ALGEBRAIC TORI AS NISNEVICH SHEAVES WITH
TRANSFERS

BRUNO KAHN

ABSTRACT. We relate R-equivalence on tori with Voevodsky’s the-
ory of homotopy invariant Nisnevich sheaves with transfers and
effective motivic complexes.
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1. MAIN RESULTS

Let k£ be a field and let T be a k-torus. The R-equivalence classes on
T have been extensively studied by several authors, notably by Colliot-
Thélene and Sansuc in a series of papers including [3] and [4]: they play
a central role in many rationality issues. In this note, we show that
Voevodsky’s triangulated category of motives sheds a new light on this
question: see Corollaries 1, 3 and 4 below.

More generally, let G be a semi-abelian variety over k, which is an
extension of an abelian variety A by a torus T. Denote by HI the
category of homotopy invariant Nisnevich sheaves with transfers over
k in the sense of Voevodsky [19]. Then G has a natural structure of
an object of HI ([17, proof of Lemma 3.2], [1, Lemma 1.3.2]). Let L be
the group of cocharacters of T

Proposition 1. There is a natural isomorphism G_; — L in HIL.

Here _; is the contraction operation of [18, p. 96], whose definition
is recalled in the proof below.
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Proof. Recall that if F is a presheaf [with transfers] on smooth k-
schemes, the presheaf [with transfers] 77, is defined by

U + Coker(F(U x AY) — F(U x G,,)).

If F is homotopy invariant, we may replace U x Al by U and the
rational point 1 € G, realises F¥,(U) as a functorial direct summand
of F(U x Gy,).

If F is a Nisnevich sheaf [with transfers], F_; is defined as the sheaf
associated to F7.

Now A(U x Al) — A(U x G,,) since A is an abelian variety, hence
AP = 0. We therefore have an isomorphism of presheaves 77, —
G” |, and a fortiori an isomorphism of Nisnevich sheaves T_; — G_;.

Let p : G,, — Speck be the structural map. One easily checks that
the étale sheaf Coker(T —= p,p*T) is canonically isomorphic to L.
Since 7 is split, its cokernel is still L if we view it as a morphism of
presheaves, hence of Nisnevich sheaves. 0

From now on, we assume k perfect. Let DM be the triangulated
category of effective motivic complexes introduced in [19]: it has a ¢-
structure with heart HI. It also has a tensor structure and a (partially
defined) internal Hom. We then have an isomorphism

L[0] = G_4[0] ~ Homper (G, [0], G[0])
[10, Rk. 4.4], hence by adjunction a morphism in DM
(1) L]0] ® G,,[0] = G.

Let v<oG[0] denote the cone of (1): by [11, Lemma 6.3] or [8, §2],
v<oG[0] is the birational motivic complex associated to G. We want to
compute its homology sheaves.

For this, consider a coflasque resolution

(2) 0—-Q—Ly—L—0

of L in the sense of [3, p. 179]. Taking a coflasque resolution of ) and
iterating, we get a resolution of L by invertible lattices!:

(3) oo Ly — - —=Log— L—0.
We set
0, = Q forn=1
" | Ker(L,_; = Ln_5) forn >1.

1Recall that a lattice is a free finitely generated Galois module; a lattice is
invertible if it is a direct summand of a permutation lattice.
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Theorem 1. a) Let T, denote the torus with cocharacter group L.
Then v<¢G|0] is isomorphic to the complex

=T, = =Ty — G — 0.

b) Let S, be the torus with cocharacter group Q,. For any connected
smooth k-scheme X with function field K, we have

0 ifn <0
H,(voGl0)(X) = { GUK)/R ifn=0
S.(K)/R ifn>0.

The proof is given in Section 2.

Corollary 1. The assignment Sm(k) 3 X — @, .y G(k(z))/R
provides G /R with the structure of a homotopy invariant Nisnevich
sheaf with transfers. In particular, any morphism ¢ : Y — X of
smooth connected k-schemes induces a morphism ¢* : G(k(X))/R —

Gk(Y))/R.

This functoriality is essential to formulate Theorem 2 below. For ¢
a closed immersion of codimension 1, it recovers a specialisation map
on R-equivalence classes with respect to a discrete valuation of rank
1 which was obtained (for tori) by completely different methods, e.g.
[4, Th. 3.1 and Cor. 4.2] or [7]. (I am indebted to Colliot-Thélene for
pointing out these references.)

