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Abstract. The well-known fiber dimension theorem in algebraic geometry
says that for every morphism f : X → Y of integral schemes of finite type, the
dimension of every fiber of f is at least dimX−dimY . This has recently been
generalized by P. Brosnan, Z. Reichstein and A. Vistoli to certain morphisms of
algebraic stacks f : X → Y , where the usual dimension is replaced by essential
dimension. We will prove a general version for morphisms of categories fibered
in groupoids. Moreover we will prove a variant of this theorem, where essential
dimension and canonical dimension are linked.


These results let us relate essential dimension to canonical dimension of
algebraic groups. In particular, using the recent computation of the essential
dimension of algebraic tori by M. MacDonald, A. Meyer, Z. Reichstein and the
author, we establish a lower bound on the canonical dimension of algebraic tori.
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1. Introduction


A category fibered in groupoids (abbreviated CFG) over a field F is roughly a
category X equipped with a functor π : X → SchF to the category SchF of schemes
over F for which pullbacks exist and are unique up to canonical isomorphism. See
section 2 for a formal definition.
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A typical example of a CFG over F is the quotient [X/G] of a scheme X by the
action of an algebraic group G, see Example 2.1. CFG’s of the form [X/G] often
arise in moduli problems. Unlike many quotients in geometric invariant theory, they
keep a lot of information about the G-equivariant geometry of X .


To every CFG X over F we can attach two numbers, edX and cdimX (with
cdimX ≤ edX ), called essential dimension, resp. canonical dimension of X , see
section 2. In the case where X is representable by a scheme X locally of finite type,
the essential dimension of X coincides with the usual dimension of X , and cdimX
is a number between 0 and dimX , which measures how far X is from having a
rational point.


There are versions of essential and canonical dimension relative to a prime p,
written edp X and cdimp X , which basically neglect effects from passing to prime
to p field extensions. We will include the case p = 0 for usual dimensions and write
ed0 X and cdim0 X for edX and cdimX , respectively.


Denote by P = {2, 3, . . .} the set of all primes. We will prove the following general
result on fiber dimensions:


Theorem 1.1. Let f : X → Y be a morphism of CFG’s over F . Then for every
p ∈ P ∪ {0}:


edp X ≤ edp Y + sup
y


edp Xy


and


cdimp X ≤ edp Y + sup
y


cdimp Xy,


where the supremum is taken over all field extensions K/F and all morphisms
y : SpecK → Y of CFG’s over F .


Here Xy (the fiber of f over y) is the 2-fiber product of X and SpecK over Y
with respect to f and y, see section 2. It considered as a CFG over K.


The special case of the first inequality, where both CFG’s are represented by
schemes locally of finite type over F , is implied by the well-known fiber dimension
theorem from algebraic geometry, cf. [Ha77, Exercise II.3.22]. The more general
case of the same inequality, when X and Y are algebraic stacks and all fibers Xy
are representable by quasi-separated algebraic spaces, locally of finite type and of
dimension ≤ d for some fixed d ∈ N0 is exactly the result of [BRV11, Theorem 3.2].


The second inequality, where canonical and essential dimension are linked, seems
to be completely new and is a key ingredient for establishing results on canonical
dimension of algebraic groups later on.


Let G be an algebraic group over a field F . The essential p-dimension of G,
denoted edpG, is defined as the essential p-dimension of BG ≃ [SpecF/G], the CFG
of G-torsors. It was introduced by J. Buhler and Z. Reichstein in [BR97] and has
been object of study for numerous mathematicians since then. See Z. Reichstein’s
ICM proceedings [Re10] for a survey on the topic.


The essential dimension of a G-torsor X over a field extension K of F , viewed
as object of BG, measures how far X is from being defined (up to isomorphism)
over the base field F . On the other hand, the canonical dimension of X , introduced
by G. Berhuy and Z. Reichstein in [BR05], is the canonical dimension of the CFG
represented by the scheme X and measures how far X is from being split.
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Set


cdimG := sup cdimX (and cdimpG := sup cdimpX)


where X runs over all G-torsors over field extensions. Then for G connected and
smooth we have edG = 0 if and only if cdimG = 0 if and only if G is special, i.e.,
all G-torsors over field extensions of F are split, see [Me09, Proposition 4.4] and
recall that a geometrically integral variety X over F has strictly positive canonical
dimension unless it has a F -rational point. In general edG can be much larger than
cdimG (e.g. for spin groups, see Corollary 4.10) and vice versa (see Example 5.13).


For split simple (affine) algebraic groupsG the value of the canonical p-dimension
of G has been computed for every prime p. The case of classical G is due to N.
Karpenko and A. Merkurjev [KM06], the case of exceptional G is due to K. Zain-
oulline [Za07].


The assumption on G being split, i.e., containing a split maximal torus, is essen-
tial in their approach. LetB be a Borel subgroup containing the split maximal torus.
Then B is special (i.e., has no non-split torsors over field extensions) and therefore,
for a G-torsor X the varieties X and X/B have the same splitting fields and in
particular the same canonical p-dimension. The variety X/B is smooth, projective
and generically split. For these varieties the canonical p-dimension can be expressed
through the existence of rational cycles in Chow-groups with Fp-coefficients [KM06,
Theorem 5.8]. For a survey on canonical dimension of smooth projective varieties
we refer to N. Karpenko’s ICM survey [Ka10].


We will be mainly interested in canonical dimension of tori. In this case all we
can do with the above approach is to reduce the study of the canonical p-dimension
of torsors of an arbitrary torus to the case of an anisotropic torus (mod out the
maximal split subtorus).


Our approach to compute the canonical dimension of tori will be very different
from the one above used for split simple algebraic groups. We will use Theorem 1.1
to relate, for an algebraic group G, the essential dimension of suitable subgroups D
of G with the canonical dimension of the quotient G/D. This approach produces
interesting results for algebraic tori T , which split over a Galois extension of p-
power degree, where p is a prime. Here D is any subgroup of T which contains
the (unique) largest subgroup C(T ) of T of the form µrp, r ≥ 0. The relation we
establish in Corollary 5.5 has the following simple form:


Theorem 1.2. cdimp T/D ≥ dimT/D− edpD.


Its proof makes full use of the computation of the essential p-dimension of T
from [LMMR11]. The general statement for arbitrary G is given in Theorem 5.1. In
section 5 we then proceed to find algebraic tori S which can be written as quotients
S ≃ T/D with D ⊇ C(T ) as in Theorem 1.2 and for which we can show that
equality holds. This happens, for instance, for every anisotropic algebraic torus S
which splits over a cyclic Galois extension of p-power degree (see Example 5.12)
and for every direct product of such tori.


The rest of the paper is structured as follows: In section 2 we recall some basics
on torsors, twists, CFG’s, 2-fiber products, stacks, gerbes etc. and define essential
and canonical dimension. Section 3 is devoted to the proof of the general fiber
dimension results and to applications in basic situations. In section 4 we introduce
and study p-exhaustive subgroups. Roughly speaking these are normal subgroups
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of an algebraic group G for which the essential p-dimension of G can be expressed
via the essential p-dimension of gerbes of the form [E/G] for G/C-torsors E. We
then apply the fiber dimension results to spin groups. Finally section 5 contains our
results on canonical dimension of algebraic groups, in particular of algebraic tori.


2. Preliminaries


2.1. Conventions. We denote by F a field, which serves as our base field.
We will use the “Stacks Project” [Stacks] as our main reference for algebraic


spaces, stacks, gerbes etc. All these notions are understood with respect to the
fppf-topology. As in [Stacks] (and in contrast to [LMB00], for instance) we try not
to ignore any set-theoretical issues. Thus we will work over any big fppf-site SchF
as in [Stacks, Definition 021R]. This site is non-canonical but has the advantage
that its class of objects is a set. All schemes over F under consideration are as-
sumed to be objects of SchF . Note that SchF contains, among other objects, for
every finitely generated F -algebra A and for every finitely generated field exten-
sions K/F some scheme isomorphic to SpecA (resp. SpecK), see [Stacks, Lemma
000R]. For notational convenience we will assume that for every finitely generated
field extension K/F there exists a field extension K ′/F isomorphic to K such that
SpecK ′ ∈ SchF .


All of our group algebraic spaces and group schemes over a field K under con-
sideration are assumed to be locally of finite type over K.


2.2. Torsors and twists. Let G be a group algebraic space (locally of finite type)
over a field F in the sense of [Stacks, 043H] (with B = S = SpecF ). Usually G will
be an affine group scheme of finite type over F for us. However more general group
algebraic spaces will appear naturally as automorphism group algebraic spaces of
points of algebraic stacks. Since we do not assume algebraic spaces to be quasi-
separated, there are group algebraic spaces over a field F which are not group
schemes (for an example see [Stacks, Lemma 06E4]).


Let U be an algebraic space over F . A G-torsor over U is an algebraic space E
over F with a right action of G (in the sense of [Stacks, Definition 043Q]) and a
G-invariant morphism E → U of algebraic spaces which is fppf-locally isomorphic
on U to the trivial torsor U ×G→ U .


