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Abstract. In this paper we characterise involutions that become metabolic
over a quadratic field extension attained by adjoining a square root.


1. Introduction


Let K be a field. In [3] we characterised those central simple algebras with
involution that become metabolic over a given quadratic separable extension. We
showed that aK–algebra with involution (A, σ) becomes metabolic over a quadratic
separable extension L/K with non-trivial K–automorphism ι if and only if the
algebra with involution (L, ι) maps injectively into the anisotropic part of (A, σ).


In this follow up we investigate the case of an extension L/K of the form L =


K(
√
d) with d ∈ K\K2. These extensions are only distinct from those studied


in [3] in characteristic 2, where these extensions are inseparable, and hence not
covered by the results of [3]. We show that a K–algebra with involution (A, σ) over


K becomes metabolic over L = K(
√
d) if and only if the algebra with involution


(L, ι) maps injectively into the anisotropic part of (A, σ), where here ι is the K–


linear involution on L defined by ι(
√
d) = −


√
d. This is equivalent to the previous


characterisation when char(K) 6= 2, otherwise ι is the identity map on L.
Results on this question have already been found for fields of characteristic dif-


ferent from 2 in [1] for involutions of the first kind, and then extended in [2] to
involutions of the second kind. For fields of characteristic 2, only the case of sym-
plectic involutions has been investigated, in [8]. Our main results here do not
involve any assumption on the characteristic of the field or the type of involution.
In particular our result holds when the involution is orthogonal or unitary and the
field is of characteristic 2, which are cases that have not been considered before.


2. Algebras with involution and hermitian forms


In this section we recall the basic definitions and results we use on central simple
algebras with involution. We refer to [9] for a general reference on central simple
algebras.


Throughout, let K be a field and let char(K) denote its characteristic. Let A
be a finite-dimensional K–algebra. If A is simple (i.e. it has no non-trivial two
sided ideals) and K ′ is the centre of A, we can view A as a K ′–algebra and, by
Wedderburn’s Theorem, we have that A ≃ EndD(V ) for a K–division algebra D
with centre K ′ and a right D–vector space V . In this case dimK′(A) is a square,
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and the positive root of this integer is called the degree of A and is denoted deg(A).
The degree of D is called the index of A and is denoted ind(A). We call A split if
ind(A) = 1. For any field extension L/K we will use the notation AL = A ⊗K L.
We call a field extension L/K a splitting field of A if AL is split. If K = K ′, then
we call the K–algebra A central simple.


A K–involution on A is a K–linear map σ : A→ A such that σ(xy) = σ(y)σ(x)
for all x, y ∈ A and σ2 = idA. A K–algebra with involution is a pair (A, σ) of
a finite-dimensional K–algebra A and a K–involution σ of A such that, with K ′


being the centre of A, one has K = {x ∈ K ′ | σ(x) = x}, and such that either A is
simple or A is a product of two simple K–algebras that are mapped to each other
by σ. In this situation, there are two possibilities: either K = K ′, so that A is a
central simple K–algebra, or K ′/K is a quadratic étale extension with σ restricting
to the nontrivial K–automorphism of K ′. To distinguish these two situations, we
speak of involutions of the first or second kind; more precisely, we say that the
K–algebra with involution (A, σ) is of the first kind if K ′ = K and of the second
kind otherwise. For more information on involutions of the second kind, also known
as unitary involutions, we refer to [7, Section 2.B]. For any field extension L/K we
will use the notations σL = σ ⊗ idL and (A, σ)L = (AL, σL).


A homomorphism of K–algebras with involution is a map ϕ : (A, σ) → (B, τ),
where (A, σ) are (B, τ) K–algebras with involution, such that ϕ : A → B is an
K–algebra homomorphism and ϕ ◦ σ = τ ◦ ϕ: if ϕ is injective then this is an
embedding.


We call a K–algebra with involution (A, σ) isotropic if there exists an a ∈ A\{0}
such that σ(a)a = 0, and anisotropic otherwise. We call an idempotent e ∈ A
hyperbolic with respect to σ if σ(e) = 1 − e. An idempotent e ∈ A is called meta-
bolic with respect to σ if σ(e)e = 0 and dimK′eA = 1


2
dimK′A. Note that, by [3,


Corollary 4.3], we may substitute the condition that dimK′eA = 1
2
dimK′A for the


condition that (1− e)(1−σ(e)) = 0 in the definition of metabolic. An algebra with
involution (A, σ) is called hyperbolic (resp. metabolic) if A contains a hyperbolic
(resp. metabolic) idempotent with respect to σ.