Corollary 2. a) If k is finitely generated, the n-th homology sheaf of
v<oG[0] takes values in finitely generated abelian groups, and even in
finite groups if n > 0 or G is a torus.

b) If G is a torus, then v<oG[0] = 0 if G is split by a Galois extension
E/k whose Galois group has cyclic Sylow subgroups. This condition is
automatic if k is (quasi-)finite.

The proof is also given in Section 2.
Given two semi-abelian varieties G, G', we would now like to under-
stand the maps

Homy, (G, G") — Hompyen (v<oG[0], v<oG'[0]) = Homu(G/R, G'/R).

In Section 3, we succeed in elucidating the nature of their composi-
tion to a large extent, at least if GG is a torus. Our main result, in the
spirit of Yoneda’s lemma, is

Theorem 2. Let G, G’ be two semi-abelian varieties, with G a torus.
Suppose given, for every function field K/k, a homomorphism fr :
G(K)/R — G'(K)/R such that fx is natural with respect to the func-
toriality of Corollary 1. Then
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a) There exists an extension G of G by a permutation torus, and a
homomorphism f : G — G inducing (fx).

b) fi is surjective for all K if and only if there exist extensions GG
of G and G’ by permutation tori such that fr is induced by a split
surjective homomorphism G — G'.

The proof is given in §3.3. See Proposition 2, Corollary 5, Remark
4 and Proposition 3 for complements.

This relates to questions of stable birationality studied by Colliot-
Thélene and Sansuc in [3] and [4], providing alternate proofs and
strengthening of some of their results (at least over a perfect field).
More precisely:

Corollary 3. a) Let G’ be a semi-abelian k-variety such that G'(K)/R
=0 for any function field K/k. Then G’ is an invertible torus.

b) In Theorem 2 b), assume that fr is bijective for all K/k. Then there
exist extensions G, G' of G and G' by invertible tori such that fx is
induced by an isomorphism G — G

Proof. a) This is the special case G = 0 of Theorem 2 b).

b) By Theorem 2 b), we may replace G and G’ by extensions by
permutation tori such that fx is induced by a split surjection f: G —
G'. Let T'= Ker f. Then T'/R = 0 universally. By a), T"is invertible.

O

Corollary 3 a) is a version of [4, Prop. 7.4] (taking [3, p. 199, Th.
2] into account). Theorem 2 was inspired by the desire to understand
this result from a different viewpoint.

Corollary 4. Let f : G --» G’ be a rational map of semi-abelian
varieties, with G a torus. Then the following conditions are equivalent:

(1) fi:v<0G[0] = v<oG'[0] is an isomorphism (see Proposition 2).
(ii)) f« : G(K)/R — G'(K)/R s bijective for any function field

K/k.
(iii) f is an isomorphism, up to extensions of G and G by invertible
tori and up to a translation. (See Lemma 6.) O

Acknowledgements. Part of Theorem 1 was obtained in the course of
discussions with Takao Yamazaki during his stay at the IMJ in October
2010: I would like to thank him for inspiring exchanges. 1 also thank
Daniel Bertrand for a helpful discussion. Finally, I wish to acknowledge
inspiration from the work of Colliot-Thélene and Sansuc, which will be
obvious throughout this paper.
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2. PROOFS OF THEOREM 1 AND COROLLARY 2
Lemma 1. The exact sequence
0— T(k) — G(k) = A(k)
mduces an exact sequence
0— T(k)/R - G(k)/R — A(k).

Proof. Let f : P* -—-s G be a k-rational map defined at 0 and 1. Its
composition with the projection G — A is constant: thus the image of
f lies in a T-coset of GG defined by a rational point. This implies the
injectivity of ¢, and the rest is clear. O

Let NST denote the category of Nisnevich sheaves with transfers.
Recall that DM®® may be viewed as a localisation of D~ (NST), and
that its tensor structure is a descent of the tensor structure on the
latter category [19, Prop. 3.2.3].

Lemma 2. If G is an invertible torus, there is a canonical isomorphism
in D~(NST)
L[0] ® G,, — G[0].
In particular, v<oG[0] = 0.
Proof. We reduce to the case T' = Rg /.Gy, where I is a finite extension

of k. Let us write more precisely NST (k) and NST(E). There is a pair
of adjoint functors

NST(k) L5 NST(E), NST(E) L5 HI(k)
where f : Spec ' — Speck is the projection. Clearly,
f+Zo = Zy(Spec E), f.G,, =T

where Zi,(Spec F) is the Nisnevich sheaf with transfers represented by
Spec E. Since Zy,(Spec F) = L, this proves the claim. O

Proof of Theorem 1. a) Recall that Ly is an invertible lattice chosen so
that Lo(F) — L(F) is surjective for any extension F/k. In particular,
(2) and (3) are exact as sequences of Nisnevich sheaves; hence L[0] is
isomorphic in D~ (NST) to the complex

L =---—L,—-—Ly—0.