A G-torsor over a field extension K/F is a G-torsor E over SpecK. It is trivial
if and only if it has a K-rational point. Note that since G is locally of finite type
over F every G-torsor E over K becomes trivial over the algebraic closure Kalg.


We remark that if G is an affine group scheme (which will usually be the case for
us) then every G-torsor over a field extension K/F is representable by a scheme,
cf. [Stacks, Remark 049C].


For any G-torsor X over a field extension K/F we can form the twist


XG := AutG(X),


the group algebraic space over K of G-equivariant automorphisms of X . If X is
trivial we have XG ≃ GK .


More generally if N is a normal subgroup of G we form the twist XN as follows:
First note that for every morphism f : G→ H there is an induced H-torsor f∗(X),
defined as the quotient


f∗(X) = (X ×H)/G,
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where G acts by the formula (x, h)g = (xg, f(g)−1h). By descent the quotient exists
as an algebraic space and is an H-torsor, see [Stacks, Lemma 04U0].


Now we apply this construction to the canonical morphism π : G→ H := G/N .
Let Y = π∗(X). Then we get an induced morphism XG → YH of group algebraic
spaces. The twist of N by X is defined as the kernel


XN := ker(XG→ YH)


of this morphism.
If G, N and G/N are smooth affine group schemes over F we associate with


a G-torsor X a 1-cocycle z ∈ Z1(Γ, G(Fsep)) (unique up to the choice of a point
x0 ∈ X(Fsep)), where Γ := Gal(Fsep/F ), and consider the twisted Γ-action on
N(Fsep) by the cocycle z. This group, denoted zN(Fsep) in [Se02] can be identi-
fied Γ-equivariantly with the group of Fsep-rational points of the twist XN . Thus
our construction of XN is equivalent to the twist-construction zN(Fsep) in Galois-
cohomology for smooth affine group schemes.


2.3. CFG’s, stacks and gerbes. Let C be a category. A category fibered in
groupoids, abbreviated CFG, over C is a category A equipped with a functor
π : A → C subject to the following two conditions


(a) For every morphism ι : U → V in C and object a ∈ A with π(a) = V there
exists an object b of A and a morphism f : b → a in A such that π(f) = ι
(cf. diagram below).


∃b_


��


f
//___ a_


��
U


ι // V


(b) For every pair of morphisms f : b → a and g : c → a in A and every mor-
phism ι : π(c) → π(b) such that π(f) ◦ ι = π(g) there exists a unique mor-
phism h : c→ b in A such that π(h) = ι and f ◦ h = g (cf. diagram below).


c_


��


g


**VVVVVVVVVVVVVVVVVVVVVVVVV


h
##F


F
F


F
F


π(c)


ι
""D


DD
DD


DD
D


π(g)


**UUUUUUUUUUUUUUUUUUUUUU b_


��


f
// a_


��
π(b)


π(f)
// π(a)


We will call CFG over F a CFG over the category SchF . Every scheme X ∈ SchF
gives rise to a CFG X̃ over F : Its objects are morphisms T → X , where T ∈ SchF ,
its morphisms are morphisms T → S compatible with the morphisms to X and the
structure morphism X̃ → SchF is the projection onto the domain.


Recall that morphisms X → Y of schemes over F are in canonical 1-to-1 cor-
respondence with morphisms X̃ → Ỹ by the Yoneda lemma. In the sequel we will
use the notation X for the CFG X̃ associated with a scheme X and make it clear
from the context, if the scheme X or the CFG X is meant.
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By the term “stack over F” we mean a CFG X over F satisfying the additional
conditions (2) and (3) from [Stacks, Definition 02ZI] on patching isomorphisms and
objects of X . Note that all our stacks are fibered in groupoids.


The CFG associated with a scheme X over F is a stack. More generally every
algebraic space X over F is a stack. The algebraic spaces over F are precisely those
stacks over F whose objects do not have any non-trivial automorphisms lying over
the identity of their base, see [Stacks, Proposition 04SZ].


Another type of examples that we will often use in the sequel are quotients of
algebraic spaces by group actions:


Example 2.1. Let G be a group algebraic space over F and X be an algebraic
space over F on which G acts (from the right). The quotient stack [X/G] of X by
the G-action is the CFG over F , whose objects are diagrams


(1) E
ϕ


//


��


X


U


,


where U ∈ SchF , E → U is a G-torsor and ϕ : E → X is a G-equivariant morphism
of algebraic spaces over F .


Morphisms between two such objects (1) are pairs consisting of a morphism
U → U ′ of schemes and a G-equivariant morphism E → E′ of algebraic spaces,
such that the diagram


E 33
ϕ


//


��


X E′
ϕ′


oo


��
U 33 U ′


commutes. The structure map [X/G] → SchF is projection onto the bottom row.
The quotient stack [X/G] is indeed a stack over F , see [Stacks, Lemma 0370].


In the special case when X = SpecF (with trivial G-action) the quotient stack
[X/G] can be canonically identified with BG, the classifying stack of G. An object
of BG is simply a G-torsor E → U .


The construction of quotients [X/G] is functorial with respect to G-equivariant
morphisms of algebraic spaces. For a G-equivariant morphisms of algebraic spaces
X → Y we write fG∗ : [X/G] → [Y/G] for the induced morphism of quotient stacks.
On objects it is simply given by replacing the morphism E → X by the composition
E → X → Y in a diagram (1).


The construction of [X/G] is also functorial with respect to morphisms a : G→ H
of group algebraic spaces. Let H act on X and let G act on X through a. Then we
have a morphism aX∗ : [X/G] → [X/H ], which takes a diagram (1) to the diagram


a∗(E)
ψ


//


��


X


U,


where the H-equivariant map ψ : a∗(E) → X is induced by the G-invariant map
E ×H → X, (e, h) 7→ ϕ(e)h.
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An algebraic stack over F is a stack X over F whose diagonal X → X × X is
representable by algebraic spaces and such that there exists a smooth and surjective
morphism U → X for some scheme U ∈ SchF .


A gerbe over F is an algebraic stack X over F satisfying the additional two
conditions (2) and (3) of [Stacks, Definition ZZZ], which say that any two objects
of X are locally isomorphic and that objects exist locally. An example of a gerbe is
the classifying stack BG for any group algebraic space G over F .


CFG’s (A, π) over F (where π is the structure map π : A → SchF ) form a 2-
category, in which morphisms (A, π) → (A′, π′) are functors ϕ : A → A′ such that
π′ ◦ ϕ = π, and in which 2-morphisms ϕ1 → ϕ2 for morphisms ϕ1, ϕ2 : (A, π) →
(A′, π′) are natural transformations t : ϕ1 → ϕ2 such that π′(ta) = idπ(a) for all
objects a of A.


We will use the notion of 2-fiber product in the 2-category of CFG’s over F . If
ϕ : X → Z and ψ : Y → Z are two morphisms of CFG’s over F a 2-fiber product is
a CFG A over F together with morphisms p : A → X and q : A → Y such that the
square


A
q


//


p


��


Y


ψ


��
X ϕ


// Z


2-commutes (i.e. the two compositions A → Z are 2-isomorphic) and is a final
object in the 2-category of 2-commutative squares, see [Stacks, Definition 003Q]


for details. In particular for every other 2-commutative square A′
q′


//


p′


��


Y


ψ


��
X ϕ


// Z


there


exists a morphism α : A′ → A that makes the diagram


A′


q′


""


α


  A
A


A
A


p′


��


A
q


//


p


��


Y


ψ


��
X ϕ


// Z


2-commute.


A 2-fiber product is unique up to unique equivalence. A 2-fiber product of
ϕ : X → Z and ψ : Y → Z can be constructed like in [Stacks, Proposition 0040] as
a category whose objects are quadruples (U, x, y, f) where U ∈ SchF , x and y are


objects of X and Y, respectively, over U and f : ϕ(x)
∼
→ ψ(y) is an isomorphism in


Z lying over the identity of U .


In some concrete situations like in the following two examples, which will be used
later on, 2-fiber products have simpler alternative descriptions:
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Example 2.2. Let X,Y and Z be algebraic spaces with a G-action from the right
and let f : X → Z and g : Y → Z be G-equivariant morphisms of algebraic spaces.
Then G acts diagonally on the (usual) fiber-product X ×Z Y in the category of
algebraic spaces and the following diagram is 2-cartesian:


[(X ×Z Y )/G]
(πY )G


∗ //


(πX)G
∗


��


[Y/G]


gG
∗


��
[X/G]


fG


∗


// [Z/G],


For a proof see e.g. [Wa11, Lemma 2.3.2].


Example 2.3. Let a : G→ H be a morphism of group algebraic spaces and f : X →
Y an H-equivariant morphism of algebraic spaces. Then the following diagram is
2-cartesian:


(2) [X/G]
fG


∗ //


aX
∗


��


[Y/G]


aY
∗


��
[X/H ]


fH


∗


// [Y/H ].


