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Abstract. We consider a central division algebra (over a field) endowed with a qua-
dratic pair or with a symplectic involution and prove 2-incompressibility of certain vari-
eties of isotropic right ideals of the algebra. This covers a recent conjecture raised by M.
Zhykhovich. The remaining related projective homogeneous varieties are 2-compressible
in general.

Let F be a field, n ≥ 1, D a central division F -algebra of degree 2n endowed with a
quadratic pair σ (orthogonal case) or with a symplectic involution σ (symplectic case).
For definitions as well as for basic facts about involutions on central simple algebras, we
refer to [11]. We recall that in the characteristic 6= 2 case the notion of quadratic pair is
equivalent to the notion of orthogonal involution.

For any integer i, we write Xi for the variety of isotropic (with respect to σ) right ideals
in D of reduced dimension i. For any i, the variety Xi is smooth and projective. It is
nonempty if and only if 0 ≤ i ≤ 2n−1 (X0 is simply SpecF ) and is equidimensional in
this case. Moreover, it is geometrically integral except the orthogonal case with i = 2n−1.
The variety X2n−1 in the orthogonal case is connected if and only if the discriminant of σ
is nontrivial; otherwise it has two connected components.

For any i, the variety Xi is a closed subvariety of the generalized Severi-Brauer variety
SBi(D) – the variety of all right ideals in D of reduced dimension i. We recall that
according to [10], for any r = 0, 1, . . . , n−1, the variety SB2r(D) is 2-incompressible. This
means, roughly speaking, that any correspondence SB2r(D) SB2r(D) of odd multiplicity
is dominant. In particular, any rational map SB2r(D) 99K SB2r(D) is dominant.

The following theorem is the main result of this note. It extends to the symplectic case
as well as to the characteristic 2 case a recent conjecture due to M. Zhykhovich, [16].

Theorem 1. For any r = 0, 1, . . . , n− 1, excluding r = n− 1 in the orthogonal case, the
variety X2r is 2-incompressible.

The proof will be given right after some preparation work. It extensively uses the notion
of upper motives introduced in [10] and [9].

Example 12 shows that Theorem 1 precisely detects the types of those projective ho-
mogeneous varieties under the connected component Aut0(D, σ) of the algebraic group
Aut(D, σ), which are 2-incompressible in general, i.e., for any F , D and σ. Note that
Aut0(D, σ) is an absolutely simple adjoint affine algebraic group of type D2n−1 in the
orthogonal case and C2n−1 in the symplectic case.
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The r = 0 case of Theorem 1 is already known:

Theorem 2 ([16]). The Chow motive with coefficients in F2 of the variety X1 is inde-
composable. In particular, the variety X1 is 2-incompressible so that Theorem 1 holds for
r = 0.

Sketch of proof. The degree of any closed point on X1 is divisible by 2n. Therefore, by
[10, Lemma 2.21], the rank of any summand of the Chow motive (with coefficients in F2)
of X1 is divisible by 2n. On the other hand, the rank of the total motive of X1 is 2

n (note
that X1 = SB1(D) in the symplectic case). The nilpotence principle [4, §92] terminates
the proof. �

We start the preparation for the proof of Theorem 1.

Lemma 3. For any r = 0, 1, . . . , n − 1, excluding r = n − 1 in the orthogonal case, the
Schur index of D over the function field of X2r is equal to 2r.