(We may view (3) as a version of Voevodsky’s “canonical resolutions”
as in [19, §3.2 p. 206].)

By Lemma 2, L,[0] ® G,,[0] ~ T,[0] is homologically concentrated
in degree 0 for all n. It follows that the complex

I=---=T,— ---—=1Ty—0
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is isomorphic to L[0] ® G,,[0] in D~ (NST), hence a fortiori in DM,
b) For any nonempty open subscheme U C X we have isomorphisms

(4)  Hu(v<oG0))(X) — Hy(v<oG[0])(U) — Hn(v<oG[0])(K)

(e.g. [8, p. 912]). By a), the right hand term is the n-th homology
group of the complex

o= T(K) = - =5 T(K) > G(K) =0
with G(K) in degree 0. By [3, p. 199, Th. 2|, the sequences
0= S1(K)—=>Ty(K)—->T(K)—>T(K)/R—0
0= Sp1(K) = To(K)— S, (K) — S,(K)/R—0

are all exact. Using Lemma 1 for Hj, the conclusion follows from an
easy diagram chase. O

Remark 1. As a corollary to Theorem 1, S,,(K)/R only depends on G.
This can be seen without mentioning DM®T: in view of the reasoning
just above, it suffices to construct a homotopy equivalence between two
resolutions of the form (3), which easily follows from the definition of
coflasque modules.

Proof of Corollary 2. a) This follows via Theorem 1 and Lemma 1 from
[3, p- 200, Cor. 2] and the Mordell-Weil-Néron theorem. b) We may
choose the L,, hence the S, split by E/k. The conclusion now follows
from Theorem 1 and [3, p. 200, Cor. 3]. The last claim is clear. O

Remark 2. In characteristic p > 0, all finitely generated perfect fields
are finite. To give some contents to Corollary 2 a) in this character-
istic, one may pass to the perfect [one should say radicial] closure k
of a finitely generated field ky. If G is a semi-abelian k-variety, it is
defined over some finite extension ki of ko. If ky/k; is a finite (purely
inseparable) subextension of k/ki, then the composition

Niey/k1
equals multiplication by [k : k1]. Hence Corollary 2 a) remains true at
least after inverting p.

3. STABLE BIRATIONALITY

If X is a smooth variety over a field k, we write Alb(X) for its
generalised Albanese variety in the sense of Serre [16]: it is a semi-
abelian variety, and a rational point zy € X determines a morphism
X — Alb(X) which is universal for morphisms from X to semi-abelian
varieties sending xy to 0.
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We also write NS(X) for the group of cycles of codimension 1 on X
modulo algebraic equivalence. This group is finitely generated if £ is
algebraically closed [9, Th. 3].

3.1. Well-known lemmas. I include proofs for lack of reference.

Lemma 3. a) Let G,G" be two semi-abelian k-varieties. Then any
k-morphism f : G — G’ can be written uniquely f = f(0) + f', where
1! is a homomorphism.

b) For any semi-abelian k-variety G, the canonical map G — Alb(G)
sending O to 0 is an isomorphism.

Proof. a) amounts to showing that if f(0) = 0, then f is a homomor-
phism. By an adjunction game, this is equivalent to b). Let us give
two proofs: one of a) and one of b).

Proof of a). We may assume k to be a universal domain. The
staement is classical for abelian varieties [15, p. 41, Cor. 1] and an
easy computation for tori. In the general case, let T, T’ be the toric
parts of G and G’ and A, A’ be their abelian parts. Let g € G(k). As
any morphism from T to A’ is constant, the k-morphism

0 Tot— flg+t)—f(g) €@

(which sends 0 to 0) lands in 7", hence is a homomorphism. Therefore
it only depends on the image of ¢ in A(k). This defines a morphism
¢ : A — Hom(T,T"), which must be constant with value ¢y = f. It
follows that

(g, h) = f(g+h) = f(g) — f(h)
induces a morphism A x A — T’. Such a morphism is constant, of
value 0.

