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Abstract. We explore algebraic subgroups of the Cremona group Cn over
an algebraically closed field of characteristic zero. First, we consider some
class of algebraic subgroups of Cn that we call flattenable. It contains all
tori. Linearizability of the natural rational actions of flattenable subgroups
on A

n is intimately related to rationality of the invariant fields and, for tori, is
equivalent to it. We prove stable linearizability of these actions and show the
existence of nonlinearizable actions among them. This is applied to exploring
maximal tori in Cn and to proving the existence of nonlinearizable, but sta-
bly linearizable elements of infinite order in Cn for n > 6. Then we consider
some subgroups J (x1, . . . , xn) of Cn that we call the rational de Jonquières
subgroups. We prove that every affine algebraic subgroup of J (x1, . . . , xn) is
solvable and the group of its connected components is Abelian. We also prove
that every reductive algebraic subgroup of J (x1, . . . , xn) is diagonalizable.
Further, we prove that the natural rational action on An of any unipotent
algebraic subgroup of J (x1, . . . , xn) admits a rational cross-section which is
an affine subspace of An. We show that in this statement “unipotent” cannot
be replaced by “connected solvable”. This is applied to proving a conjecture of
A. Joseph on the existence of “rational slices” for the coadjoint representations
of finite-dimensional algebraic Lie algebras g under the assumption that the
Levi decomposition of g is a direct product. We then consider some overgroup

Ĵ (x1, . . . , xn) of J (x1, . . . , xn) and prove that every torus in Ĵ (x1, . . . , xn)
is linearizable. Finally, we prove the existence of an element g ∈ C3 of order
2 such that g /∈ G for every connected affine algebraic subgroup G of C∞; in
particular, g is not stably linearizable.

1. Introduction

The last three decades were marked by growing interest in problems related to
the affine Cremona group Caffn (the group of biregular automorphisms of the affine
n-dimensional space An). Despite of a remarkable progress made during these years,
some fundamental problems still remain unsolved. For instance, at the moment the
linearization problem for algebraic tori is solved only for n 6 3 and its difficult
solution for n = 3 is one of the highlights of the theory.

Some of these problems may be formulated entirely in terms of group-theoretic
structure of Caffn . Thereby, they admit the birational counterparts related to the
full Cremona group Cn (the group of birational automorphisms of An). It is of
interest to explore them. We have not seen publications purposefully developing
this viewpoint. A step in this direction is made in this paper.

In Section 2 we first consider a class of algebraic subgroups of Cn that we call flat-
tenable. Linearizability of their natural rational actions on An is intimately related
to rationality of their invariant fields, the subject of classical Noether problem. All

∗ Supported by grants RFFI 11-01-00185-a, NX–4713.2010.1, and the program Con-

temporary Problems of Theoretical Mathematics of the Russian Academy of Sciences, Branch of
Mathematics.

1



2 VLADIMIR L. POPOV

algebraic tori in Cn are contained in this class and, for them, these two properties,
linearizability and rationality, are equivalent. We show that flattenable groups are
special in the sense of Serre [Ser58] and that every rational locally free action on
An of a special group is stably linearizable; in particular, this is so for tori. On the
other hand, we show that there are stably linearizable, but nonlinearizable rational
locally free actions on An of connected affine algebraic groups, in particular, that of
tori. We then apply this to the problem of describing maximal tori in Cn and show
that nowadays one can say more on it than in the time when Bia lynicki-Birula and
Demazure wrote their papers [Bia66], [Dem70]. Namely, apart from n-dimensional
maximal tori (that are all conjugate), Cn for n > 6 contains maximal tori of di-
mension n− 3 (and does not contain maximal tori of dimensions n− 2, n− 1 and
> n). This answers a question of Hirschowitz [Hir72, Sect. 3]. As another applica-
tion, we prove the existence of nonlinearizable, but stably linearizable elements of
infinite order in Cn for n > 6.

In Sections 3 and 4 we consider a natural counterpart of the classical de Jon-
quières subgroups of Caffn that we call the rational de Jonquières subgroups of Cn. We
prove that their affine algebraic subgroups are solvable and have Abelian groups
of connected components. We also prove that reductive algebraic subgroups of the
rational de Jonquières subgroups of Cn are diagonalizable. Then we prove that for
the natural rational action on An of any unipotent algebraic subgroup of a ra-
tional de Jonquières subgroup of Cn there exists an affine subspace of An which
is a rational cross-section for this action (recall that for rational actions of con-
nected solvable affine algebraic subgroups of Cn on An, the existence of some ra-
tional cross-sections, not necessarily affine subspaces of An, is ensured by a general
Rosenlich’s theorem, see [Ros56, Theorem 10]). We also show that in this result
“unipotent” cannot be replaced by “connected solvable”. We then apply this result
to a conjecture of A. Joseph [Jos11, 7.11] on the existence of “rational slices” for the
coadjoint representations of finite-dimensional algebraic Lie algebras g and prove
this conjecture under the assumption that the Levi decomposition of g is a direct
product. Further, we consider a certain natural class of overgroups of the rational
de Jonquières subgroups and, using the results of Section 2, show that the natural
action on An of any subtorus of such an overgroup is linearizable. Finally, we prove
the existence of an element g ∈ C3 of order 2 such that g /∈ G for every connected
affine algebraic subgroup G of the direct limit C∞ of the tower of natural inclusions
C1 →֒ C2 →֒ · · · ; in particular, g is not stably linearizable.

Conventions, notation and some generalities.

Below “variety” means “algebraic variety”. We assume given an algebraically
closed field k of characteristic zero which serves as domain of definition for each
of the varieties considered below. Each variety is identified with its set of points
rational over k. Along with the standard notation and conventions of [Bor91] we
use the following ones.

— AutX is the automorphism group of a variety X .
— BirX is the group of birational automorphisms of an irreducible variety X .
— X≈Y means that X and Y are birationally isomorphic irreducible varieties.
— If f is a rational function on the product X × Y of varieties and x ∈ X is a

point such that f |x×Y is well defined, then f(x) is the element of k(Y ) such
that f(x, y) = f(x)(y) for every point (x, y) ∈ X × Y where f is defined.

— Given a dominant rational map ϕ : X 99K Y of varieties, ϕ∗ is the embedding
k(Y ) →֒ k(X), f 7→ f ◦ ϕ.
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— Given an action

α : G×X → X (1)

of a group G on a set X and the elements g ∈ G, x ∈ X , then α(g, x) ∈ X
is denoted by g · x. If H is a subgroup of G, then α|H is the restriction of α
to H ×X .

— An ×Am is identified with An+m by means of the isomorphism

An ×Am → An+m,
((a1, . . . , an), (b1, . . . , bm)) 7→ (a1, . . . , an, b1, . . . , bm).

— K× is the multiplicative and additive groups of a field K.
— G0 is the identity component of an algebraic group G.
— K+ is the additive group of a field K.
— “Torus” means “affine algebraic torus”.
— If K/F is a field extension, then K is called pure (resp. stably pure) over F

if K is generated over F by a finite collection of algebraically independent
elements (resp. if K is contained in a field that is pure over both K and F ).