Proof. The generic point of X2r is given by certain right ideal in DF (X2r ) of reduced
dimension 2r. Therefore, the index of DF (X2r ) divides 2r. In particular, we may assume
that r ≥ 1 (so that n ≥ 3 in the orthogonal case).
In the symplectic case, by the index reduction formula [12, III on Page 593], the index

of DF (X2r ) is min{2n, 2r} = 2r.1

In the orthogonal case, if the discriminant of σ is trivial, we apply the index reduction
formula [12, IV on Page 593].1 Since n ≥ 2, the index of DF (X2r ) is at least the minimum

of {2r, 22
n−1

−2r−1}. Since r ≤ n − 2, we have that 2n−1 − 2r − 1 ≥ 2n−2 − 1. Since
2n−2−1 ≥ n−2 ≥ r, the minimum is 2r. We are done with the case of trivial discriminant.
Finally, if the discriminant of σ is nontrivial, we apply the index reduction formula

[13, (9.49)]. We are in the case of this index reduction formula because n ≥ 3 so that

2r ≤ 2n−2 < 2n−1−1.2 It follows that the index of DF (X2r ) is at least min{2r, 22
n−1−2r} =

2r. �

In the case excluded in Lemma 3, we have the following partial information:

Lemma 4. In the orthogonal case, assume that the discriminant of σ is trivial as well
as a component of its Clifford algebra. Then the Schur index of D over the function field
of an appropriate component of the variety X2n−1 is equal to 2n−1. The Schur index of D
over the function field of the other component of the variety X2n−1 is equal to 1.

Proof. Apply the index reduction formula of [12, page 594].2 �

Here is an incompressibility result close to but outside of Theorem 1:

Lemma 5. For n ≥ 2 in the orthogonal case, assume that the discriminant of σ is trivial
as well as a component of its Clifford algebra. The component of X2n−1 whose function
field does not completely split D is a 2-incompressible variety.

Proof. This is a particular case of Proposition A4. The condition of Proposition A4
concerning the absence of a multiplicity 1 correspondence to SB2n−2(D) holds by Lemma
4. �

1For the characteristic 2 case see [12, Remark 5.10].
2For the characteristic 2 case see [13, Remark 9.2].
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Remark 6. As shown in Example 12, the other component ofX2n−1 may be 2-compressible.

The proof of Theorem 1 for r = n−1 (in the symplectic case) is very close to the proof
of Lemma 5:

Lemma 7. Theorem 1 holds for r = n− 1.

Proof. This is a particular case of Proposition A4. The condition of Proposition A4
concerning the absence of a multiplicity 1 correspondence to SB2n−2(D) holds by Lemma
3. �

We are working with Chow groups modulo 2. In particular, multiplicities of correspon-
dences, [4, §75], take values in F2 := Z/2Z. The following result concerns both orthogonal
and symplectic cases with a common proof:

Lemma 8. Assume that for some r = 0, 1, . . . , n− 2 there is no multiplicity 1 correspon-
dence X2r  X2r+1. Then the variety X2r is 2-incompressible.

Proof. This is a particular case of Proposition A4. The condition of Proposition A4
concerning the absence of a multiplicity 1 correspondence to SB2r−1(D) holds by Lemma
3. �

Lemma 9. In the orthogonal case, assume that n ≥ 3 and that for some r ∈ {0, 1, . . . , n−
2} there exists a multiplicity 1 correspondence X2r  X2n−1 . Then the discriminant of σ
is trivial as well as a component of its Clifford algebra.

Proof. We set X := X2r . Since there exists a multiplicity 1 correspondence X  X2n−1 ,
the variety X2n−1 F (X) has an odd degree closed point. Therefore the quadratic pair σF (X)

becomes hyperbolic over a finite odd degree field extension (which actually means that
already σF (X) is hyperbolic) and, in particular, its discriminant is trivial. Since the variety
X is geometrically integral, the field F is algebraically closed in F (X) and therefore the
discriminant of σ is trivial.

Let Y be the Severi-Brauer variety of D. The quadratic pair σF (Y ) is adjoint to some
quadratic form q of dimension 2n and of trivial discriminant. Since the form q becomes
hyperbolic over F (Y )(X) (and n ≥ 3), its Clifford algebra is trivial by the index reduction
formula [12, IV on Page 593]. It follows (cf. [8, page 385]) that a component of the Clifford
algebra of σ is trivial (the other component is Brauer-equivalent to D by [11, (9.14)]). �

Before proving the general case of Theorem 1, as a warm up, we prove its extreme case
(among yet unproved ones) opposite to the case of Theorem 2:

Proposition 10. Theorem 1 holds for r = n− 2.