Proof of b). This is true if G is abelian, by rigidity and the equiv-
alence between a) and b). In general, any morphism from G to an
abelian variety is trivial on 7. This shows that the abelian part of
Alb(G) is A. Let T" = Ker(Alb(G) — A). We also have the counit
morphism Alb(G) — G, and the composition G — Alb(G) — G is
the identity. Thus 7T is a direct summand of 7". It suffices to show
that dim7”" = dimT. Going to the algebraic closure, we may reduce
to T = G,,.

Then consider the line bundle completion G — A of the G,,-bundle
G — A. Tt is sufficient to show that the kernel of

Alb(G) = AIb(G) = A

is 1-dimensional. This follows for example from [1, Cor. 10.5.1]. u
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Lemma 4. Suppose k algebraically closed, and let G be a semi-abelian
k-variety. Let A be the abelian quotient of G. Then the map

(5) NS(A) — NS(G)
s an isomorphism.

Proof. Let T = Ker(G — A) and X (T') be its character group. Choos-
ing a basis (e;) of X(7T'), we may complete the Gj, -torsor G into a
product of line bundles G — A. The surjection

Pic(A) — Pic(G) —» Pic(G)

show the surjectivity of (5). Its kernel is generated by the classes of
the irreducible components D; of the divisor with normal crossings
G — G. These components correspond to the basis elements e;. Since
the corresponding G,,-bundle is a group extension of A by G,,, the class
of the 0 section of its line bundle completion lies in Pic’(A), hence goes

to 0 in NS(G). O

Lemma 5. Let X be a smooth k-variety, and let U C X be a dense
open subset. Then there is an exact sequence of semi-abelian varieties

0—T — Alb(U) — Alb(X) — 0

with T a torus. If NS(U) = 0 (this happens if U is small enough), there
is an exact sequence of character groups

0-X(T)—» P Z-NSX)-o.

zeX)_py)
Proof. This follows for example from [1, Cor. 10.5.1]. O

Lemma 6. Let f : G --+ G’ be a rational map between semi-abelian
k-varieties, with G a torus. Then there exists an extension G of G by
a permutation torus and a homomorphism f : G — G which extends f
up to translation in the following sense: there exists a rational section
s: G --» G of the projection 7 : G — G and a rational point ¢’ € G'(k)
such that f = fs + 4. If f is defined at Og and sends it to Og:, then
g =0.

Proof. Let U be an open subset of G where f is defined. We define
G = Alb(U). Applying Lemmas 5 and 3 b) and using NS(G) = 0, we
get an extension

0-P—-G—-G—=0

where P is a permutation torus, as well as a morphism f = Alb(f) :

G- G
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Let us first assume k infinite. Then U(k) # 0 because G is unira-
tional. A rational point ¢ € U defines an Albanese map s : U — G
sending g to Og. Since P is a permutation torus, g € G(k) lifts to
§ € G(k) (Hilbert 90) and we may replace s by a morphism sending
g to §. Then s is a rational section of w. Moreover, f = fs + ¢ with
¢ = f(g) — f(§). The last assertion follows.

If k is finite, then U has at least a zero-cycle g of degree 1, which is
enough to define the Albanese map s. We then proceed as above (lift

every closed point involved in g to a closed point of G with the same
residue field). O

Lemma 7. Let G be a finite group, and let A be a finitely generated
G-module. Then

a) There exists a short exact sequence of G-modules 0 — P — F —
A = 0, with F torsion-free and flasque, and P permutation.

b) Let B be another finitely generated G-module, and let 0 — P’ —
E — B — 0 be an exact sequence with P an invertible module. Then
any G-morphism f: A — B liftsto f : FF — F.

Proof. a) is the contents of [4, Lemma 0.6, (0.6.2)]. b) The obstruction
to lifting f lies in Exty,(F, P') =0 [3, p. 182, Lemme 9]. O
3.2. Functoriality of v<(G. We now assume k perfect.

Lemma 8. Let
(6) 0>P—-G—H—0

be an exact sequence of semi-abelian varieties, with P an invertible
torus. Then v<yG[0] — v<oH[0].

Proof. As P is invertible, (6) is exact in NST hence defines an exact
triangle
P[0] — G[0] — H[0] =

in DM®®. The conclusion then follows from Lemma 2. O

Proposition 2. Let G,G" be two semi-abelian k-varieties, with G a
torus. Then a rational map f : G --+ G’ induces a morphism f, :
v<oG[0] = v<oG'[0], hence a homomorphism f.: G(K)/R — G'(K)/R
for any extension K/k. If K is infinite, f. agrees up to translation with
the morphism induced by f via the isomorphism U(K)/R — G(K)/R
from [3, p. 196 Prop. 11|, where U is an open subset of definition of f.

