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Abstract. Given a non-degenerate quadratic form over a field such that its maximal
orthogonal grassmannian is 2-incompressible (a condition satisfied for generic quadratic
forms of arbitrary dimension), we apply the theory of upper motives to show that all other
orthogonal grassmannians of this quadratic form are 2-incompressible. This computes
the canonical 2-dimension of any projective homogeneous variety (i.e., orthogonal flag
variety) associated to the quadratic form. Moreover, we show that the Chow motives
with coefficients in F2 (and therefore also in any field of characteristic 2, [2]) of those
grassmannians are indecomposable. That is quite unexpected, especially after a recent
result of [9] on decomposability of the motives of incompressible twisted grassmannians.

In this note, we are working with the 2-motives of certain smooth projective varieties
associated to quadratic forms over fields of arbitrary characteristic. We refer to [3] for
notation and basic results concerning the quadratic forms. By 2-motives, we mean the
Grothendieck Chow motives with coefficients in the finite field F2 as introduced in [3].
We are using the theory of upper motives conceived in [5] and [7].

Let ϕ be a non-zero non-degenerate quadratic form over a field F (which may have
characteristic 2). For any integer r with 0 ≤ r ≤ (dimϕ)/2 we write Xr = Xr(ϕ) for the
variety of r-dimensional totally isotropic subspaces of ϕ.

For any r, the variety Xr is smooth and projective. It is geometrically connected if
and only if r 6= (dimϕ)/2. In particular, Xr is connected for any r if dimϕ is odd.
For even-dimensional ϕ and r = (dimϕ)/2, the variety Xr is connected if and only the
discriminant of ϕ is non-trivial.

If the variety Xr is not connected, it has two connected components and they are
isomorphic. In particular, the dimension ofXr is always the dimension of any its connected
component. Here is a formula for the dimension, where d := dimϕ:

dimXr = r(r − 1)/2 + r(d− 2r).

In the case where the quadratic form ϕ is “generic enough” (the precise condition is
formulated in terms of the varietyXr with maximal r), we are going to show (see Theorems
2.1, 3.1, and 4.1) that the 2-motive of Xr is indecomposable, if we are away from the two
exceptional cases described below (where the motive evidently decomposes).

Each of the both exceptional cases arises only if the dimension of ϕ is even and the
discriminant of ϕ is trivial. The first case is the case of r = (dimϕ)/2, where the variety
Xr has two connected components. Our assumption on ϕ ensures that the 2-motive of
each component of Xr is indecomposable.
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The second case is the case of r = (dimϕ)/2 − 1, where the variety Xr is a rank r
projective bundle over a component of Xr+1. Therefore, the 2-motive of Xr is a sum of
shifts of r + 1 copies of the 2-motive of a component of Xr+1, and the summands of this
decomposition are indecomposable.
We recall that a connected smooth projective variety X is called 2-incompressible, if its

canonical 2-dimension, as defined in [3, §90], takes its maximal value dimX . This in par-
ticular implies that any rational map X 99K X is dominant, i.e., that X is incompressible.
Any projective homogeneous varietyX having indecomposable 2-motive, is 2-incompres-

sible, [5, §2e]. Therefore our indecomposability results imply 2-incompressibility of the
corresponding varieties.
Let us point out that our incompressibility results compute the canonical 2-dimension of

any projective homogeneous variety (i.e., orthogonal flag variety) associated to a quadratic
form which is “generic enough”. This is so indeed because for an arbitrary non-degenerate
quadratic form ϕ and an arbitrary sequence of integers r1, . . . , rk with 0 < r1 < · · · <
rk ≤ (dimϕ)/2 we have an orthogonal flag variety Xr1,...,rk , the variety of flags of totally
isotropic subspaces of ϕ of dimensions r1, . . . , rk, and the canonical 2-dimension (of a
component) of this variety coincides with the canonical 2-dimension of (a component of)
Xrk .
The motivic indecomposability of the varieties Xr contrasts with a recent result of M.

