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Abstract. Formulae for the levels and sublevels of certain quaternion and
octonion algebras are established. Corollaries concerning the equality of levels
and sublevels of quaternion algebras with those of associated octonion algebras
are presented.

Let R be a not necessarily associative ring with unity. The level and sublevel of R,
respectively denoted by s(R) and s(R), are defined as follows:

s(R) = inf{n ∈ N | there exist x1, . . . , xn ∈ R such that
∑n

i=1 xi
2 = −1},

s(R) = inf{n ∈ N | there exist x1, . . . , xn+1 ∈ R \ {0} such that
∑n+1
i=1 xi

2 = 0}.
Let F be a field of characteristic different from 2. For a, b ∈ F×, the quaternion

algebra (a, b)F is a 4-dimensional F -vector space with basis {1, i, j, k} satisfying
i2 = a, j2 = b and ij = −ji = k. For a, b, c ∈ F×, the octonion algebra (a, b, c)F
is isomorphic to (a, b)F ⊕ (a, b)F e, where e2 = c, with its multiplication being
determined by (u1, v1)(u2, v2) = (u1u2 + cv2v1, v2u1 + v1u2), where u1, u2, v1, v2 ∈
(a, b)F (here, denotes conjugation).

The related problems of determining the numbers attainable as the levels and sub-
levels of quaternion and octonion algebras remain open, and motivate our investi-
gations. Given a, b ∈ F×, we study whether the level (respectively, the sublevel) of
(a, b)F equals that of (a, b, x)F ((x)).

We will provide a partial answer to these questions, by showing that the respective
equalities hold whenever the level or sublevel of (a, b)F belongs to an associated
family of intervals. Moreover, we will show that these equalities always hold for a
particular class of quaternion algebras, conjectured to contain members of level and
sublevel n for all n ∈ N (see [4]).

Throughout, we will employ standard concepts and notation regarding quadratic
forms. Our notation coincides with that employed in [3], aside from our usage of
n×ϕ to denote the orthogonal sum of n ∈ N copies of a quadratic form ϕ. Moreover,
for a, b ∈ F×, we will let k(a) (respectively k(a, b)) denote the least n ∈ N such
that n× 〈1,−a〉 (respectively n× 〈1,−a,−b, ab〉) is isotropic (over F , unless stated
otherwise). If such an n exists, then n = 2k + 1 for some k ∈ Z. Otherwise, the
quantity is said to be infinite.

In order to obtain the aforementioned results, we will establish characterisations of
the levels and sublevels of certain quaternion and octonion algebras, namely those
with “transcendental parameters”. These characterisations provide analogues of a
theorem of Tignol and Vast (see [5]), the statement of which is included in the
following result.

Theorem 1. Let a, b ∈ F×, Q = (a, x)F ((x)) and O = (a, b, x)F ((x)). Then

(a) s(Q) = min {s(F (√a)), k(a)} and s(Q) = min {s(F (√a)), k(a)− 1},
(b) s(O) = min {s ((a, b)F ) , k(a, b)} and s(O) = min {s ((a, b)F ) , k(a, b)− 1}.

1



2 JAMES O’SHEA

Proof. (a) The level equality is the aforementioned result from [5]. We will prove
the sublevel equality.

As F (
√
a) ⊆ Q , we have that s(Q) 6 s(F (

√
a)), which equals s(F (

√
a)). Letting

k(a) = n, there exist γ1, . . . , γn, δ1, . . . , δn ∈ F , not all zero, such that
∑n

i=1 γi
2 −

a
∑n

i=1 δi
2 = 0. Hence

∑n

i=1 (γij + δik)
2
= 0 in Q , whereby s(Q) 6 n− 1. Hence,

we have that s(Q) 6 min {s(F (√a)), k(a) − 1}.
Suppose that s(Q) = n. Hence, there exist αi, βi, γi, δi ∈ F ((x)), not all zero, such
that

n+1
∑

i=1

α2
i + a

n+1
∑

i=1

β2
i + x

(

n+1
∑

i=1

γ2i − a

n+1
∑

i=1

δ2i

)

= 0

and
n+1
∑

i=1

αiβi =

n+1
∑

i=1

αiγi =

n+1
∑

i=1

αiδi = 0.

Multiplying across these equations by x2d for a suitable choice of d ∈ Z, we have
that

n+1
∑

i=1

(xdαi)
2 + a

n+1
∑

i=1

(xdβi)
2 + x

(

n+1
∑

i=1

(xdγi)
2 − a

n+1
∑

i=1

(xdδi)
2

)

= 0

and
n+1
∑

i=1

(xdαi)(x
dβi) =

n+1
∑

i=1

(xdαi)(x
dγi) =

n+1
∑

i=1

(xdαi)(x
dδi) = 0,

where at least one of xdαi, x
dβi, x

dγi, x
dδi ∈ F [[x]] is not divisible by x for some i.