This fact is probably well known. By lack of a reference we outline a proof using the
construction of the 2-fiber product in [Stacks, Proposition 0040]. Take an object of
the 2-fiber product [X/H ] ×[Y/H] [Y/G] over U ∈ SchF . It is given by a G-torsor
E over U with a G-equivariant map ϕ : E → Y , a H-torsor E′ over U with a H-
equivariant map ψ : E′ → X and an H-equivariant isomorphism α : E′ → a∗(E)
over U fitting into the commutative diagram


E′ α //


ψ


��


a∗(E)


��
X


f
// Y,


where the vertical map on the right is induced by the G-invariant map E ×H →
Y : (e, h) 7→ ϕ(e)h. We associate with this object the G-torsor E with the G-
equivariant map ψ ◦ α−1 ◦ ι : E → X , where ι is the map E → a∗(E), e → [e, 1].
This construction yields a morphism [X/H ]×[Y/H] [Y/G] → [X/G] of CFG’s.


On the other hand the 2-commutativity of diagram (2) induces a morphism
[X/G] → [X/H ]×[Y/H] [Y/G]. The two morphisms are easily seen to be mutually
inverse equivalences. It follows that diagram (2) is 2-cartesian as claimed.


2.4. Essential and canonical dimension of CFG’s. We will define essential and
canonical dimension for CFG’s over F , in particular of algebraic stacks. Essential
dimension of algebraic stacks has been introduced by P. Brosnan, A. Vistoli and Z.
Reichstein in [BRV11] (see also [BRV08]). Since then, several authors have worked
on essential dimension of algebraic stacks. The definitions of essential dimension
that we give below are equivalent to those in the literature, see e.g. [Me09] or
[BRV11]. However the definitions below will be more suitable for our purposes.
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Definition 2.4. Let X be a CFG over F . For a finitely generated field extension
K/F , a field K0 with a morphism SpecK → SpecK0 over F and a morphism
x : SpecK → X we say that:


• x is defined over K0 (or that K0 is a field of definition of x) if there exists
a morphism x0 : SpecK0 → X such that the diagram


SpecK


��


x // X


SpecK0


x0


;;wwwwwwwww


2-commutes.
• x is detected over K0 (or that K0 is a detection field of x) if there exists a
morphism x0 : SpecK0 → X .


We define


edx := min
K0


tdegF K0 ∈ N0, cdimx := min
K′


0


tdegF K
′
0 ∈ N0


where the minimum is taken over all fields of definition K0 of x, resp. over all
detection fields K ′


0 of x. For p ∈ P ∪ {0} we define


edp x := min edxL ∈ N0, cdimp x := min cdimxL ∈ N0,


where L runs over all prime to p extensions of K such that SpecL ∈ SchF and


xL : SpecL → X is the composite SpecL → SpecK
x
→ X . Here and in the sequel


“prime to 0 extension” means “trivial extension”, as usual, so that ed0 x = edx
and cdim0 x = cdimx.


We set


edp X := sup
x


edp x ∈ N0 ∪ {−∞,∞}, cdimp X := sup
x


cdimp x ∈ N0 ∪ {−∞,∞},


where the supremum runs over all (finitely generated) field extensions K/F and
morphisms x : SpecK → X , and edX := ed0 X , cdimX := cdim0 X . We have
edp X = −∞ (or equivalently cdimp X = −∞) if and only if X is empty.


If G is a group algebraic space over F , the essential p-dimension of G for p ∈
P ∪ {0} is defined via its classifying stack BG ≃ [SpecF/G]:


edpG := edpBG


Moreover cdimpG := sup cdimpX,


where X runs over all G-torsors over field extensions K of F with SpecK ∈ SchF .


We can define a functor FX : FieldsF → Sets as follows: Choose, for every
K ∈ FieldsF a field K ′ ∈ FieldsF and an isomorphism αK : K


∼
→ K ′ over F


such that SpecK ′ belongs to SchF . Define FX (K) as the set of isomorphism classes
in X (K ′). For a morphism f : K → L in FieldsF define FX (f) as the map between
isomorphism classes of objects of X (K ′) and X (L′) induced by the field homomor-
phism αL ◦ f ◦ α−1


K : K ′ → L′ over F . Then FX is a functor and edX is easily seen
to coincide with edFX as defined in [BF03]. Similarly cdimX coincides with the
essential dimension of the detection functor


DX : FieldsF → Sets, K 7→


{


{∅}, if X (K ′) 6= ∅


∅, otherwise.
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We will sometimes tacitly use the following fact:


Lemma 2.5 ([BRV11, Example 2.4]). Let X be a scheme or a quasi-separated
algebraic space locally of finite type over F . Then edpX = dimX for every p ∈
P ∪ {0}.


For every CFG X over F we have cdimp X ≤ edp X for every p ∈ P ∪ {0}.
However note that cdimpG has nothing to do with cdimpBG, which is zero (since
F is a detection field for all morphisms x : SpecK → BG), and edpG = edpBG
has nothing to do with the essential p-dimension of the algebraic space G, which
is equal to dimG. Thus there are a-priori no relations between the values of edpG
and cdimpG. However when G is quasi-separated we always have


cdimpG ≤ dimG


since the canonical p-dimension of a G-torsor X is always less or equal to the
essential p-dimension of the algebraic space X , which is dimX = dimG by Lemma
2.5.


3. Fibers for morphisms of CFG’s


We start this section by proving our version of the fiber dimension theorem.


Proof of Theorem 1.1. Let x : SpecK → X be a morphism for some finitely gener-
ated field extensions K/F . Let y = f ◦ x : SpecK → X → Y. By definition of edp y
there exists a prime to p extension L/K and an intermediate field L0 of L/F with
tdegF L0 = edp y together with a 2-commutative diagram:


SpecL


��


// SpecK
x // X


f


��
SpecL0 y0


// Y


By the universal property of 2-fibered products there exists a morphism z : SpecL→
Xy0 such that the diagram


SpecL


!!


z


%%J
JJ


JJJJJJJ
// SpecK


x


##F
FF


FF
FF


FF


Xy0 //


��


X


f


��
SpecL0 y0


// Y


2-commutes. We will now argue for essential and canonical dimension separately:


• Essential dimension: By the definition of edp z there exists a prime to p
extension M/L and an intermediate field M0 of M/L0 with tdegL0


M0 =
edp z together with a morphism z0 : SpecM0 → Xy0 such that the above
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diagram can be completed to a 2-commutative diagram


SpecM


��


// SpecL


!!


z


%%J
JJJJJJ


JJJ
// SpecK


x


##F
FF


FF
FF


FF


SpecM0
z0 // Xy0 //


��


X


f


��
SpecL0 y0


// Y


Therefore xM is defined over M0. It follows that edp x ≤ tdegF M0 =
tdegF L0 + tdegL0


M0 = edp y + edp z ≤ edp Y + edp Xy0 . Hence the first
inequality follows.


• Canonical dimension: By the definition of cdimp z there exists a prime to
p extensionM ′/L and an intermediate fieldM ′


0 ofM
′/L0 with tdegL0


M ′
0 =


cdimp z together with a morphism z′0 : SpecM ′
0 → Xy0 . Hence there exists


a morphism SpecM ′
0 → X , which shows that cdimp x ≤ tdegF M


′
0. Now the


second inequality follows like above.


�


The following lemma on the essential dimension of gerbes X will be useful in
the sequel. The case where X is banded by a commutative group scheme is [Me08,
Proposition 4.9]. Recall that for any algebraic stack X over F there exists, for
every morphism y : SpecK → X , a group algebraic space AutK(y) over K of
automorphisms of y, cf. [Stacks, Lemma 04YP and Lemma 04XR]. Its T -rational


points for T ∈ SchK are the automorphisms yT
≃
→ yT over T .


Lemma 3.1. Let X be a gerbe over F . Then for every p ∈ P ∪ {0},


edp X ≤ cdimp X + sup edpAutK(y),


where the supremum is taken over all field extensions K/F and all morphisms
y : SpecK → X .


Proof. Let x : SpecK → X be a morphism. By the definition of cdimp x there
exists a prime to p extension L/K, an intermediate extension L0/F of L/F and
a morphism x0 : SpecL0 → X such that tdegF L0 = cdimp x ≤ cdimp X . Then
XL0


is equivalent to BG, where G := AutL0
(x0), cf. [LMB00, Lemme 3.21]. We


get a morphism y : SpecL→ BG such that xL : SpecL→ X and the composition


SpecL
y
→ BG


≃
→ XL0


→ X are 2-isomorphic. By the definition of edp y there exists
a prime to p extension M/L, an intermediate field M0 of the extension M/L0 with
tdegL0


M0 = edp y and a morphism y0 : SpecM0 → BG such that the diagram


SpecM


��


// SpecL


y


��


// SpecK


x


""F
FF


FF
FF


FF


SpecM0
y0 // BG


≃ // XL0


// X


2-commutes. Hence


edp x ≤ tdegF M0 = tdegF L0 + tdegL0
M0 = cdimp x+ edp y


≤ cdimp X + edpG,
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and the claim follows. �


Corollary 3.2. Let 1 → C → G→ H → 1 be an exact sequence of group algebraic
spaces over F . Let E be an H-torsor over some field extension K/F . Then


edp[E/G] ≤ cdimp[E/G] + sup edp
XC,


where X runs over all lifts of E to a G-torsor over field extensions L/K.
In particular when C is central in G then


edp[E/G] ≤ cdimp[E/G] + edp CK .