Let (A, σ) be an K–algebra with involution and K ′ be the centre of A. For
λ ∈ K ′, let Symλ(A, σ) = {a ∈ A | λσ(a) = a} and Alt(A, σ) = {σ(a)− a | a ∈ A}.


Throughout the rest of this section, let (D, θ) be a K–division algebra with
involution and K ′ be the centre of D. Further, fix λ ∈ K ′ such that λθ(λ) = 1. A
λ–hermitian form over (D, θ) is a pair (V, h) where V is a finite-dimensional right
D–vector space and h is a non-degenerate bi-additive map h : V × V → D such
that


h(x, yd) = h(x, y)d and h(y, x) = λθ(h(x, y))


holds for all x, y ∈ V and d ∈ D.
A isometry of λ–hermitian forms over (D, θ) is a bijective map φ : (V, h) →


(W,h′), where (V, h) and (W,h′) are λ–hermitian forms, such that φ : V → W
is D–linear and h(v, w) = h′(φ(v), φ(w)) for all v, w ∈ V . If such a isometry
exists, we say (V, h) are (W,h′) are isometric as λ–hermitian forms and we write
(V, h) ≃ (W,h′). We denote the orthogonal sum of λ–hermitian forms (V, h) and
(W,h′) over (D, θ) by (V, h)⊥(W,h′). If (D, θ) = (F, idF ) then we must have that
λ = ±1 and in this case we call a λ–hermitian form over (D, θ) a λ–bilinear form,
which we call symmetric if λ = 1.







METABOLIC INVOLUTIONS AND QUADRATIC RADICAL EXTENSIONS 3


Let V be a finite dimensional right D–vector space and let V ∗ = EndD(V,D),
the dual of V . We define a K–bilinear map hλ : (V ∗ ⊕ V )× (V ∗ ⊕ V ) → D by


hλ(ϕ+ x, ψ + y) = ϕ(y) + λθ(ψ(x)) for ϕ, ψ ∈ V ∗ and x, y ∈ V.


Then Hλ(V ) = (V ∗ ⊕ V, hλ) is a regular λ–hermitian form over (D, θ). We call a
λ-hermitian form over (D, θ) hyperbolic if it is isometric to Hλ(V ) for some right
D–vector space V .


Let S ⊂ V . We define the orthogonal complement S⊥ of S with respect to (V, h)
as S⊥ = {x ∈ V |h(x, s) = 0 for all s ∈ S}. A hermitian space (V, h) is called
metabolic if there exists a subspace S ⊂ V such that S = S⊥.


Proposition 2.1. Let (V, h) be a λ–hermitian form over (D, θ). There exists a
K–involution σ on EndD(V ) such that


h(f(x), y) = h(x, σ(f)(y)) for all x, y ∈ V and f ∈ A.


This involution σ is uniquely determined by h. Further, (EndD(V ), σ) is a K–
algebra with involution of the same kind as (D, θ).


Proof. See, for example, [7, (4.1)]. �


In the situation of (2.1), we call σ the adjoint involution to h and denote it by adh,
and we further write Ad(V, h) for the K-algebra with involution (EndD(V ), adh).


A K–algebra with involution (A, σ) of the first kind is said to be symplectic if
(A, σ)L ≃ Ad(V, b), where (V, b) is a λ–bilinear form such that b(x, x) = 0 for all
x ∈ V , and orthogonal otherwise. This definition is independent of the choice of
the splitting field L (see [7, Section 2.A]).


Proposition 2.2. Let (A, σ) be a K-algebra with symplectic or unitary involution.
Then (A, σ) is metabolic if and only if it is hyperbolic.


Proof. See [2, (A.3)]. �


Proposition 2.3. A λ–hermitian form (V, h) over (D, θ) is hyperbolic (resp. meta-
bolic) if and only if Ad(V, h) is hyperbolic (resp. metabolic).


Proof. See [7, (6.7)] for the statement on hyperbolicity, [3, (4.8)] for the statement
on metabolicity in the case of involutions of the first kind and [4] for involutions of
the second kind. �


Proposition 2.4. A λ–hermitian form (V, h) over (D, θ) has a a decomposition
(V, h) ≃ (U, h′)⊥(W, b), where (U, h′) is an anisotropic λ–hermitian form and (W, b)
is a metabolic λ–hermitian form, both over (D, θ). Moreover (U, h′) is unique up
to isometry.