Zhykhovich [9] saying that for any prime p, any central division F -algebra D of degree pn

for some n, and any r with 0 < r < n (and r 6= 1 if p = 2), the p-motive of the variety of
the right ideals of reduced dimension pr in D (this variety is known to be p-incompressible
and is a twisted form of the grassmannian of pr-dimensional subspaces in a pn-dimensional
vector space) is decomposable.
The paper is organized as follows. In §1 we recall the necessary aspects of the theory of

upper motives. In the next sections we establish our main result: in §2 for odd-dimensional
forms (Theorem 2.1), in §3 for even-dimensional forms of trivial discriminant (Theorem
3.1), and finally in §4 for even-dimensional forms of non-trivial discriminant (Theorem
4.1).

1. Upper motives

In this section, ϕ is an arbitrary non-degenerate quadratic form over F . We are con-
sidering the corresponding varieties Xr with 0 ≤ r ≤ (dimϕ)/2.
We recall that the following Krull-Schmidt principle holds: for any finite separable field

extension K/F , any summand of the 2-motive of the F -variety (Xr)K decomposes and in
a unique way in a finite direct sum of indecomposable motives, see [1] and/or [7, Corollary
2.2].
Below we are assuming that K = F if the dimension of ϕ is odd or if the dimension

of ϕ is even and the discriminant of ϕ is trivial. If the dimension of ϕ is even and the
discriminant of ϕ is non-trivial, then K = F or K is the discriminant field extension
of F (which is always separable and quadratic). Note that in any case the connected
components of the variety (Xr)K are isomorphic.
Let X be a connected component of (Xr)K . We consider X as an F -variety. The

0-codimensional Chow group of the 2-motive of X is an F2-vector space of dimension
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1. Therefore the complete decomposition of the 2-motive of X contains precisely one
summand summand U((Xr)K) with the same property: the 0-codimensional Chow group
of U((Xr)K) is an F2-vector space of dimension 1. The motive U((Xr)K) is determined
by ϕ, r and K uniquely up to an isomorphism. We call it the upper motive of (Xr)K .

Here are the main results of [5] and [7] applied to the varieties Xr:

Theorem 1.1. Any indecomposable summand of the 2-motive of Xr is isomorphic to a
shift of the motive U((Xs)K) for some K as above and for some s ≥ r.

Some additional information can be derived from the proofs given in [5] and [7]:

Lemma 1.2. Let ϕ and r be such that Xr is geometrically connected. Let L/F be a field
extension such that the field extension L(Xr)/F (Xr) is purely transcendental. LetM be an
indecomposable summand of the 2-motive of Xr. Let U((Xs)KL)(j) be an indecomposable
summand of ML with the smallest shifting number j (with some s and some K). Then
M ≃ U((Xs)K)(j) (with the same s, K, and j).

Proof. The case of L = F (Xr) is actually proved in the proofs of [5, Theorem 3.5] and [7,
Theorem 1.1]. It implies the general case because the extension L(Xr)/F (Xr) is purely
transcendental. �

Remark 1.3. Lemma 1.2 will provide us with a doubled amount of information if we
take into account the duality, [3, §65]. Namely, if M is a summand of the 2-motive of Xr,
then M∗(dimXr) is also a summand of the 2-motive of Xr. Therefore, being interested
in understanding the summand M , we may apply Lemma 1.2 not only to M itself, but
also to M∗(dimXr).