Let G be an algebraic group and let X be a variety.
If (1) is a morphism, then α is called a regular action. In this case, for every

element g ∈ G, the map X → X , x 7→ g ·x, is an automorphism of X and the image
of the homomorphism G→ AutX , g 7→ {x 7→ g · x} is called an algebraic subgroup

of AutX . A regular action α is called locally free if there is a dense open subset U
of X such that the G-stabilizer of every point of U is trivial.

¿From now on we assume that X is irreducible. The map

BirX → Autk k(X), ϕ 7→ (ϕ∗)−1, (2)

is a group isomorphism. We always identify BirX and Autk k(X) by means of (2)
when we speak about action of a subgroup of BirX by k-automorphisms of k(X)
and, conversely, action of a subgroup of Autkk(X) by birational automorphisms
of X .

Let θ : G→ BirX be an abstract group homomorphism. It determines an action
of G on X by birational isomorphisms. If the domain of definition of the partially
defined map G×X → X , (g, x) 7→ θ(g)(x), contains a dense open subset of G×X
and coincides on it with a rational map ̺ : G ×X 99K X , then this action (and ̺)
is called a rational action of G on X and θ(G) is called an algebraic subgroup of

BirX .
There is a method for constructing algebraic subgroups of BirX . Namely, let

Y be another irreducible variety and let γ : Y 99K X be a birational isomor-
phism. Then BirY → BirX , g 7→ γ ◦ g ◦ γ−1, is a group isomorphism and the image
of any algebraic subgroup of AutY under it is an algebraic subgroup of BirX . In
fact, by [Ros56, Theorem 1], this method is universal, i.e., every algebraic subgroup
of BirX is obtained in this manner for the appropriate Y and γ. In other words,
for every rational action of G on X there is a regular action of G on an irreducible
variety Y , the open subsets X0 and Y0 of resp. X and Y , and an isomorphism
Y0 → X0 such that the induced field isomorphism k(X) = k(X0) → k(Y0) = k(Y )
is G-equivariant. If the action of G on Y is locally free, then the rational action ̺
is called locally free.

Let ̺ : G×X 99K X be a rational action of G on X and let f be an element of
k(X). Then {g · f | g ∈ G} is an “algebraic family” of rational functions on X in

the following sense: there is a rational function f̂ ∈ k(G×X) such that g ·f = f̂(g)
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for every g ∈ G. Indeed, ̺∗(f) ∈ k(G×X) and ̺∗(f)(g, x) = (g−1 · f)(x) for every
point (g, x) ∈ G×X where ̺∗(f) is defined; whence the claim.

If X and Y are irreducible varieties endowed with rational actions of G such that
there is a G-equivariant birational isomorphism X 99K Y , then we write

X
G
≈ Y.

In order to avoid a confusion, in some cases when several rational actions are
simultaneously considered, we denote X endowed with a rational action ̺ of G by

̺X.

If Y is another variety, then X × Y endowed with the rational action of G via the
first factor by means of ̺ is denoted by

̺X × Y.

We denote by

λG

the underlying variety of G endowed with the action of G by left translations.
If ̺ is a rational action of G on X , then

πG,X : X 99K X --
-G

is a rational quotient of ̺, i.e., X --
-G and πG,X are resp. a variety and a dominant

rational map such that π∗

G,X(k(X --
-G)) = k(X)G (see [PV94, 2.4]). Depending on

the situation we choose X --
-G as a suitable variety within the class of birationally

isomorphic ones. A rational section (resp., cross-section) for ̺ is a rational map

σ : X --
-G 99K X such that πG,X ◦ σ = id (resp., a subvariety S of X such that

πG,X |S : S 99K X --
-G is a birational isomorphism). The closure of the image of a

rational section is a rational cross-section and, since chark = 0, the closure of every
cross-section is obtained in this manner.

The group

Cn := Autk k(An)

is called the Cremona group of rank n (over k). It is endowed with a topology, the
Zariski topology of Cn, in which families of elements of Cn “algebraically parame-
terized” by algebraic varieties are closed [Ser08, 1.6]. For every algebraic subgroup
G of Cn and its subset S, the closure of S in Cn coincides with the closure of S
in G in the Zariski topology of G. In particular, G is closed in Cn. Left and right
translations of Cn are homeomorphisms.

We denote by x1, . . . , xn ∈ k[An] the standard coordinate functions on An:

xi((a1, . . . , an)) = ai. (3)

They are algebraically independent over k and k(An) = k(x1, . . . , xn). For eve-
ry n > 2, we identify An−1 with the image of the embedding An−1 →֒ An,
(a1, . . . , an−1) 7→ (a1, . . . , an−1, 0), and denote the restriction xi|An−1 for i =
1, . . . , n − 1 still by xi. Correspondingly, we have the embedding Cn−1 →֒ Cn,
g 7→ ĝ, where ĝ · xi := g · xi if i = 1, . . . , n− 1 and ĝ · xn := xn. The direct limit for
the tower of these embeddings C1 →֒ C2 →֒ · · · →֒ Cn →֒ · · · is the Cremona group

C∞ of infinite rank. We identify every Cn with the subgroup of C∞ by means of the
natural embedding Cn →֒ C∞. A subgroup G of C∞ is called algebraic if there exists
an integer n > 0 such that G is an algebraic subgroup of Cn.
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We distinguish the following two algebraic subgroups of Cn:

GLn := {g ∈ Cn | g · xi =
∑n

j=1
αijxj , αij ∈ k},

Dn := {g ∈ Cn | g · xi = αixi, αi ∈ k};

Dn is a maximal torus in GLn.
Let g be an element and let G be a subgroup of Cn. If g ∈ GLn (resp.G ⊆

GLn), then g (resp. G) is called a linear element (resp. a linear subgroup). If g
(resp. G) is conjugate to a linear element (resp. a linear subgroup), then it is called
a linearizable element (resp. a linearizable subgroup). If g (resp. G) is a linearizable
element (resp. a linearizable subgroup) of some Cm for m > n, then it is called a
stably linearizable element (resp. a stably linearizable subgroup). A rational action
̺ of an algebraic group H on An is called resp. a linear, linearizable or stably

linearizable action if the image of H in Cn corresponding to ̺ is resp. a linear,
linearizable or stably linearizable subgroup of Cn.

2. Flattening, linearizability, tori

Definition 1. An affine algebraic group G is called flattenable if the underlying
variety of G endowed with the action of G by left translations admits an equivariant
open embedding into some An endowed with a rational linear action of G. The G-
module An is then called a flattening of G.

Every flattenable group is connected.

Example 1. An endowed with the natural action of Dn,

diag(ε1, . . . , εn) · (a1, . . . , an) := (ε1a1, . . . , εnan), (4)

is a flattening of Dn. Hence, every torus is flattenable.

Example 2. The underlying vector space of the algebra Matn×n of all (n × n)-
matrices with entries in k endowed with the action of GLn by left multiplications,
g ·a := ga, g ∈ GLn, a ∈ Matn×n, is a flattening of GLn. Hence, GLn is flattenable.

Example 3. Let G1, . . . , Gs be affine algebraic groups and let G := G1× · · · ×Gs.
If Ani endowed with an action of Gi is a flattening of Gi, then An1

× · · · × Ans

endowed with the natural action of G is a flattening of G. Hence, G is flattenable
if every Gi is.