If xdαi or x
dβi is not divisible by x for some i, then taking residues modulo x gives

that
n+1
∑

i=1

(

xdαi

)2

+ a

n+1
∑

i=1

(

xdβi

)2

= 0 and
n+1
∑

i=1

(

xdαi

)(

xdβi

)

= 0,

whereby s(F (
√
a)) = s(F (

√
a)) 6 n.

If xdαi and x
dβi are divisible by x for all i, then dividing by x and taking residues

modulo x gives that
n+1
∑

i=1

(

xdγi

)2

− a

n+1
∑

i=1

(

xdδi

)2

= 0,

whereby k(a)− 1 6 n, completing the proof of (a).

(b) The sublevel equality can be proven by arguing as above. We will prove the
level equality.

As (a, b)F ⊂ O , we clearly have that s(O) 6 s ((a, b)F ). For k(a, b) = n, we have
that n × 〈1,−a,−b, ab〉 is isotropic over F , whereby it represents −1. Thus, there

exist εi, ζi, ηi, ϑi ∈ F , not all zero, such that
∑n

i=1 εi
2 − a

∑n

i=1 ζi
2 − b

∑n

i=1 ηi
2 +

ab
∑n
i=1 ϑi

2 = −1. Hence, we have that
∑n

i=1 (εie+ ζiie+ ηije+ ϑike)
2 = −1 in

O , whereby s(O) 6 n. Hence s(O) 6 min {s ((a, b)F ) , k(a, b)}.
Suppose that s(O) = n. Hence, there exist αi, βi, γi, δi, εi, ζi, ηi, ϑi ∈ F ((x)), not all
zero, such that

n
∑

i=1

α2
i+a

n
∑

i=1

β2
i+b

n
∑

i=1

γ2i−ab
n
∑

i=1

δ2i+x

(

n
∑

i=1

ε2i − a

n
∑

i=1

ζ2i − b

n
∑

i=1

η2i + ab

n
∑

i=1

ϑ2i

)

= −1

and
n
∑

i=1

αiβi =

n
∑

i=1

αiγi =

n
∑

i=1

αiδi =

n
∑

i=1

αiεi =

n
∑

i=1

αiζi =

n
∑

i=1

αiηi =

n
∑

i=1

αiϑi = 0.
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If αi, . . . , ϑi ∈ F [[x]] for all i, then, taking residues modulo x, we obtain that
s ((a, b)F ) 6 n.

Alternatively, multiplying across these equations by x2d for a suitable choice of
d ∈ N, we have that
n
∑

i=1

(xdαi)
2+ . . . −ab

n
∑

i=1

(xdδi)
2+x

(

n
∑

i=1

(xdεi)
2 − . . . + ab

n
∑

i=1

(xdϑi)
2

)

= −x2d,

and
n
∑

i=1

(xdαi)(x
dβi) = . . . =

n
∑

i=1

(xdαi)(x
dϑi) = 0,

where at least one of xdαi, x
dβi, x

dγi, x
dδi, x

dεi, x
dζi, x

dηi, x
dϑi ∈ F [[x]] is not divis-

ible by x for some i.

If xdαi, x
dβi, x

dγi or xdδi is not divisible by x for some i, then taking residues
modulo x gives that

n
∑

i=1

(

xdαi

)2

+ . . . − ab

n
∑

i=1

(

xdδi

)2

= 0

and
n
∑

i=1

(

xdαi

)(

xdβi

)

= . . . =

n
∑

i=1

(

xdαi

)(

xdδi

)

= 0.

Hence s ((a, b)F ) 6 n− 1, whereby s ((a, b)F ) 6 n by [2, Theorem].

If xdαi, x
dβi, x

dγi and x
dδi are divisible by x for all i, then dividing by x and taking

residues modulo x gives that
n
∑

i=1

(

xdεi

)2

− a

n
∑

i=1

(

xdζi

)2

− b

n
∑

i=1

(

xdηi

)2

+ ab

n
∑

i=1

(

xdϑi

)2

= 0,

whereby k(a, b) 6 n. �

Corollary 1. Let a ∈ F×.

(a) For Q = (x, y)F ((x))((y)) and O = (x, y, z)F ((x))((y))((z)), we have that

s(Q) = s(Q) = s(O) = s(O) = s(F ).

(b) For O = (a, x, y)F ((x))((y)), we have that

s(O) = min
{

s(F (
√
a)), k(a)

}

and s(O) = min
{

s(F (
√
a)), k(a) − 1

}

.