Proof. The case of n = 2 being done by Theorem 2, we assume that n ≥ 3 below. By
Lemma 8, we may assume that there exists a multiplicity 1 correspondence X2n−2  

X2n−1 . If we are in the orthogonal case, it follows by Lemma 9 (with r = n− 2) that the
discriminant of σ is trivial as well as a component of its Clifford algebra. It follows by
Lemma 4 in the orthogonal case and by Lemma 3 in the symplectic case that there exists
a field extension E/F (the function field of an appropriate component of X2n−1) such that
the involution σE is hyperbolic and the Schur index of DE is 2n−1.
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For X := X2n−2 , we have indDF (X) = 2n−2 by Lemma 3. By Lemma A3 (applied
twice), the complete motivic decomposition of XF (X) contains four Tate summands: F2,
F2(4

n−2), F2(dimX − 4n−2), F2(dimX). Note that dimX = 22n−3 + 22n−5 − 2n−3 in the
orthogonal case and dimX = 22n−3 + 22n−5 + 2n−3 in the symplectic case, so that in
any case dimX > 22n−3 and therefore 4n−2 < dimX − 4n−2, showing that the four Tate
summands have pairwise different shifts.
Each of the remaining summands of the complete motivic decomposition of XF (X) is of

even rank. For the upper motive U(X), we are going to show that U(X)F (X) contains all
the 4 Tate summands; this will imply that X is 2-incompressible, cf. [7, Theorem 5.1].
By definition of U(X), U(X)F (X) contains the Tate summand F2.
By Corollary A6, U(X)F (X) contains the Tate summand F2(dimX − 4n−2).
Let C be a central division E-algebra (of degree 2n−1) Brauer-equivalent to DE . Since

there exist multiplicity 1 correspondences XE ! SB2n−2(C), the upper motive of the
variety XE is isomorphic to the upper motive of SB2n−2(C), [10, Corollary 2.15]. Since
the variety SB2n−2(C) is 2-incompressible and has dimension 4n−2, U(XE)E(X) contains
the Tate summand F2(4

n−2). In particular, U(X)E(X) contains this Tate summand. Since
the field extension E(X)/F (X) is purely transcendental, U(X)F (X) contains the Tate
summand F2(4

n−2).
Finally, since U(X) has even rank, U(X)F (X) contains the remaining (fourth) Tate

summand F2(dimX). �

For the general case of Theorem 1 we need one more observation:

Lemma 11. For some r = 0, 1, . . . , n−2, let us consider the biggest i such that there exists
a multiplicity 1 correspondence X2r  Xi. Then i = 2s for some s ∈ {r, r+1, . . . , n−1}.

Proof. Assuming that i > 2s for some s = r, r+1, . . . , n−2, we show that i ≥ 2s+1. Since
i > 2s, we have s ≤ n− 2. Therefore indDL = 2s for L := F (X2s) by Lemma 3.
Let I be an isotropic right ideal of reduced dimension 2s in DL. Let C := EndA I so that

C is a central division L-algebra of degree 2s Brauer-equivalent to D. Let A be a central
simple L-algebra obtained out of I by Construction A2. Let X be the variety of isotropic
right ideals in A of reduced dimension 2r. The upper motives of X and of SB2r(C) are
isomorphic. Since SB2r(C) is 2-incompressible and has dimension d := 2r(2s − 2r), the
motive of XL(X) contains the Tate motive F2(d) as a summand. It follows by Lemma A3
that the maximum of the Witt index of the quadratic pair (resp., symplectic involution) on
AE for E running over finite odd-degree field extensions of L(X) is at least 2s. Therefore
the maximum of the Witt index of σE is at least 2s + 2s = 2s+1 and it follows that
i ≥ 2s+1. �

