
bundle over the ind-scheme BSps,. It has a Thom space ThUpggy,, just like for ordinary
schemes. We write

MSp,, = ThUpsp,, = ThUggr(r,00) = colimy>r Th UGy (rn)-
We refer the reader to [6, §6] for the complete construction of MSp as a commutative monoid

in the category of symmetric 7/\%-spectra. The unit comes from the pointings h,.: pt < BSpo,,
which induce canonical inclusions of Thom spaces

er: T — MSp,,.

Let (A, p,e) be a commutative ring T-spectrum. The unit of the monoid defines the unit

element 14 € A%9(pt,). Applying the T-suspension isomorphism twice gives an element
Y214 € AY2(TH?) = A%2(Th A?).

Definition 4.1. A symplectic Thom orientation on a commutative ring T-spectrum (A, u, e)
is an element th € A%2(MSp,) = A*2(ThUppe) with th|pre = 214 € AY2(T"2).

The element th should be regarded as the symplectic Thom class of the tautological quater-
nionic line bundle U p= over H P.

Example 4.2. The standard symplectic Thom orientation on algebraic symplectic cobor-
dism is the element th™MSP = yy € MSp4’2(MSp2) corresponding to the canonical map
ug: LFMSpy(—2) — MSp described in (1).

The main theorem of [6] gives seven other structures containing the same information as a
symplectic Thom orientation. First:
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Theorem 4.3 ([6, Theorem 10.2]). Let (A, pu,e) be a commutative monoid in SH(S). There
18 a canonical bijection between the sets of

(a) symplectic Thom structures on the ring cohomology theory A™* such that for the trivial
rank 2 symplectic bundle H over pt we have th(H) = Y214 in AY2(T"?), and

(o) symplectic Thom orientations on (A, u,e).

Thus a symplectic Thom orientation determines Thom and Pontryagin classes for all sym-
plectic bundles.

Lemma 4.4. In the standard special linear and symplectic Thom structures on BO we have
th(A'1) = Srlpo and th(H) = ¥21p0.

Proof. The structural maps KOM AT — KO of the spectrum are by definition [7, §§]
adjoint to maps KO — Hom, (7, KO[”H}) which are fibrant replacements of maps of
simplicial presheaves

(- X (K(9),0(0,1))),: KOM(—) = KoPY(— AT)

which act on the homotopy groups as — U [K(0),0(0,1)] = — U th(A',1). So we have
Yrlpo = th(Al 1). It then follows that we have th(H) = th(Al,1)"? = ¥21p0. O

The standard symplectic Thom structure on BO thus satisfies the normalization condition
of Theorem 4.3. It corresponds to the standard symplectic Thom orientation on hermitian
K-theory thB® € BO*2(MSp,). It is given by the formulas of Definition 3.12 for (F,$) =
(Ugpoe, prrpe) tautological subbundle on H P> = BSp,.

A symplectically oriented commutative T-ring spectrum is a pair (A,9) with A a commu-
tative monoid in SH(S) and ¥ a symplectic Thom orientation on A. We could write the
associated Thom and Pontryagin classes as th'(E, ¢) and p?(E, ¢).

A morphism of symplectically oriented commutative T-ring spectra ¢: (A,9) — (B,w) is
a morphism of commutative monoids with (1) = w. For such a ¢ one has ¢(th”(E,$)) =
th®(E, ¢) and (pY (E, ¢)) = pF (E, ¢) for all symplectic bundles.

Theorem 4.5 (Universality of MSp). Let (A, i, e) be a commutative monoid in SH(S). The
assignments ¢ (p(thMSp) gives a bijection between the sets of

(¢) morphisms ¢: (MSp, pimsp, emsp) — (4, i1, €) of commutative monoids in SH(S), and

(o) symplectic Thom orientations on (A, pu,e).

This is [6, Theorems 12.3, 13.2]. Thus (MSp, thmsp) is the universal symplectically ori-
ented commutative T-ring spectrum.

Let ¢: (A,9) — (B,w) be a morphism of symplectically oriented commutative T-ring
spectra. For a space X the isomorphisms X A pt; =2 X = pty A X make A**(X) into a
two-sided module over the ring A**(pt) and into a bigraded-commutative algebra over the
commutative ring A*?*(pt). The morphism ¢ induces morphisms of graded rings

Gx : AYH(X) @ gar2s () B2 (pt) — B**(X)
Gt AMP(X) @ gav2e ) B (pt) — B*?*(X)
which are natural in X, with the pullbacks acting on the left side of the ®.