We finish this section by discussing isomorphism criteria for the motives U(Xr)K easily
derived from the general isomorphism criterion for upper motives, [5, Corollary 2.15]. For
odd-dimensional ϕ, we have U(Xr) ≃ U(Xs) for some r < s if and only if the Witt index of
the quadratic form ϕF (Xr) is ≥ s (informally speaking, this means that the splitting pattern
of ϕ “makes a jump” at least from r− 1 to s). For ϕ of even dimension 2n and of trivial
discriminant, we always have U(Xn−1) ≃ U(Xn); for r < s < n, we have U(Xr) ≃ U(Xs)
once again if and only if the Witt index of the quadratic form ϕF (Xr) is ≥ s. Finally, for
2n-dimensional ϕ of non-trivial discriminant, the isomorphism criterion for U(Xr) and
U(Xs) with r < s < n is the same, but we never have U(Xr) ≃ U(Xn) with r 6= n nor
we have U(Xr) ≃ U((Xs)K) with r, s 6= n. On the contrary, we have U(Xn) ≃ U((Xn)K),
where K is the discriminant extension. As to the criterion of isomorphism for the upper
motives of the F -varieties (Xr)K and (Xs)K , it coincides with the criterion for the K-
varieties (Xr)K and (Xs)K related to the quadratic form ϕK of trivial discriminant, the
case discussed above already.

2. Odd-dimensional quadratic forms

Let F be a field, n an integer ≥ 0, ϕ a non-degenerate (2n+ 1)-dimensional quadratic
form over F . We assume that the following equivalent conditions hold:

(1) the variety Xn is 2-incompressible;
(2) the 2-motive of the variety Xn is indecomposable;
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(3) the J-invariant of the quadratic form ϕ (as defined in [3, §88]) takes its maximal
value:

J(ϕ) = {1, 2, . . . , n}.

The equivalence (1) ⇔ (3) is proved in [3, §90]. The equivalence (2) ⇔ (3) follows from
[8]. Also, the equivalence (1) ⇔ (2) is a consequence of Theorem 1.1 and [4, Theorem
5.1].
The above conditions imply that the splitting pattern of ϕ “has no jumps”. This means

that the upper motives U(X0), U(X1), . . . , U(Xn) are pairwise non-isomorphic.
The conditions (1–3) are satisfied if the degree of any closed point on Xn is divisi-

ble by 2n. The condition on the closed points is satisfied if the even Clifford algebra
of ϕ is a division algebra. Finally, the condition on the even Clifford algebra is sat-
isfied if F = k(t0, . . . , t2n), where k is a field and t0, . . . , t2n are variables, and ϕ =
〈t0〉⊥[t1, t2]⊥ . . .⊥[t2n−1, t2n] (a sort of generic (2n+ 1)-dimensional quadratic form).

Theorem 2.1. Let ϕ be a non-degenerate (2n + 1)-dimensional quadratic form over a
field F such that the variety Xn is 2-incompressible. Then for any r with 0 ≤ r ≤ n, the
2-motive of the variety Xr is indecomposable. In particular, all Xr are 2-incompressible.

Proof. We induct on n. The induction base is the trivial case of n = 0. Now we assume
that n ≥ 1.
We do a descending induction on r. The induction base is the case of r = n which is

served by our assumption on ϕ. Now we assume that r < n. Since the case of r = 0 is
trivial, we may assume that r > 0.
Let L := F (X1). We have ϕL ≃ H⊥ψ, where ψ is a quadratic form over L of dimension

2(n− 1) + 1 and H is the hyperbolic plane. According to [3, §88], the assumption on the
J-invariant (assumption (3)) still holds for ψ.
For any s with 0 ≤ s ≤ n− 1, we write Ys for the variety Xs(ψ). By [6, Theorem 15.8],

the 2-motive of the L-variety (Xr)L decomposes in a sum of three summands:

M(Xr)L ≃M(Yr−1)⊕M(Yr)(i)⊕M(Yr−1)(j),

where i := (dimXr−dim Yr)/2 and j := dimXr−dim Yr−1. By the induction hypothesis,
each of these three summands is indecomposable. It follows (taking into account the
duality like in Remark 1.3) that if the motive of Xr (over F ) is decomposable, then it
has a summand M with ML ≃ M(Yr)(i) = U(Yr)(i). Note that U(Yr) ≃ U((Xr+1)L).
By Lemma 1.2, M ≃ U(Xr+1)(i), that is, U(Xr+1)L ≃ M(Yr), where U(Xr+1) is the
upper motive of the variety Xr+1. By the induction hypothesis, the 2-motive of Xr+1 is
indecomposable. In particular, U(Xr+1) =M(Xr+1). Therefore we have an isomorphism
M(Xr+1)L ≃ M(Yr) and, in particular, dimXr+1 = dimYr. However dimXr+1−dimYr =
2n− r − 1 > n− 1 ≥ 0. �

