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1. Introduction


Let K be a field of characteristic different from 2 and F/K an algebraic function
field (i.e. a finitely generated extension of transcendence degree one). The study of
quadratic forms over F is generally difficult, even in such cases where the quadratic
form theory over all finite extensions of K is well understood. It can be considered
complete in the cases where K is algebraically closed, real closed, or finite, but it
is wide open for example when K is a number field.


A breakthrough was obtained recently in the situation where the base field K is
a nondyadic local field. Parimala and Suresh [15] proved that in this case any qua-
dratic form of dimension greater than eight over F is isotropic. Harbater, Hartmann,
and Krashen [8] obtained the same result as a consequence of a new local–global
principle for isotropy of quadratic forms over F . The local conditions are in geo-
metric terms, relative to an arithmetic model for F . A less geometric version of the
local–global principle, in terms of the discrete rank one valuations of F , was ob-
tained by Colliot-Thélène, Parimala, and Suresh [4]; see (6.1) below. Both versions
of the local–global principle hold more generally when K is complete with respect
to a non-dyadic discrete valuation.


In this article we use the local–global principle to study sums of squares in F and
to obtain further results on quadratic forms over F . This is of particular interest
in the case where K is the field of Laurent series k((t)) over a (formally) real field
k. In (6.2) we show that the upper bound on the dimension of anisotropic torsion
forms over algebraic function fields over K is the double of the corresponding upper
bound for algebraic function fields over k. In the case where k is real closed we
show in (6.10) that any sum of squares in F can be expressed as a sum of three
squares and further prove the finiteness of


∑


F 2/DF (2), the quotient of the group
of nonzero sums of squares modulo the subgroup of sums of two squares in F . We
further study two conjectures, (4.9) and (4.10), on the behavior of the pythagoras
number of a rational function field under extension of the field of constants, and we
show in (6.9) that both conjectures are equivalent.


Our methods involve valuation theory, quadratic form theory, and some algebraic
geometry. As standard references we refer to [7] for valuation theory and to [10] for
quadratic form theory. Results needed from algebraic geometry are cited from [11].


This article grew out of results obtained in the PhD-thesis of D. Grimm under
the supervision of K.J. Becher at Universität Konstanz.
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2. Valuations


For a ring R we denote by R× its group of invertible elements.
Let K be a field. Given a valuation on K, we denote by Ov the valuation ring


of v, by mv its maximal ideal, and by κv the residue field, and we call v dyadic if
κv has characteristic 2, nondyadic otherwise. Given a local ring R contained in K,
we say that a valuation v of K dominates R if mv ∩ R is the maximal ideal of R.
Given a field extension L/K, we say that a valuation v of L is unramified over K
if v(L×) = v(K×).


A valuation with value group Z is called a Z-valuation. Any discrete valuation
of rank one can be identified (via a unique isomorphism of the value groups) with a
Z-valuation. A commutative ring is the valuation ring of a Z-valuation if and only
if it is a regular local ring of dimension one (cf. [12, (11.2)]); such rings are called
discrete valuation rings.


Lemma 2.1. Let w1 and w2 be two valuations on K such that mw1
⊆ Ow2


. Then


Ow1
⊆ Ow2


or Ow2
⊆ Ow1


.


Proof. If mw1
⊆ mw2


, then Ow1
⊇ Ow2


, otherwise for any choice of t ∈ mw1
\ mw2


we have t−1 ∈ Ow2
and Ow1


= t−1(tOw1
) ⊆ t−1mw1


⊆ Ow2
. �


The property for a valuation to be henselian is characterized by a list of equivalent
conditions, including the statement of Hensel’s Lemma, hence satisfied in particular
by complete valuations; see [7, Sect. 4.1].


Proposition 2.2. Let v be a henselian Z-valuation on K. Then v is the unique


Z-valuation on K.


Proof. By [7, (2.3.2)] for distinct Z-valuations w1 and w2 on K one has Ow1
6⊆ Ow2


and Ow2
6⊆ Ow1


. Consider now a Z-valuation w on K. Since v is henselian we have
1 +mv ⊆ K×n


for all n ∈ N prime to the characteristic of κv. As w(K
×) = Z, this


implies that 1 +mv ⊆ O×
w and thus mv ⊆ Ow. Now (2.1) yields that Ow = Ov. �


Let X always denote a variable over a given ring or field.


Proposition 2.3. Let R be a local domain with maximal ideal m and residue field k.
Let p ∈ R[X ] be monic and such that p ∈ k[X ], the reduction of p modulo m, is irre-


ducible. Then R[X ]/(p) is a local domain with maximal ideal (m[X ] + (p))/(p) and
residue field k[X ]/(p). The ring R[X ]/(p) has the same dimension as R. Moreover,


if R is regular, then R[X ]/(p) is regular.


Proof. Note that m[X ] + (p) is a maximal ideal of R[X ]. Consider a maximal ideal
M of R[X ] containing p and set p =M ∩R. Since R[X ]/(p) is an integral extension
of R, it follows using [12, (9.3) and (9.4)] that both rings have the same dimension.
Moreover, the field R[X ]/M is an integral extension of R/p, whereby R/p is a field.
It follows that p = m and thus M = m[X ] + (p). This shows that m[X ] + (p) is the
unique maximal ideal of R[X ] containing p. Hence, R[X ]/(p) is a local domain with
maximal ideal (m[X ]+ (p))/(p) and residue field k[X ]/(p). Any set of generators of
m in R yields a set of generators of (m[X ] + (p))/(p) in R[X ]/(p). In particular, if
R is regular, then so is R[X ]/(p). �


Corollary 2.4. Let T be a discrete valuation ring of K with residue field k. Let


p ∈ T [X ] be monic and such that p ∈ k[X ] is irreducible. Then T [X ]/(p) is a discrete


valuation ring with field of fractions K[X ]/(p) and residue field k-isomorphic to


k[X ]/(p).


