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Abstract

These notes express some basic facts concerning the Poincaré polyno-
mials of projective homogeneous varieties (PHVs) as arising from their
Bruhat-Tits cellular decomposition.

1 Introduction

1.1. For G a semisimple linear algebraic group over an algebraically closed field
and P a parabolic subgroup, one obtains a projective homogeneous G-variety
X = G/P . The remarkable Bruhat-Tits theorem says that such a homogeneous
algebraic space has a cellular decomposition into affine cells A

n parametrized
by the corresponding subgroup WP of the Weyl group W (where, as usual, W
is the Weyl group associated to the underlying root system Φ(G)). Moreover,
each affine cell C(w) has dimension equal to the length ℓ(w). So Bruhat-Tits
says the cellular structure of a PHV is controlled by its Weyl group (and length
function).

The Poincaré polynomial of X is that polynomial whose k-th coefficient is
the number of k-dimensional affine pieces in its cellular decomposition (equiv-
alently, the number of elements w ∈ WP with ℓ(w) = k). We say projective
homogeneous varieties (PHVs) X,Y are coincident when their Poincaré poly-
nomials coincide and express their coincidence as X ∼c Y. Coincidence is the
central theme of these notes; it’s how one asks two PHVs to ‘be made of the
same stuff’.

The main result of this paper is the determination of all coincidences among
simple PHVs (ie. X ≃ G/P , for G simple): this classification is split into our
first and second main theorems, (4.3) and (4.5).

This paper divides as follows: after this introduction, the second section on
lists and cyclotomic polynomials presents some terminology and lemmas that
will be basic to these notes; this section is elementary, obvious, and can be
quickly read through. Our third section consists of Chevalley’s Factorization,
which is the main stimulus to these notes; through it alone does the arithmetic
of Poincaré polynomials arising from PHVs become appreciable. In our fourth
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section on coincidences we establish our first and second main theorems through
two separate chains of elementary and tedious reasoning. Finally, in the last
section we explain how these coincidences are related to the problem of the
classification of Grothendieck-Chow motives of PHVs.
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2 Lists and Cyclotomic Polynomials

We introduce the necessary definitions and lemmas to be used repeatedly through-
out these notes.

2.1 Definition. A list is a set in which multiplicities are taken into account. ie.
while the set {a, a} may be identified with {a}, the list [a] is to be distinguished
from [a, a]. Some authors call our lists multisets.

A finite list A with objects ai shall be denoted [a1, . . . , an]. For our purposes
a list shall always refer to a finite list of integers which are > 1. The notions of
membership, containment, join (∨) and meet (∧) are evident, as is the difference
A−B of lists whenever B ⊂ A. In practise we shall write the join of lists A,A′

as the concatentation (or product) AA′. Given lists A,B, the formal quotient
A/B will be called a rational list. We identify a list A with the rational list A/∅,
where ∅ is the empty list. A rational list A/B is said to be reduced if A ∧ B is
the empty list. Identifying the lists A/B and A ∨ A′/B ∨ A′, we find that any
rational list A/B can be identified with a reduced rational list. The following
definitions are convenient:

2.2 Definition. A list consisting of consecutive (even) integers shall be called
(even) contiguous.

2.3 Definition. For an integer a > 1, its divisors list Div+[a] is that list of
integers d > 1 for which d|a. An arbitrary list A = [a1, . . . , ak] has divisors list
Div+(A) =

∨
i Div+[ai]. We set Div+∅ = ∅.

Recall the nth cyclotomic polynomials Φn(t) are those polynomials irre-
ducible in Z[t] and recursively satisfying Φ0 = Φ1 = 1 and Πd|nΦd(t) = tn − 1
for n ≥ 1.

2.4 Lemma. Let A,B be lists of integers > 1 such that

∏

a∈A

1− ta

1− t
=

∏

b∈B

1− tb

1− t
.