(5)

Theorem 4.6 (Weak quaternionic cellularity of MSp,,.). Let p: (A,9) — (B,w) be a mor-
phism of symplectically oriented commutative T-ring spectra. Then for all r the natural mor-
phism of graded rings

PMSp,, : AT (MSPy,) @ gtee () BY#(pt) — B> (MSpy,)
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s an isomorphism.
Proof. Let tq,...,t, be independent indeterminates with ¢; of bidegree (4i,2i). By [6, Theo-
rems 9.1, 9.2, 9.3] there is a commutative diagram of isomorphisms

ti—pY (UBspy, #BSps,.)

~

A (pt)[[tr, - ] » A**(BSpay)

xtrlfv Nlu th? (UBSpy, $BSps,.)

tr A (pt)[[te, . . ., t,]]o™

\ A*+4r,*+2r (Msp2r)

R

The notation on the left refers to homogeneous formal power series. There is a similar diagram
for (B,w). The maps ¢: A®* — B** commute with the maps of the two diagrams because

¢ sends the Thom and Pontryagin classes of (A,v) onto the Thom and Pontryagin classes of

. _4%.2 . . .
(B,w). The morphism ‘PIJI’S;Q is an isomorphism because
T

tr A (pt)[[t1, - 8 ]]"™ @ paeze gy B (pt) — 6, B (pt)[[t, . . 1))

is an isomorphism. O

5. WHERE THE CLASS p1 TAKES THE PLACE OF HONOUR

We suppose that (U,u) — (BO,thB©) is a morphism of symplectically oriented commuta-

tive ring T-spectra. We set
Us*(X) = U™*(X) Q@ a= 2+ (pt) BO2*(pt),
64*,2* (X) _ U4*,2* (X) ®U4*v2*(pt) B04*’2* (pt),

and we write ¢x for the morphisms of (5).
Theorem 5.1. Let (U,u) — (BO,thB®) be a morphism of symplectically oriented com-
mutative ring T-spectra. Suppose there exists an N such that for all n > N the maps
@u,, : U2 (Uy,) — BOY2(Uy,) are isomorphisms for all i. Then for all small pointed

motivic spaces X and all (p,q) the homomorphism ¢x : UP4(X) — BOPY(X) is an isomor-
phism.

Before turning to the theorem itself, we prove a series of lemmas. The first three demonstrate
the significance of the first Pontryagin class for this problem.

Lemma 5.2. The functorial map ¢x: UH?(X) — BO*2(X) has a section sx which is func-
torial in X.

Proof. Write HGr = colim, HGr(r,c0). According to Theorem |7, Theorem 10.1, (11.1)]
there is an isomorphism a la Morel-Voevodsky 7: (Z x HGr,(0,2¢)) = KSp in He(S) such
that the restrictions are
77—|{i}><HGr(n,2n) = [uHGr(n,2n)a ¢HGr(n,2n)] + (Z - n)[H]
in KSpo(HGr(n,2n)) = GW~(HGr(n,2n)). Composing with the isomorphisms in He(.5)
(Z x HGr, (0,20)) = KSp 21 Kol2 =1 K02,

where the trans; comes from the translation functor (¥, ¢) — (F[1], ¢[2]), and the —1 is the
inverse operation of the H-space structure. It gives us an element

7 € KOPNZ x HGr, (0,20)) = BO*2(Z x HGr, (0, 0))
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corresponding to the composition. By Corollary 3.14 we have

Tol{iyx HGr(n,2n) = PLWUHGr(n,2n)> PHGr(n,2n)) T h.
For any symplectically oriented cohomology theory A** we have [7, (9.3)]

AL x HGr) = (A% (pt)[[p1, pa, p3s - - ]]"™) <7
For such a theory let

%rkA = (ilgar)icz € A®°(Z x HGr), it = (p1)iez € AY2(Z x HGr)
Then 7 = p]130 + %rkBoh. Consider the element
s=py ® 1o + %rkU ®h e UY(Z x HGr).