Proof. See [6, Chap. 1 (6.1.1)] and [6, Chap. 1 (6.1.4)]. �


In the situation of (2.4) we call (U, h′) the anisotropic part of (V, h), denoted
(V, h)an.


Proposition 2.5. Let (V, h) be a λ–hermitian form over (D, θ), and let (W, b) be
a λ′–hermitian form over (D, θ′), for some involution θ′ on D and λ′ ∈ K ′. If
Ad(V, h) ≃ Ad(W, b) then Ad((V, h)an) ≃ Ad((W, b)an).


Proof. See [3, (3.6)] for the statement for the case of involutions of the first kind.
It is explained in [4] that the same argument holds for involutions of the second
kind. �
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Hence, we call a K–algebra with involution (B, τ) the anisotropic part of a K–
algebra with involution (A, σ), if (B, τ) ≃ Ad((V, h)an) for a λ–hermitian space
(V, h) over a K–division algebra with involution such that Ad(V, h) ≃ (A, σ).


3. Extension by a square root


We now investigate the effect on a K–algebra with involution of passing to a
quadratic field extension given by adjoining a square root to the ground field. Note
that this is an inseparable quadratic extension when the field is of characteristic
2, and a separable quadratic extension otherwise. While it would suffice to work
in characteristic 2 (since otherwise the behaviour is known), we give this result in
arbitrary characteristic to show the parallelism.


First, we fix some notation for this section. Let K be a field of arbitrary char-
acteristic. Let (A, σ) be a K–algebra with involution of any kind, and let L/K be


a field extension given by L = K(
√
d) for some d ∈ K\K2. Let ι be the involution


on L such that ι|K = idK and ι(
√
d) = −


√
d. The pair (L, ι) is an L–algebra with


trivial involution if charK = 2, and a K–algebra with involution otherwise.


Proposition 3.1. Assume there exists a K–linear embedding (L, ι) →֒ (A, σ).
Then (A, σ)L is metabolic.


Proof. The embedding (L, ι) →֒ (A, σ) gives an element r ∈ Sym−1(A, σ) such that
r2 ∈ K×. By [8, (6.3)] every element in the centraliser of r in A is of the form
ry + yr for some y ∈ A. In particular, r = rx+ xr for some x ∈ A.


We have that AL = A ⊕ A
√
d. Let e = 1 − x + xr


d


√
d ∈ AL with r, x ∈ A as


above. Then, since rx = r − xr, we have


e2 =
(


1− x+
xr


d


√
d
)(


1− x+
xr


d


√
d
)


= 1− 2x+ 2
xr


d


√
d+ x2 − x2r


d


√
d− xrx


d


√
d+


xrxr


d
.


Applying xrx = xr − x2r and xrxr = xd− x2d gives


e2 = 1− 2x+ 2
xr


d


√
d+ x2 − x2r


d


√
d+


(


x2r


d


√
d− xr


d


√
d


)


+ (x− x2)


= 1− x+
xr


d


√
d = e.


So e is an idempotent in AL. We also have


σL(e)e =


(


1− σ(x) − rσ(x)


d


√
d


)(


1− x+
xr


d


√
d


)


= 1− x+
xr


d


√
d− σ(x) + σ(x)x − σ(x)xr


d


√
d− rσ(x)


d


√
d


+
rσ(x)x


d


√
d− rσ(x)xr


d
.


From rx = r − xr we see that rσ(x) = r − σ(x)r. Therefore


rσ(x)x = r − xr − σ(x)r + σ(x)xr and rσ(x)xr = d− xd− σ(x)d + σ(x)xd.


Substituting these into the above equation gives


σL(e)e =
r


d


√
d− rσ(x)


d


√
d− σ(x)r


d


√
d = 0.
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Finally we have


(1 − e)(1− σL(e)) =


(


x− xr


d


√
d


)(


σ(x) +
rσ(x)


d


√
d


)


= xσ(x) +
xrσ(x)


d


√
d− xrσ(x)


d


√
d− xr2σ(x)


d
= 0.


Hence e ∈ AL is a metabolic idempotent with respect to σL. �


Note that over fields of characteristic different from 2, one can take x = 1
2
in the


above proof, which simplifies the calculation a great deal.
For a right (resp. left) ideal I ⊂ A we denote by I0 the left (resp. right)


annihilator ideal, that is,


I0 = {a ∈ A | ax = 0 for all x ∈ I}
(resp. I0 = {a ∈ A |xa = 0 for all x ∈ I}).