Then A = B.
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Proof. By definition the above equality becomes ΠDiv+(A)Φd = ΠDiv+(B)Φd.
The irreducibility of Φd then says Div+(A) = Div+(B). Considering maximal
elements in Div+(A), one can retrieve A. Similarly, one retrieves B. Being
retrieved from the same divisors list, A = B.

We easily find the following useful

2.5 Lemma. Let A,B,A′,B′ be lists of integers > 1. Then
∏

Div+(A)

Φd/
∏

Div+(B)

Φd =
∏

Div+(A′)

Φd/
∏

Div+(B′)

Φd

iff A/B,A′/B′ reduce to identical rational lists.

Proof. One has Div+(A)Div+(B′) = Div+(AB′) = Div+(A′B) iff AB′ = A′B
(refer to proof of (2.4). Having cancelled common factors between A,B and
A′,B′, one then sees that the above equality occurs iff A = A′ and B = B′,
qed.

3 Chevalley’s Factorization

3.1. To be concerned with G only up to isogeny, we shall without qualms
consider G as determined by its underlying root system Φ(G).

To a given PHV X ≃ G/P , we associate the formal quotient

D1 · · ·Dr

D ′
1 · · ·D

′
s

,

where D1 · · ·Dr is the decomposition of Φ(G) into irreducible root systems,
and D ′

1 · · ·D
′
s likewise the decomposition of Φ(P ). Such decompositions will be

called root system words. Through the Chevalley Factorization we associate a
list Ai of so-called basic invariant degrees to each irreducible root system type
Di (cf.[5]).

3.2. Let (W,S) be a Coxeter system (cf.[1], [5]). Then a length function ℓ(·) is
defined relative to S on W . We define the Poincaré polynomial P (W, t) of W
to be

P (W, t) =
∑

w∈W

tℓ(w).

This definition is independent of S cf.[5].
The following proposition–due to Chevalley–is for us crucial.

3.3 Proposition (Chevalley’s factorization). Let (W,S) be an irreducible Cox-
eter system. Then

P (W, t) =
n∏

i=1

1− tdi

1− t
,

where [d1, . . . , dn] is a list of basic invariant degrees assigned according to the
following table:
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Type d1, . . . , dn
An 2, 3, . . . , n+ 1
Bn, Cn 2, 4, 6, . . . , 2n
Dn 2, 4, 6, . . . , 2n− 2, n
E6 2, 5, 6, 8, 9, 12
E7 2, 6, 8, 10, 12, 14, 18
E8 2, 8, 12, 14, 18, 20, 24, 30
F4 2, 6, 8, 12
G2 2, 6

3.4 Remark. (i) For our purposes the Coxeter system (W,S) will arise as
W = W (Φ(G), for G a semisimple linear algebraic group, and S the simple
reflections corresponding to a base ∆ of Φ(G) (or equivalently, a choice B of
Borel subgroup of G).
(ii) Henceforth we shall denote by an the degree list [2, 3, . . . , n] of the root
system An−1.

3.5. Now suppose D1, . . . ,Dr,D
′
1, . . . ,D

′
s are irreducible root system types with

associated basic invariant degree lists A1, . . . ,Ar,A′
1, . . . ,A

′
s. Set A = ∨iAi and

A′ = ∨jA′
j . For a (PHV) X ≃ D1 · · ·Dr/D

′
1 · · ·D

′
s, we set

P (X, t) := P (ΠDi/ΠD
′
j , t) =

∏

Div+(A)−Div+(A′)

Φd.

As immediate corollary to (2.5) we obtain

3.6 Proposition. PHVs are coincident iff their reduced rational degree lists
coincide.

4 Coincidences

The question of ‘coincidence’ is the question of “to what extent do Poincaré
polynomials determine their PHVs?’ We use the following terminology to state
our main results:

4.1 Definition. Let D be a root systems and D ′ ⊂ D a sub-root system. Then
the D ′-reduction of D is the formal quotient D/D ′. If D ,D ′ have rational degree
lists A,A′, then D/D ′ has degree list A/A′. Finally, if D ′′ is another sub-root
system ⊂ D and disjoint from D ′, then the D ′′-reduction of D/D ′ is the formal
quotient D/D ′D ′′ of D by the sum D ′D ′′.