Example 4. Consider a finite-dimensional associative (not necessarily commuta-
tive) k-algebra A with an identity element. The group of all invertible elements of
A is then a connected affine algebraic group G whose underlying variety is an open
subset of that of A. The action of G on A by left multiplications is linear and the
identity map is an equivariant embedding of G into A. Thus, A is a flattening of G
and G is flattenable. If A is the product of n copies of the k-algebra k, we obtain
Example 1. Taking A = Matn×n, we obtain Example 2.

In general, flattening of G is not unique.

Example 5. Matn×n endowed with the action of GLn given by g · a := (gt)−1a,
g ∈ GLn, a ∈ Matn×n, where gt is the transpose of g, is a flattening of GLn.
It is not isomorphic to that from Example 1 (as the highest weights of these two
flattenings are not equal).

Lemma 1. If the underlying variety of a connected reductive algebraic group G 6=
{e} is isomorphic to an open subset U of An, then U 6= An and the center of G is

at least one-dimensional.
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Proof. As G 6= {e} is reductive, it contains a torus T of positive dimension. For
the action of T on G by left translations, the fixed point set is empty. But for any
regular action of T on An, the fixed point set is nonempty, see [Bia66, Theorem 1].
Hence, U 6= An.

Since D := An \ U 6= ∅ and U is affine, the dimension of every irreducible
component of D is n− 1, see [Pop72, Lemma 3]. Since PicAn = 0, this entails that
D is the zero set of some regular function f on An. Therefore, f |U is a nonconstant
invertible regular function on U . By [Ros611, Theorem 3] every such function is,
up to a scalar multiple, a character of G. So there is a nontrivial character of
G. On the other hand, as G is a connected reductive group, G = G′ · C where G′

is the derived group of G (it is semisimple), C is the connected component of the
identity in the center of G (it is a torus), and G′∩C is finite, see [Bor91, 14.2]. This
entails that the character group of G is a free abelian group of rank dimC. Hence,
dim C > 1. �

Corollary 1. There are no nontrivial semisimple flattenable groups.

Recall from [Ser58] that an algebraic group G is called special if every principal
homogeneous space under G over every field K containing k is trivial. By [Ser58]
special group is automatically connected and affine. Special groups are classified: a
connected affine algebraic group G is special if and only if a maximal connected
semisimple subgroup of G is isomorphic to

SLn1
× · · · × SLnr × Spm1

× · · · × Spms
(5)

for some integers r > 0, s > 0, ni,mj (by [Ser58] such groups are special, and by
[Gro58] only these are).

Lemma 2. Every flattenable group G is special.

Proof. Let An endowed with a rational linear action α of G be a flattening of G and

let πG,αAn : αA
n 99K αA

n

--
-G be a rational quotient for this action. By Definition

1, α is locally free. Hence, by [PV94, Theorem 1.4.3], proving that G is special is
equivalent to proving that πG,αAn admits a rational section. But the existence of

such a rational section is clear because Definition 1 entails that αA
n

--
-G is a single

point. �

By Lemma 2 a maximal connected semisimple subgroup of every flattenable
group is isomorphic to a group of type (5). Hence, every reductive flattenable group
is a quotient (T × S)/C where T is a torus, S is a group of type (5) and C is a
finite central subgroup.

Conjecture. The following properties of a connected reductive algebraic group G
are equivalent:

(i) G is flattenable;
(ii) G is isomorphic to T ×GLn1

× · · · ×GLnr where T is a torus.

Theorem 1. Let α be a locally free rational action of a flattenable group G on Am.

If the invariant field k(αA
m)G is pure over k, then α is linearizable.

Proof. Consider for α a rational quotient,

πG,αAm : αA
m 99K αA

m

--
-G. (6)

As explained in Introduction, there is a variety X endowed with a regular locally

free action α′ of G such that α′X
G
≈ αA

m. By [CTKPR11, Theorem 2.13], shrinking



SOME SUBGROUPS OF THE CREMONA GROUPS 7

X if necessary, we may assume that the geometric quotient

α′X → α′X/G

for α′ exists and is a torsor over α′X/G. As G is special by Lemma 2, this torsor is

locally trivial in Zariski topology. Hence, α′X
G
≈ λG× (α′X/G) and therefore,

αA
m G
≈ λG× (αA

m

--
-G). (7)

Let βA
n be a flattening of G. Definition 1 yields

λG
G
≈ βA

n. (8)

¿From (7) and (8) we obtain

αA
m G
≈ βA

n × (αA
m

--
-G). (9)

The assumption of purity and (9) yield

αA
m

--
-G ≈ Am−n. (10)

Consider the action γ of G on Am defined by

γA
m := βA

n ×Am−n. (11)

¿From (9), (10), and (11) we deduce that

αA
m G
≈ γA

m. (12)

But γ is linear because β is. This and (12) complete the proof. �

Lemma 3. For every affine algebraic group G and every integer r there exists a

rational locally free linear action of G on As for some s > r.

Proof. By [Bor91, Prop. 1.10] we may assume that G is a closed subgroup of some
GLn. As there is a closed embedding of GLn in GLn+1, we may in addition assume
that n2 > r. By Example 2 there a rational locally free linear action α of GLn on

An2

. Hence, α|G shares the requested properties. �

Theorem 2. Every rational locally free action α of a special algebraic group G on

Am is stably linearizable.

Proof. The same argument as in the proof of Theorem 1 shows that (7) holds.
By Lemma 3 there is a rational locally free linear action γ of G on As for some
s > m. Like for α, for γ we have

γA
s G
≈ λG× (γA

s

--
-G) (13)

Let d := dimG. Since by [Che54] the underlying variety of G is rational, we
have

G ≈ Ad. (14)

¿From (7), (13), and (14) we then obtain

Am ≈ Ad × (αA
m

--
-G),

As ≈ Ad × (γA
s

--
-G).

(15)

In turn, (7), (13), and (15) imply

αA
m ×Ad G

≈ λG× (αA
m

--
-G)×Ad G

≈ λG×Am,

γA
s ×Ad G

≈ λG× (γA
s

--
-G)×Ad G

≈ λG×As.
(16)
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Since s > m, we have d + s−m > 0 and from (16) we deduce

αA
m ×Ad+s−m = αA

m ×Ad ×As−m

G
≈ λG×Am ×As−m

= λG×As

G
≈ γA

s ×Ad.

(17)

Since the action of G on γA
s ×Ad is linear, (17) completes the proof. �

The next theorem implies that “stably linearizable” in Theorem 2 cannot be
replaced by “linearizable”.

Theorem 3. For every connected semisimple algebraic group G 6= {e}, there exists

a rational nonlinearizable locally free action of G on Ad for d = dim G.

Proof. Since (14) holds, there exists a rational locally free action α of G on Ad such

that λG
G
≈ αA

d. We claim that α is nonlinearizable. For, otherwise, we would get a
rational locally free linear (hence, regular) action of G on Ad. Since d = dim G, one
of its orbits is open in Ad and isomorphic to the underlying variety of G. Therefore,
by Lemma 1 the center of G is at least one-dimensional — a contradiction, because
G is semisimple. �

For tori we can get an additional information.