Note that we have that (I0)0 = I for all ideals I ⊆ A (see [7, (1.14)]).


Lemma 3.2. Let (A, σ) be a K–algebra with involution and e ∈ A be a metabolic
idempotent. Then Aσ(e) = (eA)0 and eA = (Aσ(e))0.


Proof. That Aσ(e) = (eA)0 is shown in [3, (4.12)] for the case of involutions of the
first kind and it is noted in [4] that the argument holds for involutions of the second
kind. That eA = (Aσ(e))0 then follows immediately. �


Lemma 3.3. Assume (A, σ) is anisotropic and (A, σ)L is metabolic and let e ∈ AL


be a metabolic idempotent with respect to σL. Then there exists a K–linear map
ǫ : AL → A defined by


σL(e)(x− ǫ(x)⊗ 1) = 0


for all x ∈ AL. Moreover the map ǫ|L : L → A is an injective K–algebra homo-
morphism.


Proof. See [3, (5.3)] for the case of involutions of the first kind. The argument for
unitary involutions can be found in the proof of [2, (A.9)]. �


Proposition 3.4. Assume (A, σ) is anisotropic. Then (A, σ)L is metabolic if and
only if there exists an embedding (L, ι) →֒ (A, σ).


Proof. If such an embedding exists, then (A, σ)L is metabolic by (3.1).
Let e ∈ AL be a metabolic idempotent with respect to σL, and let ǫ|L be the


embedding L →֒ A associated with e given in (3.3). Let r = ǫ(
√
d). Clearly we


have that r2 = d. We now show that r ∈ Sym
−1(A, σ).


By our choice of r, we have that


σL(e)(1 ⊗
√
d− r ⊗ 1) = 0,


hence


(1 ⊗
√
d− r ⊗ 1) ∈ (ALσL(e))


0 = eAL


by (3.2). Applying σ to the above expression we see that


(1 ⊗
√
d− σ(r) ⊗ 1)e = 0,


and hence


(1⊗
√
d− σ(r) ⊗ 1) ∈ (eAL)


0 = ALσL(e)
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by (3.2). Since (ALσL(e))
0 = eAL, we have that


0 = (1 ⊗
√
d− σ(r) ⊗ 1)(1⊗


√
d− r ⊗ 1)


= (d+ σ(r)r) ⊗ 1− (σ(r) + r) ⊗
√
d.


Hence, σ(r)r = −d and σ(r) = −r. �


Theorem 3.5. Let (A, σ) be aK-algebra with involution. Then (A, σ)L is metabolic
if and only if either (A, σ) is metabolic or there exists an embedding (L, ι) →֒
(A, σ)an.


Proof. It is clear that (A, σ)L is metabolic if (A, σ) is metabolic. If there exists an
embedding (L, ι) →֒ (A, σ)an, then (A, σ)L is metabolic by (3.1).


Assume now that (A, σ)L is metabolic. Then (V, h)L is metabolic for any (V, h)
such that Ad(V, h) ≃ (A, σ) by (2.3). Therefore ((V, h)an)L is metabolic for any
such (V, h), and hence ((A, σ)an)L is metabolic by (2.3). Hence there exists an
embedding (L, ι) →֒ (A, σ)an by (3.4). �


The following corollary, well known over fields of characteristic different from 2
(see, for example, [1, (3.1)]), seems to be a new result for fields of characteristic 2.


Corollary 3.6. Let L = K(
√
d) for some d ∈ K2\K and let (V, b) be an anisotropic


symmetric bilinear form over K. Then (V, b)K is metabolic if and only if there exists
an f ∈ EndK(V ) such that f2 = d and b(f(x), y) = −b(x, f(y)) for all x, y ∈ V .


Another characterisation of symmetric bilinear forms that become metabolic over
such an extension, in terms of an ideal in the Witt ring, can be found in [5].


4. Hyperbolic Involutions


In this section we discuss a strengthening of our result that can be achieved in
the case of a symplectic or unitary involution. Recall that in these cases, an algebra
with involution is metabolic if and only if it is hyperbolic. These results are known
for fields of characteristic different from 2. The approach here is characteristic free.
As in the last section, let L/K be a field extension given by L = K(


√
d) for some


d ∈ K\K2 and let ι be the involution on L with ι|K = idK and ι(
√
d) = −


√
d


throughout. We denote the K–algebra of n× n matrices over K by Mn(K).