Proof. By Lemma 6, f induces a homomorphism G — G’ where G is
an extension of G by a permutation torus. By Lemma 8, the induced
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morphism
v<oG[0] = v<oG'[0]
factors through a morphism f, : v<oG[0] — v<,G'[0].
The claims about R-equivalence classes follow from Theorem 1 b)
and Lemma 6. u

Remark 3. The proof shows that f. = f, if f’ differs from f by a
translation by an element of G(k) or G'(k).

Corollary 5. If T and T’ are birationally equivalent k-tori, then v<yT'[0]
~ voT'[0]. In particular, the groups T'(k)/R and T'(k)/R are isomor-
phic.

Proof. The proof of Proposition 2 shows that f — f, is functorial
for composable rational maps between tori. Let f : T --» T be a
birational isomorphism, and let g : 7" --» T' be the inverse birational
isomorphism. Then we have g, f, = 1,_ 7o) and f.g. = 1,_;g. The
last claim follows from Theorem 1. O

Remark 4. It is proven in [3] that a birational isomorphism of tori
f:T --+ T induces a set-theoretic bijection f, : T'(k)/R — T'(k)/R
(p. 197, Cor. to Prop. 11) and that the group T'(k)/R is abstractly
a birational invariant of 7' (p. 200, Cor. 4). The proof above shows
that f, is an isomorphism of groups if f respects the origins of 7" and
T’. This solves the question raised in [3, mid. p. 397]. The proofs of
Lemma 6 and Proposition 2 may be seen as dual to the proof of [3, p.
189, Prop. 5], and are directly inspired from it.

3.3. Faithfulness and fullness.

Proposition 3. Let f : G --» G’ be a rational map between semi-
abelian varieties, with G a torus. Assume that the map f. : G(K)/R —
G'(K)/R from Proposition 2 is identically O when K runs through the
finitely generated extensions of k. Then there exists a permutation
torus P and a factorisation of f as

alir %o
where f is a rational map and g is a homomorphism. If f is a mor-
phism, we may choose f as a homomorphism.
Conversely, if there is such a factorisation, then f. : v<oG[0] = v<oG'[0]
18 the O morphism.

Proof. By Lemma 6, we may reduce to the case where f is a morphism.
Let K = k(G). By hypothesis, the image of the generic point g €
G(K) is R-equivalent to 0 on G'(K). By a lemma of Gille [6, Lemme
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I1.1.1 b)], it is directly R-equivalent to 0: in other words, there exists
a rational map h : G x A! ——» @, defined in the neighbourhood of 0
and 1, such that hgx oy = 0 and hygxq1y = f.

Let U C G x A! be an open set of definition of h. The 0 and
1-sections of G x A! — @ induce sections

S0, 51 : G — Alb(U)

of the projection 7 : Alb(U) — Alb(G x A') = G such that Alb(h) o
sg = 0 and Alb(fz) osy = f. If P = Kerm, then sy — s; induces a

homomorphism f : G — P such that the composition

Alb(h
ity

G p o Aabw) 2 o

equals f. Finally, P is a permutation torus by Lemma 5.
The last claim follows from Lemma 2. ]

Proof of Theorem 2. a) Take K = k(G). The image of the generic
point ng by fx lifts to a (non unique) rational map f : G --» G'.
Using Lemma 6, we may extend f to a homomorphism

f:G=G
where G is an extension of G by a permutation torus P. Since G(K)/R
— G(K)/R, we reduce to G = G and f = f.
Let L/k be a fonction field, and let ¢ € G(L). Then ¢ arises from

a morphism g : X — G for a suitable smooth model X of L. By
assumption on K — fg, the diagram

G(K)/R 2% G'(K)/R

g*l g*l
G(L)/R —I“» G'(L)/R

commutes. Applying this to nx € G(K), we find that f.([g]) = [go f],
which means that f; is the map induced by f.

b) The hypothesis implies that G'(E)/R = 0 for any algebraically
closed extension E/k, which in turn implies that G’ is also a torus.
Applying a), we may, and do, convert f into a true homomorphism by
replacing G by a suitable extension by a permutation torus. Applying
Lemma 7 a) to the cocharacter group of G, we get a resolution 0 —
P — @ — G — 0 with @ coflasque and P, permutation. Hence we
may (and do) further assume G coflasque.

Let K = k(G’) and choose some g € G(K) mapping modulo R-
equivalence to the generic point of G'. Then g defines a rational map
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g : G’ --» G such that fg is R-equivalent to 1¢/. It follows that the
induced map

(7) 1-fg:G/R—G/R

is identically 0.