Lemma 4. Let X be an irreducible variety endowed with a rational faithful action

α of a torus T . Then

(i) α is locally free;
(ii) dimT 6 dimX ;

(iii) tr degkk(X)T = dimX − dim T .

Proof. By [Sum74, Cor. 2 of Lemma 8] (see also [Bia66, Cor. 1 of Prop. 1]) there is

an irreducible affine variety Y endowed with a regular action of T such that X
T
≈ Y .

Hence, we may (and shall) assume that X is affine and α is regular. By [PV94,
Theorem 1.5] we also may (and shall) assume that X is a closed T -stable subset of
a finite-dimensional algebraic T -module V not contained in a proper T -submodule
of V .

As α is faithful, the kernel of the action of T on V is trivial. As T is a torus,
V is the direct sum of T -weight subspaces. Hence, if U is the complement in V
to the union of these spaces, this kernel coincides with the T -stabilizer of every
point of U . Thus, these stabilizers are trivial. But by the construction, X ∩ U is
a nonempty open subset of X . This proves (i) that, in turn, entails (ii) and, by
[PV94, Cor. in 2.3], also (iii). �

Corollary 2 ([Dem70]). The dimension of every torus in Cn is at most n.

Corollary 3. Every rational action of a torus on An is stably linearizable.

Proof. Since tori are special groups, this follows from Lemma 4(i) and Theorem 2.
�

Theorem 4. The following properties of a rational action α of a torus T on An

are equivalent:

(i) α is linearizable;
(ii) the invariant field k(αA

n)T is pure over k.
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Proof. Assume that (ii) holds. Let T0 be the kernel of the action of T on X . By
Lemma 4, the induced action of T/T0 on An is locally free. Hence, replacing T
by T/T0, we may assume that the action of T on An is locally free. Since T is
flattenable, in this case (ii)⇒(i) follows from Theorem 1.

(i)⇒(ii) is the corollary of the following more general statement.

Lemma 5. For any rational linear action α of a diagonalizable affine algebraic

group D on An, the invariant field k(αA
n)D is pure over k.

Proof of Lemma 5. By [Bor91, Prop. 8.2(d)] the image of D under the homomor-
phism D → GLn determined by α is conjugate to a subgroup of Dn. Hence, we may
(and shall) assume that D is a closed subgroup of Dn. Since An with the natural

action of Dn is a flattening of Dn (see Example 1), we have αA
n D
≈ λDn. Therefore,

αA
n

--
-D ≈ Dn/D. (18)

But Dn/D is a torus, see [Bor91, Prop. 8.4 and 8.5], hence, a rational variety. The
claim now follows from (18). �

Corollary 4 ([Bia66, Cor. 2 of Prop. 1]).

(a) Every faithful rational action of a torus T on An is linearizable in either of

the following cases:
(i) dimT > n− 2;

(ii) n 6 3.
(b) Every d-dimensional torus in Cn for d = n − 2, n − 1, n is conjugate to a

subgroup of Dn. In particular, every n-dimensional torus in Cn is conjugate

to Dn.

Proof. (a) By Corollary 2, if T 6= {e}, then (ii)⇒(i). Assume that (i) holds. Then
tr degkk(An)T 6 2 by Lemma 4(iii). As k(An)T is unirational, it is then pure over
k by the Lüroth and Castelnuovo theorems; whence the claim by Theorem 4.

Part (b) follows from (a). �

By Corollaries 2 and 4(b) all n-dimensional tori in Cn are maximal and conjugate
and there are no maximal (n− 1)- and (n− 2)-dimensional tori in Cn. In dimension
n− 3 the situation is different:

Theorem 5. Let n > 6. Every (n−3)-dimensional connected affine algebraic group

G can be realized as an algebraic subgroup of Cn such that

(i) k(An)G is not pure, but stably pure over k;
(ii) the natural rational action of G on An is locally free.

Proof. By [BCSS85] there exists a nonrational threefold X such that A3 × X ≈
A6. Then An ≈ An−3 ×X . This and (14) yield that there exists a rational locally

free action γ of G on An such that γA
n G
≈ λG×X . Since k(λG)G = k, by [Ros612,

Lemma 3] we have γA
n

--
-G ≈ X ; whence the claim. �

Corollary 5. Let n > 6. Then

(a) there is a rational locally free nonlinearizable action of an (n−3)-dimensional

torus on An;
(b) Cn contains an (n− 3)-dimensional maximal torus.

Proof. Use the notation of Theorem 5 and its proof and let G be a torus. Then γ is
nonlinearizable by Theorem 4. This proves (a). As the torus G is not conjugate to
a subgroup of Dn, Corollary 4(b) implies that it is maximal. This proves (b). �
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Corollary 6. Every Cn for n > 6 contains a nonlinearizable, but stably linearizable

element of infinite order.

Proof. For any subset X of Cn denote by X the closure of X in the Zariski topology
of Cn (see Section 1). By Corollary 5(b), Cn contains an (n−3)-dimensional maximal
torus T . By [Bor91, III.8.8] there exists an element g ∈ T such that T = S for
S := {gd | d ∈ Z}. Corollary 3 yields that g is stably linearizable. Assume that
g is linearizable and let h ∈ Cn be an element such that hgh−1 ∈ Dn. Then S ⊂
h−1Dnh. Since left and right translations of Cn are homeomorphisms and Dn = Dn,
we obtain

T = S ⊂ h−1Dnh = h−1Dnh = h−1Dnh.

This contradicts the maximality of T because h−1Dnh is an n-dimensional torus.
�

The next statement yields a rectification of Corollaries 3 and 6.

Theorem 6. Every torus T in Cm is conjugate in Cm+dimT to a subgroup of

Dm+dimT .

Proof. Let α be the natural rational action of T on Am and let d := dimT . By
Lemma 4, α is locally free. By [Ros612, Lemma 3], (7) and (14) we have

(Ad × αA
m) --

-T ≈ Ad × (αA
m

--
-T ),

αA
m T
≈ λT × (αA

m
--

-T ),

T ≈ Ad.

(19)

¿From (19) we deduce that k(αA
m ×Ad)T is pure over k. Since T is flattenable,

Theorem 1 then entails that Ad × αA
m T
≈ γA

m+d for a rational linear action γ;
whence the claim. �

3. Subgroups of the rational de Jonquières groups

Let t1, . . . , tn be a system of generators of k(An) over k,

k(An) = k(t1, . . . , tn).

The elements t1, . . . , tn are algebraically independent over k and determine the
following flag of subfields of k(An):

Kn ⊂ Kn−1 ⊂ · · · ⊂ K0 where Ki :=

{
k(ti+1, ti+2 . . . , tn) if i 6 n− 1,

k if i = n.
(20)

For any elements fi ∈ Ki and µi ∈ k×, i = 1, . . . , n, put

t′i := µiti + fi and K ′

i :=

{
k(t′i+1, t

′

i+2 . . . , t
′

n) if i 6 n− 1,

k if i = n.
(21)

It follows from (21) that there are elements f ′

i ∈ K ′

i, i = 1, . . . , n, such that

ti = µ−1
i t′i + f ′

i .