4.2 Definition. We say simple PHVs D/D ′ and D ′′/D ′′′ are type-distinct if
type(D) 6= type(D ′′), and we say they are type-similar otherwise.

Our first main result classifies all type-distinct coincidences among simple
PHVs:
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4.3 Theorem (First Main Theorem). The only type-distinct coincidences be-
tween simple PHVs are those between:

• A2ℓ−1/A2ℓ−2 and Bℓ/Bℓ−1 (ℓ > 1);
• Dℓ+1/Aℓ and Bℓ/Aℓ−1 (ℓ > 1);
• G2/A1 and A5/A4, B3/B2.

For the expression of our second main result we introduce the following
device:

4.4 Definition. A swindle is the substitution of the coincidence BmA2m−2 ∼c

Bm−1A2m−1 (for m ≥ 1) within a root system word DD ′ · · · .

The swindle formalizes the fact that all type-similar coincidences are con-
sequences of the same ‘trick’. On degree lists the swindle is just the relation
nan−1 = an

We may now present our second main theorem classifying all type-similar
coincidences among simple PHVs:

4.5 Theorem (Second Main Theorem). A type-similar coincidence between
simple PHVs is either a coincidence Bk/D ∼c Bk/D

′, where D ∼c D ′ with
D ,D ′ of the form B

∏
A; or a coincidence Dk/D ∼c Dk/D

′, where D ∼c D ′

with D ,D ′ of the form D
∏

A. Moreover, all semisimple coincidences B
∏

A ∼c

B
∏

A and D
∏

A ∼c D
∏

A are generated by swindles.

In (4.6) is expressed an observation which organizes our casewise proofs of
(4.3), (4.5):

4.6 Lemma. Let D be a connected Dynkin diagram and D ′ a connected sub-
diagram. Then either D ′ has type Ak, with k ≤ rank(D), or D ′ is the unique
subdiagram having rank ≤ rank(D) and type(D ′) = type(D).

Proof. By inspection.

Using (4.1) we may rephrase (4.6): a connected Dynkin diagram D admits
only A.-type reductions after at most one D-type reduction.

Proof of First Main Theorem. A coincidence between irreducible types
comes in three ‘flavours’: classical-classical, classical-exceptional, and exceptional-
exceptional. Correspondingly we split the proofs of our first main theorem (4.3)
‘flavourwise’ into some lemmas and sublemmas.

4.7 Sublemma. The only coincidences produced by A-type reductions between
pairwise type-distinct PHVs among A, B/Bk, and D/Dk′ (with k ≥ 2, k′ ≥ 4)
is that between A2ℓ−1/A2ℓ−2 and Bℓ/Bℓ−1, (ℓ > 1).

Proof. Any quotient Aℓ/Ak has a degree list containing an odd integer unless ℓ
is odd and k = ℓ−1. Since a nontrivial quotient B/B has a degree list consisting
of even integers, coincidence only occurs when k = ℓ − 1. This produces the
coincident pair A2ℓ−1/A2ℓ−2, Bℓ/Bℓ−1.
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A coincidence between reductions of B/B and Dℓ/Dk must see ℓ even. If
2k ≤ ℓ, then the even ℓ occurs twice in the numerator of D/D’s reduced rational
degree list. By (3.6) D/D cannot coincide with any A-type reductions of B/B
(since numerator of reduced rational degree list is without any repetitions).
When 2k > ℓ, B/B is coincident with Dℓ/Dk through A-type reductions only if
B/B = Bℓ−1/Bk−1 (since we need maximal elements of the numerators in the
reduced rational degree lists to coincide). But no further A-type reduction can
produce the necessary k on the denominator since Bℓ−1/Bk−1 does not have
an Ak−1-type connected component (because ℓ < 2k). Consequently no A-type
reductions of B/B, D/D are coincident.