Proof. A morphism y : SpecL→ [E/G] corresponds to a lifting of E to a G-torsor
X and AutL(y) is isomorphic to the twist XC. Hence the first inequality follows
from Lemma 3.1.


If C is central in G then XC is isomorphic to CL. Hence the second inequality
follows from the first one and the fact supL edp CL ≤ edp CK . �


We will apply Theorem 1.1 in the following cases:


Example 3.3. Let G be a group algebraic space over F and a : X → Y be a G-
equivariant morphism of algebraic spaces over F . A morphism y : SpecK → [Y/G]
corresponds to a G-torsor E over K with a G-equivariant morphism E → Y . By
Example 2.2 the fiber of the morphism aG∗ : [X/G] → [Y/G] over y is equivalent to
[E ×Y X/G]. Thus, for every p ∈ P ∪ {0},


edp[X/G] ≤ edp[Y/G] + sup edp[E ×Y X/G],


cf. [BRV11, Example 3.1], and


cdimp[X/G] ≤ edp[Y/G] + sup cdimp[(E ×Y X)/G],


where the supremum is taken over all field extensions K/F and all G-torsors E over
K with a G-equivariant morphism E → Y .


Note that [E ×Y X/G] is an algebraic space. Thus if it is quasi-separated or a
scheme then we can replace edp[E×Y X/G] by dim[E×Y X/G] in the first inequality
above.


Now we apply this to the following situation: Let g : G → H be a morphism of
group schemes over F . Let X be an H-torsor over some field extension L/F . Then
G acts on X via g and [(E×X)/G] is an AutH(X)-torsor over K ∈ FieldsL, which
is quasi-separated. Thus:


edp[X/G] ≤ edpG+ dimH,(3)


cf. [Me09, Theorem 4.8] and [BRV11, Corollary 3.3], and


cdimp[X/G] ≤ edpG+ cdimpAutH(X).(4)


More generally suppose we are given morphisms g : G → H and h : H → Q of
group schemes over F . Let X be an H-torsor over some field extension L/F and
let Y = h∗(X) be the induced Q-torsor. Then G acts on X and Y via g and h ◦ g,
respectively, and X → Y is G-equivariant. In this situation [(E×Y X)/G] is a torsor
over K ∈ FieldsL for the group scheme


U := ker(AutH(X) → AutQ(Y ))
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over L (that becomes isomorphic to ker(h : H → Q) over Lalg). Thus:


edp[X/G] ≤ edp[Y/G] + dim(ker h),(5)


cdimp[X/G] ≤ edp[Y/G] + cdimp U.(6)


Note that in case h is surjective U is simply the twist U = XC of the kernel
C := kerh by X .


Example 3.4. Let f : G→ H be a morphism of group algebraic spaces over F and
let H act on an algebraic space X . A morphism y : SpecK → [X/H ] corresponds
to an H-torsor E over K with an H-equivariant morphism E → X . By Example
2.2 the fiber of the morphism fX∗ : [X/G] → [X/H ] over y is isomorphic to [E/G].
Thus:


edp[X/G] ≤ edp[X/H ] + sup edp[E/G],


cdimp[X/G] ≤ edp[X/H ] + sup cdimp[E/G],


where the supremum runs over all field extensions K/F and all H-torsors E over
K admitting an H-equivariant morphism E → X .


We have the following interesting special cases:


(a) This case was independently discovered by V. Chernousov and A. Merkurjev
and used for split spin groups (cf. section 4). For X = SpecF :


edpG ≤ edpH + sup edp[E/G],


where the supremum is taken over all field extensionsK/F and allH-torsors
E over K.


When f is surjective [E/G] is a gerbe. Applying Lemma 3.1 yields, with
C = ker f :


edpG ≤ edpH + sup cdimp[E/G] + sup edp
TC,


where the suprema are taken over all H-torsors E, resp. all G-torsors T ,
over field extensions K of F .


(b) For G trivial (and X , H quasi-separated for the first inequality):


dimX ≤ edp[X/H ] + dimH,


cdimpX ≤ edp[X/H ] + sup cdimp E ≤ edp[X/H ] + cdimpH,


where the supremum runs over all field extensions K/F and all H-torsors
E over K admitting an H-equivariant morphism E → X .


The following result has been proven by D.-T. Nguyen (for smooth group schemes)
and can be seen as a special case of Example 3.4(a). The case where U is commu-
tative is due to D. Tossici and A. Vistoli.


Corollary 3.5 (c.f. [Ng11, Proposition 2.2] and [TV10, Lemma 3.4]). Let 1 →
U → G→ H → 1 be an exact sequence of group schemes over F with U unipotent.
Then


edpG ≤ edpH + sup edp
XU,


where X runs over all G-torsors over field extensions K/F .
In particular when U is central in G then


edpG ≤ edpH + edp U.
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Proof. Since U is unipotent every H-torsor lifts to a G-torsor [Oe78] (the reference
assumes algebraic groups to be smooth; however the same argument still works in
the general case with Galois-cohomology replaced by fppf-cohomology). Therefore
every gerbe [E/G] over K from Example 3.4(a) has cdimp[E/G] = 0. The claim
follows. �


Note that the same argument works for semi-direct products:


Corollary 3.6. Let G = N ⋊H be a semidirect product of group schemes N and
H over F . Then


edpH ≤ edpG ≤ edpH + sup edp
TN,


where T runs over all G-torsors over field extensions of F .


Example 3.7. Let f : X → Y be a morphism of stacks over F and IX/Y its
relative inertia stack, whose objects are pairs (ξ, α) where ξ ∈ Ob(X ) and α is
an automorphism of ξ with f(α) = idf(ξ). The fibers of the canonical morphism
IX/Y → X over points x : SpecK → X are the group algebraic spaces given by the
kernels of the morphisms AutK(x) → AutK(f(x)), see [Stacks, Lemma 050Q] and
its proof. We will assume that the morphism IX/Y → X is quasi-separated, so that
all the group algebraic spaces ker(AutK(x) → AutK(f(x))) are quasi-separated.
Then


edp IX/Y ≤ edp X + supdim ker(AutK(x) → AutK(f(x))),


where the supremum is taken over all field extensions K/F and all morphisms
x : SpecK → X .


We also have


edp X ≤ edp IX/Y


since the morphism IX/Y → X is surjective on K-rational points for every K ∈
FieldsF . In particular, if X has finite relative inertia over Y, then edp X = edp IX/Y .
A stack over F for which all automorphism groups AutK(x) are finite has


edp X = edp IX .


Here IX = IX/ SpecF denotes the absolute inertia stack.


For a group scheme G and a normal subgroup N the relative inertia stack with
respect to the canonical morphism f : BG→ B(G/N) is equivalent to [N/G], where
G acts by conjugation. The kernels ker(AutK(x) → AutK(f(x))) are the twists
XN of N by G-torsors X . Therefore:


edpG ≤ edp[N/G] ≤ edpG+ dimN.


4. p-exhaustive subgroups


From now on all group schemes under consideration are assumed to be affine.


Definition 4.1. Let p ∈ P ∪ {0}. Let G be a group scheme over F and C be a
normal subgroup scheme. Set H = G/C. We say that an H-torsor X over some
extension K ∈ FieldsF is p-exhaustive (with respect to C and G) if the inequality


edp[X/G] ≤ edpG+ dimH


from Example 3.3 is an equality.
We say that C is a p-exhaustive (normal) subgroup of G if a p-exhaustive H-


torsor X exists.
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Clearly G itself is always a p-exhaustive subgroup, for any p ∈ P∪ {0}. However
there may exist smaller p-exhaustive subgroups. We make the following observation:


Lemma 4.2. Let G be a group scheme over F . Let C be a p-exhaustive subgroup
of G. Then every normal subgroup D of G containing C is p-exhaustive as well.


Proof. Set H := G/C and Q := G/D. Let X be a p-exhaustive H-torsor, i.e.


edp[X/G] = edpG+ dimH.


Let h : H → Q the canonical surjective morphism. We will show that the induced
Q-torsor Y = h∗(X) is p-exhaustive. By inequality (5) of Example 3.3 we have


edp[X/G] ≤ edp[Y/G] + dimH − dimQ.


Therefore


edp[Y/G] ≥ edpG+ dimQ.