Hence, K ′

i = Ki for every i. In particular, t′1, . . . , t
′

n is an algebraically independent
system of generators of k(An) over k, so there is an element g ∈ Cn such that

g · ti = µiti + fi for every i = 1, . . . , n. (22)

The set J (t1, . . . , tn) of all such elements g is a subgroup of Cn. It stabilizes the
flag of subfields (20):

g ·Ki = Ki for all g ∈ J (t1, . . . , tn) and i = 0, . . . , n. (23)
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Every two such subgroups are conjugate in Cn.
Given an analogy of the construction of J (t1, . . . , tn) with that of the de Jon-

quières subgroup of Autkk[t1, . . . , tn], cf. [vdE00, p. 85], we call J (t1, . . . , tn) the
rational de Jonquières subgroup of Cn with respect to t1, . . . , tn.

Example 6. By the Lie–Kolchin theorem every closed connected solvable subgroup
G of GLn is conjugate in GLn to a subgroup of J (x1, . . . , xn). Hence, G lies in
J (t1, . . . , tn) where t1, . . . , tn are the homogeneous linear forms in x1, . . . , xn.

In the notation of (22), for every i = 1, . . . , n, we have the following maps:

χi : J (t1, . . . , tn)→ k×, g 7→ µi,

ϕi : J (t1, . . . , tn)→ Ki, g 7→ fi.
(24)

Lemma 6. For every i = 1, . . . , n,

(a) χi is a homomorphism of groups;
(b) for all g1, g2 ∈ J (t1, . . . , tn),

ϕi(g1g2) = χi(g2)ϕi(g1) + g1 ·(ϕi(g2)); (25)

(c) if G is an algebraic subgroup of Cn contained in J (t1, . . . , tn), then χi|G is a

regular function on G and there is a rational function Fi ∈ k(G×An) such

that Fi(g) = ϕi(g) for all g ∈ G;
(d) the order of every element g ∈

⋂n
i=1

kerχi, g 6= e, is infinite.

Proof. Let g1, g2 ∈ J (t1, . . . , tn). Then (22) and (24) yield

χi(g1g2)ti + ϕi(g1g2) = g1g2 · ti = g1 · (g2 · ti)

= g1 ·
(
χi(g2)ti + ϕi(g2)

)

= χi(g2)
(
χi(g1)ti + ϕi(g1)

)
+ g1 ·

(
ϕi(g2)

)
.

(26)

As the image of ϕi lies in the J (t1, . . . , tn)-stable field Ki, (26) and algebraic in-
dependence of t1, . . . , tn over k yield that (25) and χi(g1g2) = χi(g1)χi(g2) hold.
This proves (a) and (b).

(c) Let α : G × An 99K An be the natural rational action of G on An and let
β : G×An → G×An, (g, a) 7→ (g−1, a). Put Si := β∗(α∗(ti)) ∈ k(G×An). Then
Si(g, a) = ti(α(β(g, a))) = ti(α(g−1, a)) = ti(g

−1 · a) = (g · ti)(a) for every (g, a)
in the domain of definition. Hence, Si(g) = χi(g)ti + ϕi(g) for every g ∈ G. Given
that Si ∈ k(G×An) = k(G)(t1, . . . , tn) and ϕi(g) ∈ Ki, this implies (c).

(d) As g 6= e and χi(g) = 1 for every i, (22) and (24) entail that there is j such
that ϕj(g) 6= 0. Let d be the largest j with this property. Then g · f = f for every
f ∈ Kd. As g · td = td + ϕd(g) and ϕd(g) ∈ Kd, this yields

gs · td = td + sϕd(g) for every s ∈ Z. (27)

Since ϕd(g) 6= 0 and char k = 0, (27) implies that gs 6= e for every s 6= 0. This
proves (d). �

Theorem 7. Let G be an affine algebraic subgroup of J (t1, . . . , tn). Then G is a

solvable group and G/G0 is an Abelian group.

Proof. First, consider the case where G is finite; we then have to prove that G is
Abelian. Consider the homomorphism

δ : J (t1, . . . , tn)→ Dn, g 7→ diag(χ1(g), . . . , χn(g)).

Since ker δ =
⋂n

i=1 kerχi and G has no elements of infinite order, Lemma 6(d)
implies that G ∩ ker δ = {e}. Therefore, δ embeds G into the Abelian group Dn;
whence, the claim.
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Now consider the general case. By [BS64, Lemma 5.11] there is a finite subgroup
H of G that intersects every connected component of G. Hence, the restriction
to H of the canonical homomorphism G → G/G0 is a surjective homomorphism
H → G/G0. According to what we have already proved, H is Abelian. This shows
that G/G0 is Abelian. By [Hal59, Theorem 9.2.5], the problem is then reduced to
proving that G0 is solvable.

Since chark = 0, there exists a Levi subgroup L in G0, see [Bor91, 11.22]. It
is a connected reductive group and we have to show that L is a torus, i.e., that
the derived subgroup L′ of L is trivial. Arguing on the contrary, assume that L′ 6=
{e}. Then L′ contains an element g 6= e of finite order. Indeed, L′ contains a torus 6=
{e} (see [Bor91, Cor. 2 in IV.13.17 and Theorem 12.1(b)]), but every torus 6={e} has
a nontrivial torsion (see [Bor91, Prop. 8.9(d)]). On the other hand, L′ ⊆

⋂n
i=1

kerχi

as every homomorphism L → k× contains L′ in its kernel. By Lemma 6(d) this
entails that the order of g is infinite. This contradiction completes the proof. �

Corollary 7. Every finite subgroup of J (t1, . . . , tn) is Abelian.

Theorem 8. Let G be reductive algebraic subgroup of J (t1, . . . , tn). Then G is a

diagonalizable group.

Proof. By Theorem 7 the reductive group G0 is solvable. Hence, G0 is a torus. Let
H be the subgroup of G from the proof of Theorem 7. It acts on G0 by conjugation
because G0 is normal in G. The fixed point set F of this action is a closed subgroup
of G0. Assume that F 6= G0. Then, since the torsion subgroup of G0 is dense in
G0 (see [Bor91, Cor. III.8.9]), there exists an element g ∈ G0 \ F whose order is
finite. Let S be the subgroup of G0 generated by the set {hgh−1 | h ∈ H}. Since
G0 is Abelian and the orders of g and H are finite, S is finite as well. Since S
is stable with respect to the action of H on G0 by conjugation, this implies that
the subgroup generated by S and H is finite, too. Corollary 7 then yields that this
subgroup is Abelian. Hence, g ∈ F , — a contradiction. Therefore, F = G0, i.e., G0

and H commute. Since the Abelian groups H and G0 generate G, this implies that
G is Abelain. The claim then follows by [Bor91, Prop. III.8.4(4) and Cor. III.4.4(1)].
�

4. Affine subspaces as cross-sections

By [Ros56, Theorem 10] for every rational action of a connected solvable alge-
braic group there exists a rational cross-section. The next theorem refines this for
some rational actions on An by showing that there exist cross-sections that are
affine subspaces of An.