Finally, consider A-type reductions of A and Dℓ/Dk (ℓ ≥ 4). If ℓ is even,
then coincidence would see no odd elements in the numerator of any reductions
of A, which means A/A = A2ℓ−3/A2ℓ−4. But then A/A has numerator [2ℓ-2]
and admits no further A-type reduction, and hence not coincident with any
A-type reduction of D/D. If ℓ is odd, a coincidence between A-type reductions
of A, D/D would require the (reduced) numerator of D/D to be contiguous.
However for ℓ ≥ 4 this does not occur.

4.8 Sublemma. The only type-distinct coincidences produced by A-type reduc-
tions between A, B, and D is that between Dℓ+1/Aℓ and Bℓ/Aℓ−1.

Proof. The reduced rational list of anyA-type reduced B has an even-contiguous
numerator. So by (3.6) it’s clear that no A-type reductions generates a coinci-
dence between A and B. Likewise we see that no A-type reductions of A and
Dℓ are coincident for ℓ ≥ 4. Furthermore it’s clear by (3.6) that for k ≤ k′ no
A-type reductions render either Bk and Bk′ or Dk and Dk′ coincident. Finally
any A-type reduction of Dℓ+1 is coincident with an A-type reduction of B only
if we first reduce Dℓ+1 to Dℓ+1/Aℓ by (3.6) and after which we may reduce no
more; here we find the coincidence with Bℓ/Aℓ−1.

4.9 Lemma (Classical-Classical (4.3)).

Proof. All together (4.7)–(4.8) yield (4.3) in the classical-classical case.

4.10 Lemma (Classical-Exceptional (4.3)).

Proof. The exceptional types have reduced rational degree lists with numerators
which are neither contiguous nor even-contiguous. Their reductions to quotients
D/D have contiguous or even-contiguous numerator degree lists only in the case
G2/A1.

4.11 Lemma (Exceptional-Exceptional (4.3)).

Proof. The basic invariant degree lists of the exceptional irreducible types have
distinct max elements, except in the case of E6 and F4. But E6 has an odd
basic invariant degree, while F4 cannot.

Together (4.7)-(4.12) establish our First Main Theorem (4.3).
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Proof of Second Main Theorem. We begin with some observations:

4.12 Sublemma. The simple PHVs D/D ′ and D ′′/D ′′′ are type-similar coin-
cident only if D = D ′′ and D ′ ∼c D ′′′.

Proof. For type-similar irreducible root systems D ,D ′′, one observes the numer-
ators of their reduced rational degree lists have distinct maximal elements unless
D = D ′′. Now by (3.6) they must have been reduced by coincident PHVs.

4.13 Sublemma. There are no type-similar coincidence among reductions of
the simple PHVs of type A,E, F , or G.

Proof. By (4.12) this follows by realizing there are no type-similar semisimple
coincidences between root systems of the form

∏
A, E

∏
A, F

∏
A, or G

∏
A.

It is convenient now to introduce the following

4.14 Definition. We define the sup.rank of a product D1D2D3 · · · of irre-
ducible root systems Di to be supirank(Di).

Together with (4.12) and (4.13) the following lemma establishes (4.5).

4.15 Lemma. All semisimple coincidences B
∏

A ∼c B
∏

A and D
∏

A ∼c

D
∏

A are generated by swindles.

Proof. We proceed recursively by reducing via swindles the sup.ranks of coin-
cident semisimple pairs. This establishes that indeed all such coincidences are
generated by swindles.