3. Even-dimensional quadratic forms of trivial discriminant

Let F be a field, n an integer ≥ 1, ϕ a non-degenerate (2n)-dimensional quadratic form
over F of trivial discriminant. In this case the variety Xn has two (isomorphic) connected
components, and we write X ′

n for a component of the variety Xn.
We assume that the following equivalent conditions hold:
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(1) the variety X ′

n is 2-incompressible;
(2) the 2-motive of the variety X ′

n is indecomposable;
(3) the J-invariant of the quadratic form ϕ takes its maximal value:

J(ϕ) = {1, 2, . . . , n− 1}.

The above conditions imply that the upper motives

U(X0), U(X1), . . . , U(Xn−2), U(Xn−1)

are pairwise non-isomorphic. We recall that U(Xn−1) ≃ U(Xn).
The conditions (1–3) are satisfied if the degree of any closed point on Xn is divisible

by 2n−1. The condition on the closed points is satisfied if the even Clifford algebra of ϕ is
the direct product of two copies of a division algebra. Finally, the condition on the even
Clifford algebra is satisfied if F is the discriminant quadratic extension over k(t1, . . . , t2n)
of the quadratic form [t1, t2]⊥ . . .⊥[t2n−1, t2n], where k is a field and t1, . . . , t2n are vari-
ables, and ϕ = ([t1, t2]⊥ . . .⊥[t2n−1, t2n])F (a sort of generic (2n)-dimensional quadratic
form of trivial discriminant).

Theorem 3.1. Let ϕ be a non-degenerate (2n)-dimensional quadratic form over a field
F such that the discriminant of ϕ is trivial and a component of the variety Xn is 2-
incompressible. Then for any r with 0 ≤ r ≤ n − 2, the 2-motive of the variety Xr is
indecomposable. In particular, Xr is 2-incompressible for such r.

Proof. We induct on n. The induction base is the trivial case of n = 1. Now we assume
that n ≥ 2.

We do a descending induction on r ≤ n− 2. Since the case of r = 0 is trivial, we may
assume that r > 0 (and, in particular, n ≥ 3).

Let L := F (X1). We have ϕL ≃ H⊥ψ, where ψ is a quadratic form over L of dimension
2(n − 1). The discriminant of ψ is trivial. According to [3, §88], the assumption on the
J-invariant holds for ψ.

For any s with 0 ≤ s ≤ n− 1, we write Ys for the variety Xs(ψ). By [6, Theorem 15.8],
the 2-motive of the L-variety (Xr)L decomposes in a sum of three summands:

M(Xr)L ≃M(Yr−1)⊕M(Yr)(i)⊕M(Yr−1)(j),

where, as before, i := (dimXr − dim Yr)/2 and j := dimXr − dimYr−1. By the induc-
tion hypothesis, the motive M(Yr−1) is indecomposable. However the motive M(Yr) is
indecomposable (if and) only if r 6= n− 2. Let us treat the case of r = n− 2 first.

In this case the complete decomposition of M(Yr) looks as follows:

M(Yn−2) ≃M(Y ′

n−1)⊕M(Y ′

n−1)(1)⊕ · · · ⊕M(Y ′

n−1)(n− 2),

where Y ′

n−1 is a component of the variety Yn−1. Therefore U(Xn) =M(X ′

n) is not a shift
of a summand of M(Xn−2). Indeed, otherwise

M(X ′

n)L ≃M(Y ′

n−1)⊕M(Y ′

n−1)(n− 1)

would be a shift of a summand of M(Xn−2)L but it is not because

M(Yn−2) = U(Yn−2) 6≃ U(Yn) =M(Y ′

n).