Proof of Theorem 1. By Lemma 7 we may assume that r ≤ n− 2.
We set X := X2r . Let i be the maximal integer such that there exists a multiplicity 1

correspondence X  Xi. By Lemma 11, i = 2s for some s ∈ {r, r + 1, . . . , n− 1}.
By Lemma 3, indDF (X) = 2r. By Lemma A3 (applied 2s−r times), the complete

motivic decomposition of the variety XF (X) contains the Tate summands with the shifts
j4r and dimX − j4r for j = 0, 1, . . . , 2s−r − 1 (precisely one Tate summand for each
shifting number). Note that (2s−r − 1)4r < dimX − (2s−r − 1)4r so that the shifting
numbers are pairwise different. Each of the remaining summands in the complete motivic
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decomposition of XF (X) is of even rank. For the upper motive U(X) it suffices to show
that U(X)F (X) contains the Tate summand F2(dimX).

By Corollary A5, U(X)F (X) contains the Tate summand F2(dimX − (2s−r − 1)4r).
Let us check now that indDF (Y ) = 2s for an appropriate component Y of the variety

X2s . Indeed, if s < n − 1, this is so (for Y = X2s) by Lemma 3. Is s = n − 1, it suffices
to apply Lemmas 9 and 4.

Let C be a central division F (Y )-algebra of degree 2s Brauer-equivalent to DF (Y ). The
upper motives of the varieties XF (Y ) and S := SB2r(C) are isomorphic. Passing to the
dual motives and shifting, we get that

U(XF (Y ))
∗(dimX) ≃ U(S)∗(dimX).

Since the variety S is 2-incompressible, the motive U(S)F (Y )(X) contains the Tate sum-
mands F2 and F2(dimS). Consequently, U(S)∗

F (Y )(X)(dimX) contains the Tate sum-

mands F2(dimX) and F2(dimX − dimC). In particular, U(X)∗
F (Y )(X)(dimX) contains

both Tate summands. Since the field extension F (Y )(X)/F (X) is purely transcenden-
tal, U(X)∗

F (X)(dimX) contains both Tate summands. Note that dimS = (2s−r − 1)4r

and U(X)∗(dimX) is an indecomposable summand of M(X). Since U(X)F (X) also con-
tains the Tate summand F2(dimX − dimS), the Krull-Schmidt principle of [3] (see also
[9]) tells us that U(X) ≃ U(X)∗(dimX) and therefore U(X)F (X) contains F2(dimX) as
desired. �

The following Example shows that for G = Aut0(D, σ), the varieties listed in Theorem
1 are the only projective G-homogeneous varieties which are 2-incompressible in general.
We recall that in the symplectic case, an arbitrary projective G-homogeneous variety
is isomorphic to the variety Xl1...lk

of flags of isotropic right ideals in D of some fixed
reduced dimensions 1 ≤ l1 < · · · < lk ≤ 2n−1 with some k ≥ 1. In the orthogonal case
with nontrivial disc σ, an arbitrary projective G-homogeneous variety is isomorphic to the
flag variety Xl1...lk

with the additional restriction lk < 2n−1. If disc σ is trivial, one has to
add components of Xl1...lk

with lk = 2n−1.

Example 12. For any given n ≥ 2, let us consider over an appropriate field F of charac-
teristic 6= 2, a central division F -algebra D of degree 2n endowed with an orthogonal or
a symplectic involution σ such that (D, σ) is the tensor product of n quaternion algebras
with involutions. By [7, Theorem 3.8] based on the celebrated result of K. Becher [1],
for any field extension L/F , the involution σL is anisotropic or hyperbolic. An arbitrary
projective G-homogeneous variety is isomorphic to the variety Xl1...lk

with some k ≥ 1
and some 1 ≤ l1 < · · · < lk ≤ 2n−1. Its upper motive is isomorphic to U(X2r), where 2r

is the largest 2-power dividing l1, . . . , lk. Hence {l1, . . . , lk} = {2r} if the variety Xl1...lk
is