Theorem 9. Let G 6= {e} be a unipotent affine algebraic subgroup of J (x1, . . . , xn)
and let α be the corresponding rational action of G on An. Then there exist a

sequence 1 6 i1 < · · · < im 6 n of natural numbers and a sequence Θ1, . . . ,Θm of

nonempty open subsets of k such that for every (c1, . . . , cm) ∈ Θ1 × · · · × Θm the

affine subspace of An defined by the equations (see (3)):

xi1 = c1, . . . , xim = cm,

is a rational cross-section for α.

For the proof of Theorem 9 we need the following

Lemma 7. Let K be a field of characteristic 0 and let f(x) be a rational function

in a variable x with the coefficients in K. Let K ′ be a subfield of K. If

f(a1 + a2) = f(a1) + f(a2) (28)
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whenever f is defined at a1, a2 and a1 + a2 ∈ K ′, then there is an element c ∈ K
such that f(x) = cx.

Proof of Lemma 7. We may (and shall) assume that f 6= 0. Let K be an algebraic
closure of K. First, we claim that (28) holds whenever f is defined at a, b and a+b ∈
K. Indeed, by (28) the rational function F (x1, x2) := f(x1) + f(x2) − f(x1 + x2)
(see (3)) vanishes at every point of A2(K ′) where it is defined. Since A2(K ′) is
Zariski dense in A2, this yields F = 0; whence the claim.

Thus, f is a rational partially defined endomorphism of the algebraic group

K
+
. But by [Wei55] (cf. also [Mer80, 11.1.1]) every rational partially defined homo-

morphism of algebraic groups is, in fact, an everywhere defined algebraic homomor-
phism. This entails that f(x) ∈ K[x]. Since f has only finitely many roots, kerf

is finite. Therefore, f(K
+

) is a one-dimensional closed subgroup of K
+

; whence

f(K
+

) = K
+

. On the other hand, since charK = 0, there are no nonzero elements
of finite order in K+. Hence, ker f = {0}. Thus, f is an isomorphism; whence the
claim. �

Proof of Theorem 9. We shall use the notation of (20), (24) with

t1 = x1, . . . , tn = xn.

Since char k = 0, G is connected. As G is a nontrivial unipotent group, it contains
a one-dimensional normal subgroup U isomorphic to k+. We identify U with k+ by
an isomorphism G → k+. Since G is unipotent, there are no nontrivial algebraic
homomorphisms G→ k×, therefore, by Lemma 6 there are rational functions Fi ∈
k(G×An) such that

g · xi = xi + Fi(g),

Fi(g) ∈ Ki,
for every g ∈ G and i. (29)

Since U 6= {e}, (29) entails that Fj(u) 6= 0 for some u ∈ U and j. Let d be the
largest j appearing in this fashion. Then (29) and (20) yield

KU
d = Kd. (30)

In turn, from (30) and (25) we infer that

Fd(u1 + u2) = Fd(u1) + Fd(u2) for all u1, u2 ∈ U.

By Lemma 7, this implies that there is a nonzero element s ∈ Kd such that

Fd(u) = us for every u ∈ U. (31)

Thus, by (29) and (31),

u · xd = xd + us, for every u ∈ U. (32)

By [Ros56, Theorem 1] there is a nonempty open subset An
0 of An and its

embedding in an irreducible variety Y ,

Y ←֓ An
0 ⊆ An,

such that the rational action of U on Y determined by α|U and by this embedding
is regular. We identify An

0 with the image of this embedding. By [Ros56, Theorem
2], shrinking Y if necessary, we may (and shall) assume that there exists a geometric
quotient of Y by this action of U ,

πU,Y : Y → Y/U.
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Then πU,Y |An
0

is the restriction to An
0 of a rational quotient for α|U ,

πU,An : An 99K Y/U =: An

--
-U.

Let H := G/U . Then α induces a rational action β of H on Y/U . Consider a
rational quotient for β,

πH,Y/U : Y/U 99K (Y/U) --
-H.

Then the composition

πG,An := πH,Y/U ◦ πU,An

is a rational quotient for α,

πG,An : An 99K (Y/U) --
-H =: An

--
-G.

Shrinking An
0 and Y if necessary, we may (and shall) assume that

(i) πH,Y/U is a morphism;

(ii) s|
An

0

is regular and vanishes nowhere.

To sum up, we have the following commutative diagram:

Y

πU,Y

��
44

44
44

44
⊇ An

0 ⊆ An

πU,An

��	
	

	
	

πG,An

yy

+

%

�
�

	
{

Y/U = An

--
-U

πH,Y/U

��

(Y/U) --
-H = An

--
-G

(33)

For every element c ∈ k, denote by Lc the hyperplane in An defined by the
equation xd = c. The set

Ω := {c ∈ k | La ∩An
0 6= ∅}

is nonempty and open in k. Take an element c ∈ Ω and a point a ∈ An
0 . By property

(ii) above, s is regular and does not vanish at a. Consider the U -orbit of a in Y .
Formula (31) shows that there is a unique u0 ∈ U such that the value of xd ∈ k(Y )
at u0 · a is c, namely,

u0 =
xd − c

s
(a). (34)

This means that every U -orbit in Y intersects Lc ∩An
0 at most at one point, i.e.,

πU,Y |Lc∩An
0

is injective. Since dimLc ∩An
0 = dim Y/U and chark = 0, this implies

that πU,Y |Lc∩An
0

: Lc∩A
n
0 → Y/U is a birational isomorphism. Hence, Lc intersects

the domain of definition of πU,An and

πU,An |Lc
: Lc 99K Y/U = An

--
-U, (35)

is a birational isomorphism. This means that Lc is a rational cross-section for
α|U . In particular, this implies that shrinking An

0 if necessary, we may (and shall)
assume that

(iii) for every point of An
0 , its U -orbit in Y intersects Lc.

Now we argue by induction on dimG. If dimG = 1, then G = U and the claim
is proved since every Lc for c ∈ Ω is a rational cross-section for α (so in this case
s = 1, i1 = d and Θ1 = Ω).
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Now assume that dimG > 1. The action β and the birational isomorphism (35)
determine a rational action γ of H on Lc such that (35) becomes an H-equivariant
birational isomorphism. From (33) we then deduce that

πG,An |Lc
: Lc 99K An

--
-G

is a rational quotient for γ. We identify Lc with An−1 by means of the isomorphism
(a1, . . . , ad−1, c, ad+1, . . . , an) 7→ (a1, . . . , ad−1, ad+1, . . . , an) and, for every function
f ∈ k(An) whose domain of definition intersects Lc, put

f := f |Lc
∈ k(Lc).

Then x1, . . . , xd−1, xd+1, . . . , xn are the standard coordinate functions on Lc.
We claim that the image of H in Autkk(Lc) = Cn−1 determined by the action γ is

contained in J (x1, . . . , xd−1, xd+1, . . . , xn). If this is proved, then, by the inductive
assumption, there exist a nonempty set of indices i1, . . . , ir and a nonempty open
subsets Θ1, . . . ,Θr of k such that for every (c1, . . . , cr) ∈ Θ1 × · · · × Θr the affine
subspace S of Lc defined by the equations

xi1 = c1, . . . , xir = cr,

is a rational cross-section for γ, i.e.,

πG,An |S : S 99K An
--

-G

is a birational isomorphism. As S is an affine subspace in An defined by the equa-
tions xd = c, xi1 = c1, . . . , xir = cr, this will complete the proof.