It follows that the motive of Xn−2 is indecomposable. This is the base case of our
descending induction on r. Below we assume that r < n− 2.
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Now each of the three summands of the above decomposition ofM(Xr)L is indecompos-
able. It follows that if the motive of Xr (over F ) is decomposable, then it has a summand
M with ML ≃ M(Yr)(i). By Lemma 1.2, M ≃ U(Xr+1)(i), that is, U(Xr+1)L ≃ M(Yr).
By the induction hypothesis, the 2-motive of Xr+1 is indecomposable. In particular,
U(Xr+1) = M(Xr+1). Therefore we have an isomorphism M(Xr+1)L ≃ M(Yr) and, in
particular, dimXr+1 = dimYr. However dimXr+1 − dim Yr = 2n− r − 2 > n ≥ 3. �

4. Even-dimensional quadratic forms of non-trivial discriminant

Let F be a field, n an integer ≥ 1, ϕ a non-degenerate (2n)-dimensional quadratic form
over F of non-trivial discriminant.
We assume that the following equivalent conditions hold:

(1) the variety Xn is 2-incompressible;
(2) the 2-motive of the variety Xn is indecomposable;
(3) the J-invariant of the quadratic form ϕ takes its maximal value:

J(ϕ) = {0, 1, 2, . . . , n− 1}.

The above conditions are satisfied if the degree of any closed point on Xn is divisible
by 2n. The condition on the closed points is satisfied if the even Clifford algebra of
ϕ is a division algebra (whose center is the discriminant quadratic extension). Finally,
the condition on the even Clifford algebra is satisfied if F = k(t1, . . . , t2n), where k is
a field and t1, . . . , t2n are variables, and ϕ = [t1, t2]⊥ . . .⊥[t2n−1, t2n] (a sort of generic
(2n)-dimensional quadratic form).

Theorem 4.1. Let ϕ be a non-degenerate (2n)-dimensional quadratic form over a field
F such that the discriminant of ϕ is non-trivial and the (therefore connected) variety
Xn is 2-incompressible. For any r with 0 ≤ r ≤ n, the 2-motive of the variety Xr is
indecomposable. In particular, all Xr are 2-incompressible.

Proof. We induct on n. The induction base is the trivial case of n = 1. Now we assume
that n ≥ 2.
We do a descending induction on r ≤ n. The induction base r = n holds by our

assumption on ϕ. Below we are assuming that r < n. Since the case of r = 0 is trivial,
we may assume that r > 0.
Let L := F (X1). We have ϕL ≃ H⊥ψ, where ψ is a quadratic form over L of dimension

2(n−1). Since F is algebraically closed in L, the discriminant of ψ is non-trivial. Moreover,
according to [3, §88], the assumption on the J-invariant holds for ψ.
For any s with 0 ≤ s ≤ n− 1, we write Ys for the variety Xs(ψ). By [6, Theorem 15.8],

the 2-motive of the L-variety (Xr)L decomposes in a sum of three summands:

M(Xr)L ≃M(Yr−1)⊕M(Yr)(i)⊕M(Yr−1)(j),

where i := (dimXr−dim Yr)/2 and j := dimXr−dim Yr−1. By the induction hypothesis,
each of the three summands of this decomposition is indecomposable. It follows that
if the motive of Xr (over F ) is decomposable, then it has a summand M with ML ≃
M(Yr)(i). By Lemma 1.2,M ≃ U(Xr+1)(i), that is, U(Xr+1)L ≃M(Yr). By the induction
hypothesis, the 2-motive of Xr+1 is indecomposable. In particular, U(Xr+1) =M(Xr+1).
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Therefore we have an isomorphism M(Xr+1)L ≃ M(Yr) and, in particular, dimXr+1 =
dimYr. However dimXr+1 − dim Yr = 2n− r − 2 > n− 2 ≥ 0. �
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