Clearly one has p(s) = 7. The element s may be regarded as a morphism of functors
Homy,s)(—,Z x HGr) — U*2(—) by the Yoneda lemma. The composite map

HOmH.(S)(_)Z X HGT) i) U4’2(_) 2} BO4,2(_)

coincides with a functor transformation given by the adjoint ¥°(Z x HGr)(—2) — BO of

the motivic weak equivalence 79: Z x HGr — KO®. Thus for every pointed motivic space
X the map

sx: BO"(X) = Homp,(s)(X,KO¥) = Homy, 5 (X,Z x HGr) = U**(X)
is a section of the map @gx: U?(X) — BO™*?(X) which is natural in X. O

Lemma 5.3. For any integer i the functorial map @x : USTH44+2(X) — BO® 4442 (X)) has
a section tx which is functorial in X.

Proof. We have BO®*T44+2 — BQ*?2 [ﬁg,ﬁgl] for the periodicity element 8z € BO%4(pt) of
Definition 3.11. So any element of BO®* 4472 (X) may be written uniquely in the form aU 3}
with @ € BO*?(X) and i € Z. We define

tx(aU ﬁé) =sx(a)U(ly® ﬁé) € U8*+4’4*+2(X).
Then tx is a section of @x which is natural in X. O

Lemma 5.4. If X is a small pointed motivic space and i is an integer, then for any a €
U424 X) there exists an n > 0 with txpazm 0 Gxaraze (T20a) = Y20,

Proof. We may assume that o = a ® b with @ € U**24(X) and b € BO*~44:21=2d (1) For a
small motivic space X there is a canonical isomorphism [12, Theorem 5.2]

U4d,2d(X) = colim,, HomH.(S) (X A T/\m’ U2d+m)'

This isomorphism implies that there exists an integer n > 0 such that $2%a = f*[ugg9,] for
an appropriate map f: X AT"?" — Usg o, in He(S). We may assume that d +n > N and
that n + ¢ is odd.

We have [uggi9,] ® b € UtnT4:2n42i(,, . o). By hypothesis

- . T74n—+4i,2n+2i An-+4i,2n+2i
@U2d+2n : U It Z(U2d+2n) — BO ks, 2nt Z(UQd—I—Qn)
is an isomorphism. So its section ty,,,,, is the inverse isomorphism. Hence we have

(tU2d+2n o @U2d+2n)([u2d+2n] ® b) = [u2d+2n] ®b.
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Then by the functoriality of U, ¢t and ¢ we have
SFa = f*([uadr2n] ©b) = [* 0t 0, © PUss,a, ([U2dt2n] ©D) = txapron 0 Pxarron (BF ). O

Lemma 5.5. Suppose for some (p,q) that the homomorphism @x: UP4(X) — BOP(X) is
an isomorphism for all small pointed motivic spaces X. Then the same holds for (p — 1,q)
and (p—1,q—1).

Proof. For (p —1,q) this is because the suspension g1 induces isomorphisms Ur—La(X) =
UP4(X A S') and similar isomorphisms for U and BO, and these are compatible with ¢ and
@. For (p —1,q — 1) use the suspension Xg,, . O

Proof of Theorem 5.1. First suppose (p,q) = (8¢ + 4,4i + 2) for some i. Then for any small
motivic space X the map px: UST44+2(X) — BO¥44H2(X) is surjective because it has
the section tx of Lemma 5.3. To show it injective, we suppose « is in its kernel. The suspension
Yr is compatible with ¢ and @, so we have @xapazm (E3a) = 2%y (a) = 0. By Lemma
5.4 we therefore also have E%”oz = 0. But E2T” induces an isomorphism of cohomology groups.
So we have a = 0. Thus @gx: UP4(X) — BOP%(X) is an isomorphism for all small motivic
spaces X for (p,q) = (8¢ +4,4i + 2).

The result for other values of (p, q) follows from Lemma 5.5 and a numerical argument. [J

6. LAST DETAILS

Proof of Theorem 1.1. By the universality of the symplectically oriented commutative ring
T-spectrum (MSp, th™MSP) (Theorem 4.5) there is a unique morphism ¢: MSp — BO of
commutative ring T-spectra with @(th™MSP) = thBO . It induces the morphisms of (5):

px: MSP**(X) @ppgpie 2+ () BO™ (pt) = BO™*(X),
¢x 1 MSp™ (X)) @ppgpie 2+ () BO™ (pt) = BO™?(X).

The second morphism, with the bidegrees (4i,2i) only, is an isomorphism for X = MSp,,. for
all 7 by Theorem 4.6. So all the hypotheses of Theorem 5.1 hold with (U,u) = (MSp, thMSP),
The conclusions of Theorem 5.1 imply Theorem 1.1. U
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