Reapplying Lemma 6, we may find an extension G’ of G/ by a suitable
permutation torus which converts g into a true homomorphism. Since
G is coflasque, Lemma 7 b) shows that f : G — G’ lifts to f : G — G'.
Then (7) is still identically 0 when replacing (G, f) by (G, f).

Summarising: we have replaced the initial G and G’ by suitable
extensions by permutation tori, such that f lifts to these extensions
and there is a homomorphism ¢ : G’ — G such that (7) vanishes
identically. Hence 1— fg factors through a permutation torus P thanks
to Proposition 3. Writew : G' — P and v : P — G’ for homomorphisms
such that 1 — fg = vu. Let G; = G x P and consider the maps

fi=(fv): G =G, 91Z<Z):G’—>G1.
Then fig; =1 and G’ is a direct summand of G as requested. [

4. SOME OPEN QUESTIONS

Question 1. Are lemma 6 and Proposition 2 still true when G is not a
torus?

This is far from clear in general, starting with the case where G is
an abelian variety and G’ a torus. Let me give a positive answer in the
case of an elliptic curve.

Proposition 4. The answer to Question 1 is yes if the abelian part A
of G s an elliptic curve.

Proof. Arguing as in the proof of Proposition 2, we get for an open
subset U C G of definition for f an exact sequence

0—-G,, - P—AbU)—>G—0

where P is a permutation torus. Here we used that NS(G) ~ Z, which
follows from Lemma 4.

The character group X (P) has as a basis the geometric irreducible
components of codimension 1 of G — U. Up to shrinking U, we may
assume that G — U contains the inverse image D of 0 € A. As the
divisor class of 0 generates NS(A), D provides a Galois-equivariant
splitting of the map G,, — P. Thus its cokernel is still a permutation
torus, and we conclude as before. O
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Question 2. Can one formulate a version of Theorem 2 and Corollary 3
providing a description of the groups Hompyer (v<oG[0], v<oG’[0]) and
Homy (G/R,G’/R) (at least when G and G’ are tori)?

The proof of Theorem 2 suggests the presence of a closed model
structure on the category of tori (or lattices), which might provide an
answer to this question.

For the last question, let G' be a semi-abelian variety. Forgetting its
group structure, it has a motive M(G) € DM®®. Recall the canonical
morphism

M(G) — G[0]
induced by the “sum” maps
(8) (X, G) == G(X)

for smooth varieties X ([17, (6), (7)], [1, §1.3]).
The morphism (8) has a canonical section

(9) G(X) L (X, Q)

given by the graph of a morphism: this section is functorial in X but
is not additive.

Consider now a smooth equivariant compactification G of G. It exists
in all characteristics. For tori, this is written up in [2]. The general
case reduces to this one by the following elegant argument I learned
from M. Brion: if G is an extension of an abelian variety A by a torus
T, take a smooth projective equivariant compactification Y of T'. Then
the bundle G xT'Y associated to the T-torsor G — A also exists: this
is the desired compactification.

Then we have a diagram of birational motives

veoM(G) ———= v<oM(Q)
(10) ”SOUJ
v<oGJ0].
By [11], we have Hy(v<oM(G))(X) = CHy(Gy(x)) for any smooth
connected X. Hence the above diagram induces a homomorphism
(11) CHy(Grixy) = G(k(X))/R

which is natural in X for the action of finite correspondences (compare
Corollary 1). One can probably check that this is the homomorphism
of [12, (17) p. 78], reformulating [3, Proposition 12 p. 198]. Similarly,
the set-theoretic map

(12) G(k(X))/R = CHy(Grx))
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of [3, p. 197] can presumably be recovered as a birational version of
(9), using perhaps the homotopy category of schemes of Morel and
Voevodsky [14].

In [12], Merkurjev shows that (11) is an isomorphism for G a torus
of dimension at most 3. This suggests:

Question 3. Is the map v<yo of Diagram (10) an isomorphism when G
is a torus of dimension < 37

In [13], Merkurjev gives examples of tori G for which (12) is not
a homomorphism; hence its (additive) left inverse (11) cannot be an
isomorphism. Merkurjev’s examples are of the form G = R} /ka X

R} /ka, where K and L are distinct biquadratic extensions of k. This
suggests:

Question 4. Can one study Merkurjev’s examples from the above view-
point? More generally, what is the nature of the map v<yo of Diagram
(10)?

We leave all these questions to the interested reader.
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