Lemma 4.1. Let γ be a symplectic K–involution on M2(K). Then there is an
embedding (L, ι) →֒ (M2(K), γ)


Proof. By [7, (2.21)] there exists only one symplectic involution on M2(K), there-
fore we may assume that γ is given by


γ


(


x1 x2
x3 x4


)


=


(


x4 −x2
−x3 x1


)


for x1, x2, x3, x4 ∈ K. Consider the element r =


(


0 d
1 0


)


∈ M2(K). We have


that r2 = d and γ(r) = −r, hence we have the required embedding. �


Let K be a field and V a K–vector space. Let γ be an involution on K and
λ = ±1. We denote by Θλ,γ the involution on EndK(V ) ≃M2(K) given by


Θλ,γ


(


a b
c d


)


=


(


γ(d) λγ(b)
λγ(c) γ(a)


)


.
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Proposition 4.2. Let (A, σ) be a symplectic or unitary K–algebra with involution
such that σ(x) = γ(x) for all x ∈ K. Then (A, σ) is hyperbolic if and only if there
exists a σ-invariant subalgebra M of A such that


(M,σ|M ) ≃ (M2(K),Θ−1,γ).


Proof. The case of char(K) 6= 2 is covered in [1, (2.2)], and the proof there works
for the case char(K) = 2 with no change in the argument. �


Proposition 4.3. Let (A, σ) be a symplectic or unitary K–algebra with involution.
If (A, σ) is hyperbolic, then there exists an embedding (L, ι) →֒ (A, σ).


Proof. We have by (4.2) and the Double Centralizer Theorem (see [9, Section 12.7])
that A ≃M2(K)⊗K A′, for some central simple K–algebra A′ that has involutions
of the same kind as (A, σ). Let (A′, σ′) be aK–algebra with involution of orthogonal
type if (A, σ) is symplectic, and of unitary type if (A, σ) is of unitary type, with
σ|K = σ′|K .


Let γ be a symplectic involution on M2(K). This involution is the unique sym-
plectic involution onM2(K) by [7, (2.21)]. Since (M2(F ), γ) is split and symplectic,
it is hyperbolic by [3, (4.7)]. It follows that the involution (M2(K)⊗K A′, γ⊗σ′) is
hyperbolic. Since all hyperbolic hermitian forms of a given dimension are isometric,
it follows that (A, σ) ≃ (M2(K)⊗KA


′, γ⊗σ′) by [7, (4.2)]. By (4.1), there exists an
embedding (L, ι) →֒ (M2(F ), γ), and hence also an embedding (L, ι) →֒ (A, σ). �


Theorem 4.4. Let (A, σ) be a symplectic or unitary K–algebra with involution.
Then (A, σ)L is hyperbolic if and only if there exists an embedding (L, ι) →֒ (A, σ).


Proof. If such an embedding exists, then (A, σ)L is metabolic by (3.1). That (A, σ)L
is hyperbolic follows from (2.2). The result then follows from (3.5), (4.3) and an
argument as in [2, (1.7)]. �


A version of this theorem for fields of characteristic different from 2 was already
shown in [1, (3.3)], where the case of orthogonal involutions was also covered. The
above approach does not work generally in the case of an orthogonal involution over
a field of characteristic 2 since (L, ι) does not inject into every metabolic orthogonal
algebra with involution, as the following example shows.


Example 4.5. Assume that char(K) = 2 and for a ∈ K× take (V, b) ≃ (K2, 〈a, a〉),
that is,


b : K2 ×K2 → K, (x, y) 7→ xt
(


a 0
0 a


)


y.


Then there does not exist an f ∈ EndK(V ) such that f2 = d for some d ∈ K\K2


and b(f(x), y) = b(x, f(y)) for all x, y ∈ V , as we now show.
The adjoint involution to (V, b) is (EndK(V ), σ) ≃ (M2(K), t), where t is the


transposition involution. Assume there exists an f ∈ M2(K) such that f2 =
(


d 0
0 d


)


for d ∈ K\K2 and b(f(x), y) = b(x, f(y)) for all x, y ∈ V . Then, as


b(f(x), y) = b(x, f(y)), we have t(f) = f , so f =


(


a11 a12
a12 a22


)


for some aij ∈ K.


Consider now the top right hand entry of f2, that is d = a211 + a212 ∈ K2. This
contradicts the assumption that d /∈ K2.


Note that one easily adapt this argument to show that (L, ι) does not embedded
into Ad(K2n, n× 〈a, a〉) for a ∈ K×.
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