Proof. (a) It is clear that s(O) 6 s(O) 6 s(Q) 6 s(Q) 6 s(F ). If s(O) = n,
then (n + 1) × 〈1, x, y,−xy, z,−xz,−yz, xyz〉 is isotropic over F ((x))((y))((z)). By
iteratively invoking Springer’s Theorem (see [3, Ch.VI, Theorem 1.4]), one obtains
that (n+ 1)× 〈1〉 is isotropic over F , whereby s(F ) 6 n, establishing the result.

(b) Since k(a, x) over F ((x)) equals k(a) over F , by [3, Ch.VI, Theorem 1.4], an
application of Theorem 1(b), followed by one of Theorem 1(a), establishes these
statements. �

For F a formally real field and a ∈ F× a sum of squares, one sees that k(a) is
finite, whereas s(F (

√
a)) is infinite (see [3, Ch.VIII, Lemma 1.4]). In contrast, the

finiteness of k(a, b) encodes an upper bound on s ((a, b)F ), allowing us to establish
the following corollary.

Corollary 2. Let k > 0 be an integer and a, b ∈ F×.

(a) If 1 +
⌊

2
3 · 2k

⌋

< s ((a, b)F ) 6 2k + 1, then s
(

(a, b, x)F ((x))

)

= s ((a, b)F ).

(b) If
⌊

2
3 · 2k

⌋

< s ((a, b)F ) 6 2k, then s
(

(a, b, x)F ((x))

)

= s ((a, b)F ).
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Proof. If k(a, b) < 2k + 1, then the Pfister form 2k × 〈1,−a,−b, ab〉 is hyper-
bolic, whereby its neighbour

(

1 +
⌊

2
3 · 2k

⌋)

× 〈a, b,−ab〉 is isotropic, implying that

s ((a, b)F ) 6
⌊

2
3 · 2k

⌋

and s ((a, b)F ) 6 1 +
⌊

2
3 · 2k

⌋

. Hence, we must have that

k(a, b) > 2k + 1, whereby Theorem 1(b) gives the result. �

The existence of quaternion algebras whose levels and sublevels lie outside of the
above intervals was established in [1] and [4], through the consideration of algebras
of the form (x, y)F0(x,y)(ϕ), where F0 is formally real and the quadratic form ϕ over
F0(x, y) is such that 〈1, x, y,−xy〉 ⊂ ϕ ⊂ n×〈1, x, y,−xy〉 for some n ∈ N. Without
placing any restrictions on the quaternion algebra (a, b)F , we cannot say whether
Corollary 2 holds when s((a, b)F ) or s((a, b)F ) take such values.

At present, the existence of quaternion algebras of level 6 (respectively, sublevel 5)
remains unknown, prompting us to ask the following question.

Question 1. Let F0 be a formally real field and ψ = 8 × 〈1,−x,−y, xy〉 be a
quadratic form over F0(x, y). Is (x, y)F0(x,y)(ψ) of level 6 (and thus sublevel 5)?

Since 6 × 〈x, y,−xy〉 is a Pfister neighbour of ψ, it is isotropic over F0(x, y)(ψ),
whereby the sublevel and level of (x, y)F0(x,y)(ψ) are at most 5 and 6 respectively.
It seems reasonable to suggest that these upper bounds are attained. Should
this be the case, Theorem 1(b) would imply that the associated octonion algebra
(x, y, z)F0(x,y)(ψ)((z)) has strictly smaller level and sublevel, since k(x, y) = 5 over
F0(x, y)(ψ). Thus, we suspect that Corollary 2 does not hold for all possible level
and sublevel values of (a, b)F .

However, restricting ourselves to the aforementioned class of quaternion algebras,
conjectured to contain members of level and sublevel n for all n ∈ N, we can prove
the level and sublevel equalities.

Corollary 3. Let F0 be a formally real field and ϕ a quadratic form over F0(x, y)
such that 〈1, x, y,−xy〉 ⊂ ϕ ⊂ n × 〈1, x, y,−xy〉 for some n ∈ N. Let Q =
(x, y)F0(x,y)(ϕ) and O = (x, y, z)F0(x,y)(ϕ)((z)). Then s(O) = s(Q) and s(O) = s(Q).

Proof. For S an ordering of F0, let T denote an extension of S to F0(x, y) such that
x and y are negative with respect to T . By [3, Ch.XIII, Theorem 3.1], T extends to
an ordering of F0(x, y)(ϕ). However, 〈1,−x,−y, xy〉 is positive definite with respect
to T , whereby k(x, y) = ∞ over F0(x, y)(ϕ). Hence, the result follows from invoking
Theorem 1(b). �

Remark The above results hold if the respective Laurent series fields are replaced

by rational function fields.
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