Proceeding first with the B-type case, we consider a coincidence

Bk−1

∏

I

Ai−1 ∼c Bm

∏

J

Aj−1. (∗0)

With respect to degree lists (∗0) becomes

∏

I

ai = [2k, . . . , 2m]even
∏

J

aj . (∗0)

After cancelling common factors, the maximal degree M occurring in (∗0) is
seen to be 2m (hence the sup.rank is finite). Consequently there is a unique
factor of aM = a2m on the left-hand side of (∗0), all of which may be rewritten
as

aM
∏

≤M−1

ai = [2k, . . . ,M ]even
∏

≤M−1

aj (∗1)

There are now two cases: If (a) 2k = M , then after the swindle aM =
MaM−1 (∗1) becomes

aM1

∏

≤M−1

ai =
∏

≤M−1

aj .
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By (4.12), then I≤M−1.M = J≤M−1.
Otherwise, if (b) 2k < M , then 2k < M−1. As left-hand side of (∗1) contains

a M −1 factor and [2k, . . . ,M ]even does not, we find that after having cancelled
common factors there is a unique aM−1 factor on the right-hand side. The
swindle aM = MaM−1 then reduces (∗1) to a coincidence with sup.rank < M.

Clearly, in either of the cases we reduce the sup.ranks of the coincidence via
a swindle.

We proceed similarly in the D-type case, by reducing the sup.rank through
the successive use of swindles. Except for these details (which the reader may
provide for themselves), this completes our proof.

As corollary we’ve established our second main theorem.

Coincidence in Semisimple Case The question of coincidence among semisim-
ple PHVs is not entirely resolved by Lemma 3.6. In addition to the coincidences
generated by our main theorems there are many non-interesting coincidences
which arise from products of Ak/Ak−1 (a PHV with rational degree list [k+1]).
For instance, it is immediate that the exceptional root system types E,F,G
are all coincident with products of the classical types A/A. One also has the
obvious coincidence between E7A29/A28 and E8A5A9/A4A8. Supposing one
calls a coincidence interesting if not generated by PHVs of the form Ak/Ak−1,
there is the obvious question: are all interesting coincidences generated by those
coincidences of (4.3) and (4.5)?

While (3.6) does not resolve the question of semisimple coincidence, it does
permit the following obvious conclusions in the exceptional-exceptional case:

4.16 Proposition. There are no coincidences between PHVs generated by the
root system types E6, E7, E8 and those generated by the root system types F4, G2.

4.17 Proposition. There are no coincidences between PHVs generated by the
root system types Ei, F4, G2 and Ej , F4, G2 for i 6= j (unless of course there is
no E-type factor, ie. the PHV was generated by F4, G2).

5 Application to motives

In the present section we relate our main theorems (4.3) and (4.5) with the
problem of classification of Grothendieck-Chow motives of PHV. 1 Note that
this question has been intensively studied during the last few years (see [3],[4],
[7],[9],[10]).

Following (2.2) of [10], the Chow motive M (X) of the PHV X = G/P
satisfies an isomorphism

M (X) ≃
dimX⊕

i=0

Z(i)⊕ai(X),

1For an introduction to Chow motives, see [8]
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where Z(i) denotes the Tate motive shifted by i and
∑

i≥0

ai(X)ti

is the Poincare polynomial of X . By (2.3) of [10], motives are the same iff they
have the same Poincaré polynomials. In view of our main theorems (4.3) and
(4.5) we immediately obtain the

5.1 Corollary. Let X,Y be simple PHVs. Then X,Y have isomorphic motives
iff X,Y belong to the coincidence classes given in our main theorems.

5.2 Remark. Observe that the coincidence of Poincare polynomials (and hence,
their motives) doesn’t imply that the respective varieties are isomorphic. For
instance, the variety from (4.3) of type A2l−1/A2l−2 is a projective space of
dimension 2l − 1 and the variety of type Bl/Bl−1 is the projective quadric of

the same dimension. Both varieties have the same Poincare polynomial 1−t2l

1−t

but are not isomorphic.
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