2-incompressible (because dimXl1...lk
> dimX2r otherwise). This accomplishes Example

12 in the symplectic case.
In the orthogonal case, e.g. by Lemma 9, the discriminant of σ is trivial as well as a

component of its Clifford algebra. Let X be the component of the variety X2n−1 whose
function field splits D (cf. Lemma 4). We have U(X) ≃ U(X1). Since dimX1 = 2n − 2
and dimX = 2n−2(2n−1 − 1), we have dimX1 < dimX provided that n 6= 3. Therefore
the variety X is 2-compressible for n 6= 3.
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Appendix. Quadric-like behavior

In this Appendix we establish some results on grassmannians of isotropic ideals which
are very close (in the statement as well as in the proof) to results on projective quadrics
in the spirit of [15].
Let F be a field, A a central simple F -algebra endowed with a quadratic pair σ = (σ, σ′)

or with a symplectic involution σ. Note that in the case when σ is a quadratic pair, abusing
notation, we write σ for the corresponding involution as well.
For a right ideal J ⊂ A, its orthogonal complement J⊥ is defined as the (right) an-

nihilator of the left ideal σ(J). This is a right ideal of reduced dimension rdim J⊥ =
degA− rdim J , [11, Proposition 6.2].
A right ideal J is nondegenerate if J ∩ J⊥ = 0. The following two construction in the

orthogonal characteristic 2 case are close to [5, Page 379] (and are well known and easily
obtained otherwise).

Construction A1. Given a nondegenerate right ideal J ⊂ A, the right A-module A
is a direct sum of the submodules J and J⊥. The image e ∈ J of 1 ∈ A with respect
to the projection A → J is a symmetric (with respect to the involution σ) idempotent
generating J : σ(e) = e, e2 = e, and J = eA. The F -algebra EndA J is identified with
the (nonunital) subalgebra eAe of A (see [11, Corollary 1.13]) stable under the involution
σ. In the symplectic case, the F -algebra eAe turns out to be endowed this way with a
symplectic involution – the restriction of σ. In the orthogonal case, the restriction of the
involution σ together with the restriction of σ′ is a quadratic pair on eAe. Note that the
degree of the algebra eAe is equal to the reduced dimension of the ideal J .

In contrast to [11], we define the (Witt) index ind σ of σ as the maximum of reduced
dimension of an isotropic right ideal in A. The information given by the Witt index of σ
in the sense of [11], or equivalently by the Tits index of the algebraic group Aut0(A, σ),
is equivalent to the information given by ind σ and indA.

Construction A2. Given an isotropic right ideal I in A, we have I ⊂ I⊥. Let us choose
an ideal J ⊂ I⊥ such that I⊥ = I ⊕ J . The ideal J is nondegenerate so that, using
Construction A1, we get the algebra eAe with restriction of σ. Note that deg(eAe) =
rdim J = degA− 2 rdim I. The (Witt) index of this restriction is equal to ind σ− rdim I.
Construction A1 applied to the ideal J⊥ produces an algebra with hyperbolic quadratic
pair / symplectic involution.

A variety is called anisotropic here if every its closed point has even degree. The
following statement in the case of indA = 1 is the motivic decomposition [4, Proposition
70.1] of smooth projective quadrics, observed originally by M. Rost:

Lemma A3. Let I be an isotropic ideal of reduced dimension indA in A. Let X be the
variety of isotropic right ideals of reduced dimension indA in A. Let B be an algebra eAe
given by Construction A2. Let Y be the variety of isotropic right ideals of reduced dimen-
sion indA = indB in B (Y is nonempty iff degA ≥ 4 indA). Then there exists a motivic
decomposition of X with summands F2, F2(dimX), and – in the case of nonempty Y –
M(Y )(2 indA) = M(Y )((dimX − dimY )/2) such that each of the remaining summands
of the decomposition is the motive of an anisotropic variety.
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Proof. For the case of characteristic 6= 2 see [6, Corollary 15.14]. The general case is in
[2]. �

For any integer i, we write Xi for the variety of isotropic right ideals in A of reduced
dimension i. Such a variety has at most one component except for i = (degA)/2 in the
orthogonal case with trivial discriminant.