Since the opposite inequality always holds the claim follows. �


If C is a central subgroup of G isomorphic to µrp for some r ≥ 0 we can use a
result of N. Karpenko and A. Merkurjev [KM08] to compute, at least in principle,
the essential p-dimension of [E/G] for every H = G/C-torsor E over some field ex-
tension K. Denote by βE : Hom(C, µp) → Br(K) the group homomorphism, which
takes a character χ to the image of the class of E under the map


H1(K,H) → H2(K,C(C))
χ∗


→ H2(K,µp) = Brp(K).


Then by [KM08] (cf. [Me09, Example 3.7])


edp[E/G] = min











∑


χ∈B


indβE(χ)











,


where the minimum runs over all bases B of Hom(C, µp) ≃ (Z/pZ)r.
The case r = 1 is due to [BRV11]. Note that in this case, edp[E/G] is the index


of βE(χ) for any generator χ of Hom(C, µp) ≃ Z/pZ.
We remark that by [KM08, Theorem 4.4 and Remark 4.5] the indices aris-


ing in these formulas can be expressed in representation theoretic terms. Namely,
indβE(χ) is the greatest common divisor gcddim ρ taken over all (irreducible) rep-
resentations ρ of G for which C acts via multiplication by χ. However we will not
use this description in the sequel.


In several recent papers about essential dimension p-exhaustive central subgroups
of the form µrp have been used (implicitly) to compute the exact value of the es-
sential p-dimension edpG for some classes of group schemes G whose center is of
multiplicative type. Recall from [LMMR11, p.4] that we can associate with G a
subgroup C(G) which is the (uniquely determined) largest central subgroup of G of
the form µrp, r ≥ 0. The center Z(G) of G or even the subgroup C(G) is p-exhaustive
in several cases, summarized in the following list:


Example 4.3. Let p be a prime. For the following group schemes G the subgroup
C(G) (exists and) is p-exhaustive:


(a) G is a group scheme of multiplicative type over a field F which splits over
a Galois extension of p-power degree. See [LMMR11, Theorem 1.1] and its
proof.
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(b) G is a p-group over a field F of characteristic 6= p, containing a primitive pth
root of unity such that G becomes constant over a Galois field extension of
p-power degree. See [LMMR11, Theorem 7.1] and its proof. The case where
G is constant is contained in [KM08].


(c) G = Spinn (for p = 2) over a field of characteristic 0, where n ≥ 15. This
is due to [BRV10, Me09] and a result of V. Chernousov and A. Merkurjev.
We will give more details below.


(d) G = HSpinn (for p = 2) over a field of characteristic 0, where n ≥ 20 is
divisible by 4. See [BRV10].


Let A be a division-algebra of p-power degree over its center. For the following
group schemes G the center Z(G) is p-exhaustive:


(e) G is the normalizer G = NGL1(A)(GL1(B)) where B is a separable subal-
gebra of A and Z(A) = F . See [Lo11]. Here Z(G) ≃ Gm.


(f) G = Sim(A, σ) (with p = 2), where σ is an involution on A with Z(A)σ = F .
See [Lo11]. Here Z(G) ≃ Gm if σ is of the first kind and Z(G) ≃ RK/F (Gm)
with K = Z(A) separable of degree 2 over F if σ is of the second kind.


(g) G = Iso(A, σ) (with p = 2), where Z(A) = F and σ is an involution of the
first kind on A. See [Lo11].


(h) G = GO(A, σ, f), O(A, σ, f) or, if r ≥ 2, GO+(A, σ, f) or O+(A, σ, f),
where (σ, f) is a quadratic pair on A and Z(A) = F , p = 2, charF = 2.


Remark 4.4. For a general normal subgroup C of G we do not know if the maximal
value of edp[E/G] is reached for a versal H = G/C-torsor (in the sense of [BF03]).
However if C is central and C ≃ µrp for a prime p this is true. In particular C is p-
exhaustive if and only if for any versal torsor E we have edp[E/G] = edpG+dimG.
Let us prove this. By the above formula it suffices to show that for E versal


indβE(χ) ≥ indβE
′


(χ)


for every χ ∈ Hom(C, µp) and every other H-torsor E′ over some field extension of
F .


Recall that a versal torsor E over some field extension K is by definition the
generic fiber of a classifying H-torsor π : X → Y (here Y is an irreducible scheme
over F ). There is an Azumaya algebra A over Y such that for K ∈ FieldsF and


y ∈ Y (K), E′ = Xy, the class of βE
′


(χ) is represented by the Azumaya K-algebra
Ay, see [KM08, Lemma 4.3] and its proof. In particular βE(χ) is represented by
the generic fiber of A.


Now let D be a central division F (Y )-algebra representing the class of βE(χ).
Then we can lift D to some Azumaya-algebra B of constant degree equal to degD =
indβE(χ) over some non-empty open subset U of Y . Shrinking U if necessary allows
us to assume that B is Brauer-equivalent to AU .


Let E′ be another H-torsor over some extension K ∈ FieldsF . In order to prove
the claim we can replace E′ by E′×SpecK(T ) if necessary and thus assume that K
is infinite. Since π is classifying there exists a point y ∈ U(K) such that the fiber of π
over y is isomorphic to E′. Therefore By is Brauer equivalent toAy, which represents


the class βE
′


(χ) in Br(K). This implies that indβE
′


(χ) ≤ degBy = indβE(χ). The
claim follows.
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We will prove two general lemmas on the behaviour of p-exhaustive central
subgroups of the form µrp. The first one generalizes the additivity theorem from
[LMMR09, Theorem 8.1].


Lemma 4.5. Let p be a prime and G1, G2 be group schemes over F . Let C1 ≃ µr1p
and C2 ≃ µr2p be central subgroups of G1 and G2, respectively. Set H1 = G1/C1,
H2 = G2/C2. Let E be a versal H1 ×H2-torsor over some extension K ∈ FieldsF .
Write E ≃ E1 × E2, where Ei is an Hi-torsor, for i = 1, 2. Then


edp[E/(G1 ×G2)] = edp[E1/G1] + edp[E2/G2].


In particular, if C1 and C2 are p-exhaustive, then C1 × C2 is p-exhaustive as well
and


edpG1 ×G2 = edpG1 + edpG2.


Proof. Set G = G1 × G2, H = H1 × H2, C = C1 × C2. Choose a basis B of
Hom(C, µp) such that


edp[E/G] =
∑


χ∈B


indβE(χ).


By elementary linear algebra there exists a partition B = B1


∐


B2 such that the
image of Bj under the projection πj : Hom(C, µp) = Hom(C1, µp)×Hom(C2, µp) →
Hom(Cj , µp) is a basis of Hom(Cj , µp), for both j = 1, 2.


Let T1 denote the trivial H1-torsor. Then βT1×E2(χ) = βE2(π2(χ)). Therefore
by Remark 4.4, indβE(χ) ≥ indβE2(π2(χ)), for every χ ∈ Hom(C, µp). Similarly
indβE(χ) ≥ ind βE1(π1(χ)). We conclude:


edp[E/G] ≥
∑


ϕ∈π1(B)


indβE1(ϕ) +
∑


ψ∈π2(B)


indβE2(ψ)


≥ edp[E1/G1] + edp[E2/G2] ≥ edp([E1/G2]× [E2/G2]) = edp[E/G].


Therefore edp[E/G] = edp[E1/G1] + edp[E2/G2] as claimed.


Now assume that Cj is p-exhaustive in Gj , for j = 1, 2. It is easy to see that that
Ej is a versalHj-torsor, for j = 1, 2. Therefore in view of Remark 4.4, edp[Ej/Gj ] =
edpGj + dimHj . Hence


edp[E/G] = edpG1 + edpG2 + dimH ≥ edpG+ dimH.


It follows that C is p-exhaustive and edpG1 + edpG2 = edpG. �


Lemma 4.6. Let G be a group scheme over F and C ≃ µrp a central subgroup of
rank r ≥ 1. Assume that for all but at most r − 1 index p subgroups D of C the
subgroup C/D of G/D is p-exhaustive. Then C is a p-exhaustive subgroup of G.


Proof. Set H = G/C. Let E be a versal H = G/C-torsor over some extension
K ∈ FieldsF . Choose a basis B of Hom(C, µp) ≃ (Z/pZ)r such that


(7) edp[E/G] =
∑


χ∈B


ind βE(χ)


We will first show that for any D = kerχ0 with χ0 ∈ B:
(8)
edp[E/G] = edp[E/(G/D)] + sup


XliftingE
edp[X/G] = edp[E/(G/D)] + sup


X
edp[X/G],


where on the right X runs over all G/D-torsors over field extensions of K and on
the left X runs only over all G/D-torsors over field extensions of K that lift E.
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Note that the left most expression in equation (8) is ≤ the middle expression by
Example 3.4 and therefore ≤ the right most expression.


For every field extension L/F we have a commutative diagram


H1(L,G/D) //


��


H2(L,D)


��
H1(L,H) // H2(L,C)


(χ0)∗
//


��


H2(L, µp)


H1(L,H) // H2(L,C/D)
≃ // H2(L, µp).