It remains to prove the claim. To this end, consider in k(An) the subfield k(An)U

of U -invariants elements with respect to α|U . Since Lc is a rational cross-section of
πU,An , the map

k(An)U → k(Lc), f 7→ f ,

is a well-defined k-isomorphism of fields that is H-equivariant with respect to the
actions of H on k(An)U and k(Lc) determined resp. by α and γ. Let

k(Lc)→ k(An)U , t 7→ t̂,

be the inverse isomorphism. Below we will consider β and γ as the actions of G
with the kernel H .

Take a point a ∈ An
0 . By the above discussion and property (iii), the U -orbit of a

in Y intersects Lc at a single point u0 ·a where u0 is given by (34). As x̂i ∈ k(An)U ,
this yields

x̂i (a) = x̂i (u0 · a) = xi(u0 · a) = xi(u0 · a) = ((−u0) · xi)(a). (36)

Let z, y1, . . . , yn−1 be the variables over k. It follows from (29), (34) and (36)
that there are d− 1 rational functions

Rj(z, yj, yj+1, . . . , yn−1) ∈ k(z, yj, yj+1, . . . , yn−1), j = 1, . . . , d− 1,

such that

x̂i =




xi + Ri

(c− xd

s
, xi+1, . . . , xn

)
if i 6 d− 1,

xi if i > d + 1.
(37)

In turn, from (37), (29), (20) and (23) we infer that

g · x̂i − xi ∈ k(xi+1, . . . , xd−1, xd, xd−1, . . . , xn) for all g ∈ G and i;

whence,

g · xi − xi ∈ k(xi+1, . . . , xd−1, xd, xd−1, . . . , xn) for all g ∈ G and i. (38)
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The claim now follows from (38) because xd = c ∈ k. �

Corollary 8. For every unipotent algebraic subgroup G of GLn, there exists an

affine subspace L of An such that L is a rational cross-section for the natural action

of G on An.

Proof. There exists an element g ∈ GLn such that gGg−1 ⊂ J (x1, . . . , xn) (see
Example 6). By Theorem 9 there exists an affine subspace S of An that is a rational
cross-section for the natural action of gGg−1 on An. Then the affine subspace g(S)
is a rational cross-section for the natural action of G on An. �

Here is the application of Corollary 8. Let G be a connected affine algebraic
group and let g be the Lie algebra of G. Joseph put forward the following

Conjecture A ([Jos11, 7.11]). For the coadjoint action of G on g
∗, there exists

an affine subspace L of g
∗ such that k(g∗)G → k(L), f 7→ f |L, is a well-defined

isomorphism of fields.

Joseph calls such L a rational slice.
According to the Levi decomposition, g is a semidirect product of a reductive

Lie algebra r and the unipotent radical u,

g = r⋉ u. (39)

Corollary 9. If (39) is a direct product, g = r× u, then Conjecture A is true.

Proof. Let R and U be the closed connected subgroups of G whose Lie algebras are
resp. r and u. Assume that g = r × u. In this case, if Lr and Lu are the rational
slices for the coadjoint actions of resp. R and U , then Lr × Lu is a rational slice
for the coadjoint action of G. The existence of Lr is proved in [Kos63], and the
existence of Lu is ensured by Corollary 8. �

The rational de Jonquières subgroup J (t1, . . . , tn) lies in another interesting
subgroup of Cn. Namely, as for J (t1, . . . , tn), one checks that, for every fi ∈ Ki

and µi ∈ K∗

i , there exists an element g ∈ Cn for which (22) holds and that the set

Ĵ (t1, . . . , tn) of all such elements g is a subgroup of Cn. The flag of subfields (20)

is stable with respect to Ĵ (t1, . . . , tn):

g ·Ki = Ki for all g ∈ Ĵ (t1, . . . , tn) and i. (40)

Every two such subgroups are conjugate in Cn.

The following fact is known; it provides an information on tori in Ĵ (t1, . . . , tn)
(see Corollary 10 below).

Theorem 10. For every (not necessarily algebraic ) subgroup G of Ĵ (t1, . . . , tn),
the invariant field k(An)G is pure over k.

Proof. We shall sketch a proof since our argument provides a bit more information
(equality (43)) than that of [Miy71] and [KV89]. The key ingredient is the following
Miyata’s lemma:

Lemma 8 ([Miy71, Lemma], cf. also [KV89, Lemme 1.1]). Let F be a field, let z be

a variable over F , and let H be a group that acts on F [z] by ring automorphisms

leaving F stable1. Then the subfield of F (z) generated by F (z)H over F is, in fact,

generated by a single element x ∈ F [z]H :

F (F (z)H) = F (x). � (41)

1It is not assumed that F is pointwise fixed.
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Turning to the proof of Theorem 10, we first show that, in the notation of
Lemma 8,

F (z)H = FH(x). (42)

Indeed, F (x)H ⊆ F (z)H since F (x) ⊆ F (z). On the other hand, (41) entails that
F (z)H ⊆ F (x)H . Hence, F (z)H = F (x)H . Therefore, (42) would be proved if the
equality

F (x)H = FH(x) (43)

is established. To prove (43), consider two cases: (a) x ∈ F , (b) x /∈ F . If (a) holds,
then F (x) = F , hence, F (x)H = FH . On the other hand, (a) and x ∈ F [z]H yield
that x ∈ FH , hence, FH(x) = FH . This proves (43) if (a) holds. Now let (b) holds.
Then x is transcendental over F by [vdW67, §73, Theorem]. Consider an element
f ∈ F (x)H . It can be written as f = p/q where

p =

s∑

i=0

aix
i, q =

r∑

j=0

bjx
j , ai, bj ∈ F, asbr 6= 0, (44)

and p and q are relatively prime polynomials in x with the coefficients in F . Since
F [x] is a factorial ring, the relative primeness of p and q and F -invariance of f
imply that there is a map γ : H → F ∗ (in fact, a 1-cocycle) such that

h · p = γ(h)p, h · q = γ(h)q for every h ∈ H. (45)

Since x is H-invariant, (44) and (45) yield

h · ai = γ(h)ai, h · bj = γ(h)bj for all h ∈ H and i, j. (46)

¿From (46) we infer that f = a−1
s p/a−1

s q ∈ KG(x). Thus, F (x)H ⊆ FH(x). Since x
is H-invariant, the inverse inclusion is clear. This proves (43). Thus, (42) holds and,
moreover, either x ∈ FH or x is transcendental over F .

Now let G be a subgroup of Ĵ (t1, . . . , tn). We have Ki−1 = Ki(ti) and ti is tran-

scendental over Ki for every i = 1, . . . , n. By (40) and the definition of Ĵ (t1, . . . , tn)
the action of G on Ki−1 satisfies the conditions of Lemma 8 (with F = Ki, z = ti,
H = G). Hence, as is proved above, there is an element zi ∈ Ki[ti]

G such that
KG

i−1 = Ki(ti)
G = KG

i (zi) and either zi ∈ KG
i or zi is transcendental over Ki.