Proposition A4 and Corollary A6 below are analogues of computation of canonical 2-
dimension of smooth projective quadrics [4, Theorem 90.2]. We refer to [7] for definition
and basic properties of canonical dimension.

Proposition A4. For some r ≥ 0, assume that a component X of the variety X2r is
anisotropic and has no multiplicity 1 correspondence to X2r+1. For r ≥ 1 we additionally
assume that there is no multiplicity 1 correspondence X  SB2r−1(A). Then the variety
X is 2-incompressible.

Proof. The index of AF (X) is 2r (it divides 2r in general and, if r ≥ 1, does not divide
2r−1 because of absence of a multiplicity 1 correspondence X  SB2r−1(A)) and the
F (X)-variety Y as in Lemma A3 is anisotropic (because of absence of a multiplicity
1 correspondence X  X2r+1). It follows that all summands of the complete motivic
decomposition of the variety XF (X) but F2 and F2(dimX) have even ranks. On the
other hand, since X is anisotropic, the motive U(X) is also of even rank. It follows that
U(X)F (X) contains F2(dimX). Therefore X is 2-incompressible. �

Lemma A5. Excluding

• the symplectic case with split A and
• the orthogonal case with split A in characteristic 2,

for any multiple m of indA satisfying 0 ≤ m ≤ degA, there exists a nondegenerate right
ideal in A of reduced dimension m.

Proof. In the orthogonal case, the statement has nothing to do with the component σ′ of
the quadratic pair σ. So, we work with the involution σ (in the orthogonal case as well
as in the symplectic case). We write A = EndD V for some central division algebra D
with a fixed involution of the same type as σ and a right D-module V with a hermitian
form h such that σ is adjoint to h. By [14, Theorem 6.3 of Chapter 7], since the case of
symplectic σ with split A is excluded (note that in characteristic 2, the involution σ is
symplectic in the orthogonal case as well), h can be diagonalized. �

Corollary A6. Let us exclude the symplectic case with split A as well as the orthogonal
case in characteristic 2 with split A. Let r be such that indA = 2r. Assume that a
component X of the variety X2r is anisotropic and – if r > 0 – has no multiplicity
1 correspondence to SB2r−1(A). Let i be the maximal integer such that there exists a
multiplicity 1 correspondence X  X(i+1)2r . Then the canonical 2-dimension cdim2X of
X is equal to dimX − i4r. In particular, U(X)F (X) contains the Tate motive F2(dimX −
i4r) as a summand.

Proof. For i = 0 simply apply Proposition A4. Below we assume that i > 0. In particular,
X = X2r .
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Let J ⊂ A be a nondegenerate right ideal of reduced dimension degA − i2r (existing
by Lemma A5). Let B be the corresponding nonunital subalgebra of A (obtained by
Construction A1) and let Y2r be the variety of isotropic right ideals of reduced dimension
2r in B. Since there is a multiplicity 1 correspondence X  X(i+1)2r , there is a multiplicity
1 correspondence from X to an appropriate component Y of Y2r . Note that there also
is a multiplicity 1 correspondence Y  X so that U(X) ≃ U(Y ) and it follows by [7,
Theorem 5.1] that cdim2X = cdim2 Y .
The variety Y satisfies conditions of Proposition A4: it has no multiplicity 1 correspon-

dence neither to Y2r+1 nor to SB2r−1(B). Therefore Y is 2-incompressible. It follows that
U(Y )F (Y ) as well as U(X)F (X) contain F2(dimY ) = F2(dimX − i4r) as a summand. �
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