In particular it follows that


(9) edp[E/(G/D)] = indβE(χ0).


Let X be a G/D-torsor over L ∈ FieldsK and let X̄ be the induced H-torsor. For
χ ∈ Hom(C, µp) the image of χ|D under βX : Hom(D,µp) → Br(L) coincides with


βX̄(χ). Since the characters χ|D with χ ∈ B \ {χ0} form a basis of Hom(D,µp),


(10) edp[X/G] ≤
∑


χ∈B\{χ0}


indβX̄(χ) ≤
∑


χ∈B\{χ0}


indβE(χ).


Combination of (7), (9) and (10) implies that the right most expression in (8) is ≤
the left most expression. Therefore we have proven (8).


By assumption there is at least one subgroup D = kerχ0 with χ0 ∈ B such that
the subgroup C/D of G/D is p-exhaustive. For such D we get with Remark 4.4,


(11) edp[E/(G/D)] = edpG/D + dimG/D = edpG/D + dimH.


Example 3.4(a) implies,


(12) edpG ≤ edpG/D + sup edp[X/G],


where the supremum is taken over all G/D-torsors X over field extensions of K.
Combining (8), (11) and (12) shows


edpG+ dimH ≤ edp[E/G].


Hence the claim follows. �


We will now consider spin groups for application. Essential dimension of spin
groups has been subject of investigation in several articles, including [Ro99], [CS06],
[BRV11] and [Me09]. Assume charF 6= 2. Let Spinn denote the spin group for a
maximally isotropic non-degenerate quadratic form of dimension n. The essential
dimension of Spinn for n ≤ 14 has been computed by M. Rost [Ro99], see also
[Ga09]. Then came P. Brosnan, A. Vistoli and Z. Reichstein [BRV11] who estab-
lished a strong lower bound on Spinn for any n ≥ 15 using essential dimension of
algebraic stacks, basically applying inequality (3) from Example 3.3 to the surjec-
tive homomorphism Spinn → O+


n with kernel µ2. For fields of characteristic 0 they
also proved an upper bound using generically free representations. In case n 6≡ 0
(mod 4) their lower bound matched the upper bound.


Then came A. Merkurjev [Me09], who improved the lower bound in case n ≡ 0
(mod 4), by considering the surjective homomorphism Spinn → PGO+


n with kernel
µ2 × µ2 instead. This bound matched the upper bound from [BRV11] when n is







A FIBER DIMENSION THEOREM FOR ESSENTIAL AND CANONICAL DIMENSION 19


a power of 2. At the RAGE conference in Atlanta 2011 Merkurjev also showed
how to improve the upper bound in case n ≡ 0 (mod 4) by relating the essential
dimension of Spinn with the essential dimension of the semi-spinor group HSpinn.
As Merkurjev communicated to the author, this result will appear in a joint preprint
with V. Chernousov. This upper bound can be seen as a special case of Example
3.4(a) for the morphism f : Spinn → HSpinn. Again the two bounds match. Thus
edSpinn is known for any field of characteristic 0. We refer to [Me09, §4.3] for the
list of values.


Since the new upper bound of Chernousov and Merkurjev for edSpinn, n ≥ 20
divisible by 4, is such a natural application of Theorem 1.1 we will reproduce it
below. Also we feel that non-split spin groups have been excluded unnecessarily for
investigation so far, so we would like to fill this gap.


We will entirely focus on the case n ≡ 0 (mod 4), since the other cases can
be treated with published results. Moreover we will always assume that (σ, f) has
trivial discriminant. The case where n ≡ 0 (mod 4) and (σ, f) has non-trivial dis-
criminant looks more difficult.


Let (A, σ, f) be a quadratic pair over F with n := degA divisible by 4. We assume
that (σ, f) has trivial disciminant. In other words the center Z = Z(C(A, σ, f)) of
the Clifford algebra of (A, σ, f) is isomorphic to F × F . We have an inclusion


Spin(A, σ, f) ⊆ RZ/F (GL1(C(A, σ, f))) = GL1(C
+(A, σ, f))×GL1(C


−(A, σ, f)).


The center of Spin(A, σ, f) is µ2 × µ2. We denote the image of Spin(A, σ, f) in
the first (resp. second) component by Spin+(A, σ, f) (resp. Spin−(A, σ, f)). In
other words Spin+(A, σ, f) is the quotient of Spin(A, σ, f) by the central subgroup
{1}×µ2. Similarly Spin−(A, σ, f) is the quotient of Spin(A, σ, f) by µ2×{1}. Note
that unlike the split case, these two groups do not need to be isomorphic.


The quotient of Spin(A, σ, f) by the diagonal subgroup of µ2×µ2 is O
+(A, σ, f).


The quotient of Spin(A, σ, f) by the full center µ2 × µ2 is PGO+(A, σ, f).


Proposition 4.7. Assume charF 6= 2. Then


d+ := sup ed2[E/Spin
+(A, σ, f)] = 2


n−2


2 indC+(A, σ, f)


d− := sup ed2[E/Spin
−(A, σ, f)] = 2


n−2


2 indC−(A, σ, f)


d := sup ed2[E/O
+(A, σ, f)] = 2ν2(n)+ν2(indA),


sup ed2[E/Spin(A, σ, f)] = min{d+ d+, d+ d−, d+ + d−},


where E runs over all PGO+(A, σ, f)-torsors E over field extensions of F . These
values are attained for a versal PGO+(A, σ, f)-torsor E.


Furthermore if n ≥ 20 then


sup ed2[E/Spin(A, σ, f)] = min{d+, d−}+ d.


Proof. For a field extension K/F the fppf-cohomology set H1(K,PGO+(A, σ, f))
is in natural bijection with isomorphism classes of quadruples (B, τ, g, ϕ) where B
is a central simple K-algebra of degree degB = degA, (τ, g) is a quadratic pair on


B and ϕ is an isomorphism Z(C(B, τ, g))
∼
→ K×K. The connecting map associated
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with the exact sequence 1 → µ2×µ2 → Spin(A, σ, f) → PGO+(A, σ, f) → 1 takes
the isomorphism class of (B, τ, g, ϕ) to the element


([C+(B, τ, g)]− [C+(A, σ, f)K ], [C−(B, τ, g)]− [C−(A, σ, f)K ])


in Br2(K) × Br2(K) = H2(K,µ2 × µ2), where C
+(B, τ, g) = C(B, τ, g)ϕ−1(1, 0)


and C−(B, τ, g) = C(B, τ, g)ϕ−1(0, 1) are the two components of C(B, τ, g) labeled
with respect to ϕ, cf. [KMRT98, Exercise VII.15].


Similarly, the connecting maps associated with the exact sequences


1 → µ2 → G→ PGO+(A, σ, f) → 1


for G = Spin+(A, σ, f),Spin−(A, σ, f),O+(A, σ, f) takes the class of (B, τ, g, ϕ)
to [C+(B, τ, g)] − [C+(A, σ, f)K ], [C−(B, τ, g)] − [C−(A, σ, f)K ] and [B] − [AK ],
respectively.


We always have indB ≤ 2ν2(n) and indCδ(B, τ, g) ≤ 2
n−2


2 . By [MPW96, (5.49)]
(here we use the assumption charF 6= 2) there exists a quadruple (B, τ, g, ϕ) as
above such that for every central simple F -algebra D:


ind(D ⊗F C
δ(B, τ, g)) = 2


n−2


2 indD, ∀δ ∈ {+,−},


ind(D ⊗F B) = 2ν2(n) ind(D).


In particular:


dδ = ind(Cδ(A, σ, f)op ⊗F C
δ(B, τ, g)) = 2


n−2


2 ind(Cδ(A, σ, f)), ∀δ ∈ {+,−},


d = ind(Aop ⊗F B) = 2ν2(n)+ν2(indA).


Moreover it follows that


sup ed2[E/Spin(A, σ, f)] = min{d+ d+, d+ d−, d+ + d−}.


Now assume n ≥ 20. Then 4ν2(n) ≤ n− 2, hence


d ≤ 22ν2(n) ≤ 2
n−2


2 ≤ min{d+, d−}.


Thus min{d+ d+, d+ d−, d+ + d−} = min{d+, d−}+ d. �


Proposition 4.8. Assume charF 6= 2.


(a) Let δ ∈ {+,−} and let m = ind(Cδ(A, σ, f)). Suppose that the m-fold direct
sum of the canonical representation of HSpinn is generically free. Then


the center µ2 of Spinδ(A, σ, f) is a 2-exhaustive subgroup of Spinδ(A, σ, f).
Moreover


ed2 Spin
δ(A, σ, f) = 2


n−2


2 m−
n(n− 1)


2
.


(b) Suppose that A is division. Then the center µ2 of O+(A, σ, f) is a 2-
exhaustive subgroup of O+(A, σ, f). Moreover


ed2 O
+(A, σ, f) = n2 −


n(n− 1)


2
=
n(n+ 1)


2
.