Respectively, either KG
i−1 = KG

i or KG
i−1 is pure over KG

i of transcendental de-
gree 1. Since

k = KG
n ⊆ KG

n−1 ⊆ · · · ⊆ KG
1 ⊆ KG

0 = k(An)G,

this completes the proof. �

Corollary 10. Every torus in Ĵ (t1, . . . , tn) is conjugate in Cn to a subgroup of Dn.

Proof. This follows from Theorems 4 and 10. �

Corollary 11. Let n > 6. Every (n − 3)-dimensional connected affine algebraic

group can be realized as an algebraic subgroup of Cn such that

(i) G is not conjugate to a subgroup of Ĵ (t1, . . . , tn);
(ii) the natural rational action of G on An is locally free.

Proof. This follows from Theorems 5 and 10. �

Remark 1. The assumption that k is algebraically closed is not used in the proof
of Theorem 10.

Remark 2. In [Miy71] Lemma 8 is used for proving that k(An)G is pure over k if
G is a subgroup of GLn ∩ J (x1, . . . , xn). Note that in this case, if G is finite, then
purity of k(An)G over k follows from Corollary 7 and Lemma 5.
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Remark 3. A weakened version of Theorem 10 is the subject of [Vin92]. In it, G is

an affine algebraic group and Ĵ (x1, . . . , xn) is replaced by J (x1, . . . , xn). However,
the argument in [Vin92] does not amount to complete and accurate proof. Indeed,
it is based on the claim, left unproven, that if G is reductive, then G is conjugate in
J (x1, . . . , xn) to a subgroup of Dn. Further, the claim that, for a one-dimensional
unipotent algebraic group U , “every point is U -equivalent to a unique point of the
subspace S = {x ∈ kn : xm = 0}” is false because u · s may be not defined for u∈U
and s ∈ S. Ditto for the claim that Fi ∈ k(xi+1, . . . , xn) ⊗ k[t] (counterexample:
n = 3 and the action is given by t ·x1 = x1− t/x2(x2 + t), t ·x2 = x2 + t, t ·x3 = x3),
so the equality Fm(xm+1, . . . , xn; t) = tFm(xm+1, . . . , xm) remains unproven.

Remark 4. One cannot replace Ĵ (t1, . . . , tn) in Theorem 10 by the Cn-stabilizer
of the flag of subfields (20). Indeed, by [Tri80], for k = C, n = 3, this stabilizer
contains a subgroup G of order 2 such that k(An)G is not pure over k.

Combining the construction from [Tri80] with Corollary 3 and Lemma 5 we ob-
tain the following

Theorem 11. Let k = C and let A be the union of all connected affine algebraic

subgroups of C∞. There exists an element g ∈ C3 of order 2 such that g /∈ A. In
particular, g is not stably linearizable.

Proof. Let X be the three-dimensional counterexample of Artin and Mumford to
the Lüroth problem [AM72] (see also [Del70]): X is a smooth projective unirational
threefold such that

H3(X,Z)tors 6= 0. (47)

Since the torsion subgroup of the third integral cohomology group of a smooth
complex variety is a birational invariant and, in particular, is zero if the variety is
rational, (47) implies that X is not rational.

In [Tri80] is constructed a subgroup G of order 2 in C3 such that k(A3)G is k-
isomorphic to k(X). Let g be the generator of G. Arguing on the contrary, assume
that g is contained in a connected affine algebraic subgroup H of C∞. Since the
order of g is finite, g is a semisimple element of H . Hence, g lies in a maximal torus
T of H (see [Bor91, Theorems III.10.6(6) and IV.11.10]). By Corollary 3 there exists
a positive integer n0 such that T ⊂ Cn0

and T is conjugate in Cn0
to a subtorus of

Dn0
. Fix an integer n > max{n0, 3}. Then G ⊂ Cn and G is conjugate in Cn to a

subgroup of Dn. This and Lemma 5 yield that for the natural action of G on An

the field k(An)G is pure over k. Since G ⊂ C3, by [Ros612, Lemma 3] we have

An

--
-G ≈ A3

--
-G×An−3 ≈ X ×Pn−3 (48)

¿From (48) we infer that the smooth projective variety X × Pn−3 is rational and
therefore H3(X×Pn−3)tors = 0. On the other hand, the Künneth formula and (47)
yield that H3(X ×Pn−3)tors 6= 0 — a contradiction. �

We conclude by an example which shows that in the formulation of Corollary 8
“unipotent” cannot be replaced by “connected solvable” (recall that if G is con-
nected solvable, then the existence of some rational cross-section is ensured by
[Ros56, Theorem 10]).

Example 7. Fix a choice of two integers d1 and d2 such that

d1 − d2 > 2, (49)

|d1| > 2, |d2| > 2, (50)

gcd(d1, d2) = 1. (51)
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Consider the one-dimensional subtorus

T :=
{

diag
(
td1 , td2

)
| t ∈ k∗

}
(52)

of D2 and its rational linear action α on A2 defined by formula (4).
In view of (51), the T -stabilizer of every point a ∈ A2, a 6= (0, 0), is trivial.

Claim. There is no affine subspace in A2 that is a rational cross-sections for α.

Proof. Assume that some affine subspace L of A2 is a rational cross-section for α.
Since T -orbits in general position are one-dimensional, L is a line. Let

µ1x1 + µ2x2 + ν = 0, µ1, µ2, ν ∈ k. (53)

be its equation. Since L is a rational cross-section, there is a nonempty open subset
U of A2 such that for every point a = (a1, a2) ∈ U , the T -orbit of a intersects L at
a single point, i.e., by (52) and (53), the following equation in t

µ1a1t
d1 + µ2a2t

d2 + ν = 0 (54)

has a single nonzero solution. Shrinking U , we may assume that a1a2 6= 0 for every
a ∈ U .

If µ1µ2 = 0, then (54) becomes an equation of the form µtd +ν = 0 where µ ∈ k,
µ 6= 0, and |d| > 2 by (50). If ν = 0, it does not have nonzero solutions; if ν 6= 0,
there are at least two such solutions. So this case is impossible.

If µ1µ2 6= 0 and ν = 0, then the solutions of (54) coincide with the roots of
µ1a1t

d1−d2 +µ2a2. In view of (49), there are at least two distinct roots, so this case
is impossible as well.

Let µ1µ2ν 6= 0 and d2 > 0. Denote by f be the right-hand side of (54). Then

h := d1f − t
df

dt
= (d1 − d2)µ2a2t

d2 + d1ν. (55)

By (54) and (55), for a fixed a2, there are only finitely many a1’s such that the
polynomials f and h have a joint root. Since every multiple root of f is also a root
of h, this means that there are points a ∈ U such that f does not have multiple
roots. From (49), (50) it then follows that for such a point a equation (54) has at
least two nonzero solutions. Thus, this case is also impossible.

Finally, let µ1µ2ν 6= 0 and d2 < 0. Then the solutions of equation (54) coincide
with the roots of the polynomial q := α1a1t

d1−d2 + βt−d2 + α2a2. We have

p := (d1 − d2)q − t
dq

dt
= (d1 − d2)α2a2 + d1βt

−d2 . (56)

Then the same argument as above with f and h replaced resp. by q and p shows
that this case is impossible as well.

This contradiction completes the proof. �
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