Proof. (a) Let D be a division F -algebra, representing the Brauer class of
Cδ(A, σ, f). We have a representation arising from the composition


ρ : Spinδ(A, σ, f) →֒ GL1(C
δ(A, σ, f)) →֒ GL1(C


δ(A, σ, f) ⊗F D
op)


≃
→ GLN
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with N = 2
n−2


2 m. Over Fsep this representation decomposes as the m-
fold direct sum of the canonical HSpinn-representation, which is gener-
ically free by assumption. Hence ρ is generically free as well. Therefore
ed2 Spin


δ(A, σ, f) ≤ N − dimSpinδ(A, σ, f) by [BF03, Proposition 4.11].
Combining this inequality with Proposition 4.7 shows that the center of
Spinδ(A, σ, f) is 2-exhaustive and gives us the value of ed2 Spin


δ(A, σ, f).
(b) Since O+(A, σ, f) is a subgroup of the group GL1(A) of essential dimension


0 we have ed2 O
+(A, σ, f) ≤ dimGL1(A) − dimO+(A, σ, f) = n(n+1)


2 (by
[BF03, Theorem 6.19] or Example 3.4(a)). Now the claim follows again from
Proposition 4.7.


�


Remark 4.9. Letm ≥ 1. In the following cases them-fold direct sum of the canonical
representation of HSpinn is generically free:


(a) m ≥ 2
n−2


2 , which is the dimension of the canonical representation ofHSpinn.
(b) charF=0 and m ≥ 8.
(c) charF=0 and m ≥ 2 if n ≥ 16.
(d) charF=0 and m arbitrary if n ≥ 20.


The first case is obvious, since GLm acts generically freely on the m-fold direct sum
of its canonical m-dimensional representation. The other cases follow from [PV94,
Theorem 8.8 and Theorem 8.9]. We do not know if the assumption charF = 0 can
be dropped or not.


Combining Proposition 4.8 and Remark 4.9 with Lemma 4.6 we can compute
the essential 2-dimension of Spin(A, σ, f) in many cases. In particular we get the
following result:


Corollary 4.10. Assume charF 6= 2. Set d = 2ν2(n)+ν2(ind(A)), d+ = 2
n−2


2 indC+(A, σ, f)


and d− = 2
n−2


2 indC+(A, σ, f) like in Proposition 4.7. In the following cases the
center µ2 × µ2 of Spin(A, σ, f) is 2-exhaustive and


ed2 Spin(A, σ, f) = min{d+ d+, d+ d−, d+ + d−} −
n(n− 1)


2
:


(a) At least two of the algebras A, C+(A, σ, f) and C−(A, σ, f) are division.
(b) charF = 0 and n ≥ 20. Here the formula simplifies to


ed2 Spin(A, σ, f) = min{d+, d−}+ d−
n(n− 1)


2
:


(c) charF = 0 and both C+(A, σ, f) and C−(A, σ, f) have index at least 8.
(d) charF = 0, n ≥ 16, and A is division or none of C+(A, σ, f) and C−(A, σ, f)


is split.


Remark 4.11. All results from Proposition 4.8 and Corollary 4.10 hold with ed2
replaced by ed. For the lower bounds this is clear and for the upper bound only
very slight modifications in the proofs are needed.


Remark 4.12. In case n = 8 the result of Corollary 4.10(a) can be improved. It
suffices that two of the three algebras (all of degree 8) have index ≥ 4. This follows
from the fact that the 4-fold direct sum of the representation


Spin8 →֒ O+
8 ×O+


8 →֒ GL16


is generically free, which can easily be checked.







22 ROLAND LÖTSCHER


Moreover in case charF = 0, n = 16 no assumptions on the indices are really
needed. This follows from the fact that the representation


Spin16 →֒ HSpin16 ×O+
16 →֒ GL128 ×GL16 →֒ GL144


is already generically free, see [BRV10, p.5].


5. Canonical dimension of group schemes


In the following theorem, we reveal a relation between canonical and essential
dimension of group schemes for p-exhaustive subgroups, introduced in section 4.


Theorem 5.1. Let p ∈ P ∪ {0}. Let G be a group scheme over F and let C be a
p-exhaustive subgroup of G. Let H = G/C and X be a p-exhaustive H-torsor over
some field extension K/F . Then


cdimpAutH(X) ≥ dimH − sup edp
ZC,


where the supremum is taken over all field extensions L/K and all lifts of X to a
G-torsor Z over L.


In particular, if C is central then


cdimpAutH(X) ≥ dimH − edp C,


and if H is abelian then


cdimpH ≥ dimH − edp
XC,


and if C is central and H abelian then


cdimpH ≥ dimH − edp C.


Proof. Since X is p-exhaustive we have


(13) edp[X/G] = edpG+ dimH.


By inequality (4) of Example 3.3,


(14) cdimp[X/G] ≤ edpG+ cdimpAutH(X).


Corollary 3.2 yields the inequality


(15) edp[X/G] ≤ cdimp[X/G] + sup edp
ZC.


Combining (13), (14) and (15) yields the desired inequality.
�


Remark 5.2. Suppose, given a group scheme G over F and a prime p, we want
to study the question if the subgroup C(G) ≃ µrp (from above) is p-exhaustive.
Theorem 5.1 gives an obstruction to an affirmative answer to this question. Namely
C(G) can only be p-exhaustive if one of the twisted inner forms H ′ = AutH(X) of
H has cdimpH


′ ≥ dimH − r.


Combing Theorem 5.1 with items (c), (e) and (f) of Example 4.3 we get the
following results:


Corollary 5.3. (a) Let n ≥ 15 with n 6≡ 0 (mod 4). Assume charF = 0. Then
there exists an n-dimensional quadratic form q of trivial discriminant over
some field extension of F such that


cdim2 O
+(q) ≥ dimO+(q)− 1 =


n(n− 1)


2
− 1.
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(b) Let n ≥ 15 with n ≡ 0 (mod 4). Assume charF = 0. Then there exists a
central simple algebra of degree n over some field extension of F and an
orthogonal involution σ on A such that


cdim2 PGO+(A, σ) ≥ dimPGO+(A, σ) − 2 =
n(n− 1)


2
− 2.


(c) Let p be a prime and let a, b, n ≥ 0 be integers with a + b ≤ n. Then there
exists a central simple algebra A of degree pn over some field extension K of
F and a separable subalgebra B of A such that B ⊗K Ksep ≃ Mpa(Ksep) ×
· · · × Mpa(Ksep), CA(B) ⊗K Ksep ≃ Mpb(Ksep) × · · · × Mpb(Ksep) (both


pn−a−b times) and


cdimpAutK(A,B) = dimAutK(A,B) = pn+a−b + pn−a+b − pn−a−b − 1.


(d) Let n = 2r for some r ≥ 1. Then there exists a central simple algebra A
of degree n over some field extension K of F and an involution σ on A of
orthogonal (resp. symplectic) type on A such that


cdim2 AutK(A, σ) = dimAutK(A, σ) =


{


n(n−1)
2 if σ is orthogonal,


n(n+1)
2 if σ is symplectic.


(e) Let n = 2r for some r ≥ 0 and let K/F be a separable quadratic extension.
Then there exists a field extension L/F linearly disjoint from K/F , a central
simple M := L⊗FK-algebra A of degree n and a unitary L-linear involution
σ on A such that


cdim2 AutM (A, σ) = dimAutM (A, σ) = n2 − 1.


Remark 5.4. The split forms of the groups appearing in Corollary 5.3 usually have
clearly lower canonical p-dimension. For example for the special orthogonal groups


cdim2 O
+
2n+1 = cdim2 O


+
2n+2 =


n(n+ 1)


2
,


which was conjectured in [BR05] and proven independently in [Ka05] and [Vi05].
This value is to compare with the values n(2n+ 1)− 1 (resp. (n+ 1)(2n+ 1)− 1)
for the quadratic forms q of dimension 2n+ 1 and 2n+ 2, respectively, from part
(a) of the corollary.


Another example is the group AutK(A,B) from part (c) of the corollary, where
A is a central division K-algebra of degree d = pn, B is a maximal étale subalge-
bra of A and cdimpAutK(A,B) = dimAutK(A,B) = d − 1. Here the split form
AutK(Md(K),Kd) ≃ Gd


m/Gm⋊Sd has canonical p-dimension equal to 0 (this fol-
lows from [KM06, Remark 3.7], since the maps H1(−,Gd


m/Gm⋊Sd) → H1(−, Sd)
of pointed sets have trivial kernel and since cdimp Sd = 0).


Now we turn our attention to the case of groups of multiplicative type.


Corollary 5.5. Let G be a group scheme of multiplicative type which splits over a
Galois extension of p-power degree. Let C be any subgroup of G containing C(G)
and set H = G/C. Then, for every p ∈ P ∪ {0},


cdimpH ≥ dimH − edp C.


Proof. As recorded in Example 4.3(a) the subgroup C(G) of G is p-exhaustive.
Hence by Lemma 4.2 C is p-exhaustive as well. The claim now follows from Theorem
5.1. This proves Corollary 5.5 and hence Theorem 1.2 from the introduction. �
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Example 5.6. Let L/F be a field extension such that the normal closure of L has
p-power degree over F . Let K be an intermediate field of the extension L/F . Let
T := RL/F (Gm)/RK/F (Gm). Then


cdimp T = dimT = [L : F ]− [K : F ].


Proof. Apply Corollary 5.5 to G = RL/F (Gm) and C = RK/F (Gm) and note that
edp C = 0. �


A famous and often applied result of N. Karpenko says that Severi-Brauer vari-
eties SB(A) of p-power degree central division algebras A are p-incompressible, i.e.
have cdimp SB(A) = dimSB(A), [Ka00, Theorem 2.1] (see also [Ka10, Proposition
2.2]). Karpenko more recently proved that Weil transfers RK/F (SB(A)) of “suitably
generic” central simple K-algebras A of 2-power degree are 2-incompressible, when
K/F is a quadratic separable extension [Ka11]. The following Corollary 5.7 basi-
cally tells us that the same happens for Weil restrictions with respect to separable
field extensions of higher degree.


Corollary 5.7. Under the assumptions of Example 5.6 there exists a field extension
M/F and an Azumaya M ⊗F K-algebra A of degree [L : K] over M and split over
M ⊗F L such that the Weil restriction RM⊗FK/M (SB(A)) of the Severi-Brauer
variety SB(A) is p-incompressible.


Proof. There is a natural isomorphism


H1(M,T ) ≃ ker(Br(K ⊗F M) → Br(L⊗F M)).


Let a be a T -torsor over some field extension M/F with maximal canonical p-
dimension. Let A be an Azumaya K ⊗F M -algebra (split by L ⊗F M) of degree
[L : K] corresponding to a. Then the splitting fields of t are precisely the splitting
fields of RM⊗FK/M (SB(A)). Therefore


cdimpRM⊗FK/M (SB(A)) = cdimp a = [L : F ]− [K : F ] = [K : F ]([L : K]− 1)


= dimRM⊗FK/M (SB(A)),


which proves the claim. �


Our goal is now to find a condition on an algebraic torus T which ensures that
the lower bound from Corollary 5.5 is an equality.


Corollary 5.8. Let T be an algebraic torus over a field F , p a prime, Td the
largest split subtorus of T . Let K/F be a splitting field of T . Make the following
two assumptions:


(a) [K : F ] is a power of p.


(b) The Tate cohomology group Ĥ−1(Gal(K/F ), X(T )) is trivial.


Then for every diagonalizable subgroup C of T containing the p-torsion of Td:


cdimT/C = cdimp T/C = dimT/Td = dimT/C − edp C.


Proof. Assumption (b) implies C ⊆ Td. Moreover Td/C is a split torus and therefore
special. Thus cdimT/C ≤ cdimT/Td by [KM06, Lemma 6.5]. The inequalities
cdimp T/C ≤ cdimT/C ≤ dimT/Td follow.


We have C(T ) = Td[p] and therefore edp C = dim Td/C. Applying Corollary 5.5
we immediately get the inequality cdimp T/C ≥ dimT/C−edp C = dimT/Td. This
concludes the proof. �
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Definition 5.9. Let r ∈ N0, p a prime. Define C
(r)
p to be the class of all F -tori of


the form T/C, where:


(a) T is a torus admitting a Galois-splitting field K/F of p-power degree such


that Ĥ−1(Gal(K/F ), X(T )) = 0,
(b) C is a diagonalizable subgroup of T which contains Td[p] and which has


edp C = r.


Some properties of this construction are listed in the following lemma:


Lemma 5.10. (a) For S in C
(r)
p : cdimp S = dimS − r.


(b) S1 ∈ C
(r1)
p , S2 ∈ C


(r2)
p ⇒ S1 × S2 ∈ C


(r1+r2)
p .


(c) S ∈ C
(r)
p , S′ ⊆ S subtorus with S/S′ anisotropic. Then S′ ∈ C


(r)
p


Proof. (a) This is a reformulation of Corollary 5.8.
(b) The simple proof is left to the reader.


(c) Write S = T/C, with T,C (and K) as in the definition of C
(r)
p . Let T ′ be


the preimage of S′ under the canonical projection T → S. Clearly T ′ is
split over K as well and C contains T ′


d[p] ⊆ Td[p]. Moreover S′ ≃ T ′/C.
Note that S′ contains the image of Td, since S/S


′ is anisotropic. Hence T ′


contains Td, which in turn contains C. Thus T ′/Td is an epimorphic image
of S′, hence a torus. It follows that T ′ is a torus as well.


It remains to verify the condition Ĥ−1(Gal(K/F ), X(T ′)) = 0. We have
a short exact sequence 1 → X(S/S′) → X(T ) → X(T ′) → 1. Since S/S′ is
anisotropic X(S/S′) has trivial fixed point set under Gal(K/F ). In particu-


lar Ĥ0(Gal(K/F ), X(S/S′)) = 0. We also have Ĥ−1(Gal(K/F ), X(T )) = 0,
hence the claim follows from the (standard) long exact sequence in Tate co-
homology.


�


Example 5.11. Let L1, . . . , Ln be separable field extensions whose normal clo-
sures K1, . . . ,Kn have p-power degree over F . Then any subtorus T of the product
∏n
i=1(RLi/F (Gm)/Gm) belongs to C


(0)
p , hence has cdimT = cdimp T = dimT .


Proof. For every i the torus Ti = RLi/F (Gm) is split by Ki and satisfies the con-


dition Ĥ−1(Gal(Ki/F ), X(Ti)) = 0. The subgroup Ci = Gm coincides with (Ti)d,


hence contains (Ti)d[p], and has edp Ci = 0. Therefore Ti/Ci ∈ C
(0)
p . Lemma 5.10(b)


implies that the torus S :=
∏n
i=1(RLi/F (Gm)/Gm) lies in C


(0)
p , too. Since S is


anisotropic (and therefore S/T as well) Lemma 5.10(c) implies that T also belongs


to C
(0)
p . �


Example 5.12. Let p be a prime and S an anisotropic algebraic torus over F
whose minimal Galois splitting field is cyclic of p-power degree over F . Then S


belongs to the class C
(0)
p . In particular


cdimp S = cdimS = dimS.


Proof. LetK/F be the minimal Galois splitting field of S. Embed S in RK/F (Gm)N


for some N ≫ 0. Since S is anisotropic, it lies in the subtorus (R
(1)
K/F (Gm))N , which


is isomorphic to S′ := (RK/F (Gm)/Gm)N since K/F is cyclic. Thus we are in the
situation of Example 5.11 and the claim follows. �
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Example 5.13. Let L/F be a cyclic Galois extension of degree pr > 1 and let


T = R
(1)
L/F (Gm) the corresponding norm 1 torus. Then edT = edp T = 1, but


cdimT = cdimp T = dimT = pr − 1 can be arbitrarily large.


Example 5.14. Let T be an algebraic torus over F . Assume that there exists an
element τ of Gal(Fsep/F ) which acts as −1 on X(T ). Then cdimT = cdim2 T =
dimT .


Proof. Let F ′ be the fixed field F τsep. Then TF ′ is of the form (T ′)dimT , where T ′


is a non-split 1-dimensional torus. By Example 5.12 TF ′ has canonical 2-dimension
equal to dimT . Since dimT ≥ cdim2 T ≥ cdimT ≥ cdimTF ′ the claim follows. �


Example 5.15. Let T be a 2-dimensional algebraic torus. Then


(a) cdim T = 0 if and only if T is quasi-split.
(b) cdim T = 1 if and only if T ≃ Gm × T ′ where T ′ is a non-split one-


dimensional torus.
(c) cdim T = 2, otherwise.


Proof. In every case it is clear that cdimT cannot be larger than the claimed value.
Moreover the equality cdimGm×T ′ = 1 for a non-split one-dimensional torus T ′ is
contained in Example 5.14. It remains to show that if T is neither quasi-split, nor
of the form Gm × T ′ with T ′ non-split, then cdimT ≥ 2. Let L/F be the minimal
Galois splitting field of T . Then Gal(L/F ) is a finite group embedding in GL2(Z).


First assume that there exists an element σ of order 3 in Gal(L/F ). Let F ′ = Lσ.
Then TF ′ is isomorphic to RL/F ′(Gm)/Gm, which has canonical dimension 2 by
Example 5.12. Hence T has canonical dimension 2 as well.


Now assume that Gal(L/F ) does not contain elements of order 3. Then Gal(L/F )
embeds in the (unique up to conjugacy) maximal 2-subgroup D8 of GL2(Z). Since
T is neither quasi-split, nor of the form Gm×T ′ with T ′ one-dimensional, one easily
sees that Gal(L/F ) contains an element which acts as −1 on X(T ). Now the claim
follows from Example 5.14. �
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