Proof. Since a discrete valuation ring is the same as a regular local ring of dimension
one, the statement follows from (2.3). �


We want to mention the following partial generalization of (2.4).
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Proposition 2.5. Let T be a valuation ring of K with residue field k and let ℓ/k be a


finite field extension. There exists a finite field extension L/K with [L : K] = [ℓ : k]
and a valuation v on L dominating T and unramified over K whose residue field is


k-isomorphic to ℓ.


Proof. It suffices to consider the case where ℓ = k[x] for some x ∈ ℓ. Let m denote
the maximal ideal of T . Let p ∈ T [X ] be a monic polynomial whose residue p
in k[X ] is the minimal polynomial of x over k. Then p is irreducible in K[X ], so
L = K[X ]/(p) is a field. We obtain from (2.3) that R = T [X ]/(p) is a local domain
with maximal ideal M = (m[X ] + (p))/(p) and residue field k[X ]/(p). Let v be
a valuation on L dominating T . Then T ⊆ R ⊆ Ov, and as M is generated by
m, it follows that v dominates R. Hence, k[X ]/(p) embeds naturally into κv. In
particular [κv : k] ≥ deg(p) = deg(p) = [L : K]. Using the Fundamental Inequality
[7, (3.3.4)] we conclude that v is unramified over K and [κv : k] = deg(p) = [L : K],
whereby κv is k-isomorphic to k[X ]/(p) and therefore to ℓ. �


3. Valuations on algebraic function fields


In this section we want to relate algebraic function fields over a valued field to
algebraic function fields over the corresponding residue field. In particular we show
in (3.4) that an algebraic function field over the residue field of a valuation on K
can be realized as the residue field of an unramified extension to some algebraic
function field over K, and we refine this statement in (3.5) for rational function
fields.


In the sequel let T denote a valuation ring, K its field of fractions, and k the
residue field of T . (That is, we have T = Ov for a valuation v onK and k = κv.) We
consider the residue fields of valuations dominating T . (The reader may observe
that we avoid to speak of extensions of valuations, as this can lead to confusion
about the corresponding value groups.) For a field extension F/K and a valuation
v on F dominating T , the field k is naturally embedded in the residue field κv.
We often identify residue fields of valuations dominating T up to k-isomorphism, in
order to simplify the language.


A finitely generated field extension F/K of transcendence degree one is called
an algebraic function field. We say that F/K is algebro-rational if F = L(x) for a
finite extension L/K and some element x ∈ F that is transcendental over K.


Proposition 3.1. Let F/K be an algebraic function field and v a valuation on F
dominating T . The extension κv/k is either algebraic or an algebraic function field.


Proof. This is a special case of the Dimension Inequality [7, (3.4.3))]. �


In the sequel x denotes a transcendental element over K. The following gives an
improvement of (3.1) for F = K(x).


Theorem 3.2 (Ohm-Nagata). Let v be a valuation on K(x) dominating T . Then


κv/k is either an algebraic or algebro-rational.


Proof. This generalization of [13, Theorem 1] is shown in [14, Theorem]. �


We recall a construction to extend a valuation to a rational function field; in [7,
Sect. 2.2] this is called the ‘Gauss extension’.


Proposition 3.3. Let T ′ be the localization of T [x] with respect to the prime ideal


m[x] where m is the maximal ideal of T . Then T ′ is a valuation ring with field of


fractions K(x). The residue x of x modulo m[x] is transcendental over k, and the


residue field of T ′ is k(x). The corresponding valuation v on K(x) with Ov = T ′,


uniquely determined up to equivalence, is unramified over K.


Proof. This follows from [7, (2.2.2)]. �
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Proposition 3.4. Let E/k be an algebraic function field. There exists an algebraic


function field F/K and a valuation v on F dominating T and unramified over K
whose residue field is E.


Proof. We consider the valuation ring T ′ given in (3.3) and identify x with some
element of E transcendental over k. Then E/k(x) is a finite extension. By (2.5)
there exists a finite field extension F/K(x) with [F : K(x)] = [E : k(x)] and a
valuation v on F dominating T ′ and unramified over K(x) with residue field E.
Using (3.3) it follows that v is also unramified over K. �


Theorem 3.5. Assume that T 6= K. Let ℓ/k be a finite separable field extension.


There exists a valuation v on K(x) dominating T and unramified over K for which


κv/k is an algebro-rational function field with field of constants ℓ.


Proof. Let α ∈ ℓ be such that ℓ = k(α). Let q ∈ T [Y ] be monic and such that the
residue q in k[Y ] is the minimal polynomial of α. Let m be the maximal ideal of T .
We choose m ∈ m\ {0} and set z = m−1q(x) ∈ K(x). Note that z is transcendental
over K. Let T ′ be the localization of T [z] with respect to m[z]. Let m′ be the
maximal ideal of T ′. By (3.3) T ′ is a valuation ring with field of fractions K(z) and
residue field k(z), and z is transcendental over k. Note that q remains irreducible
in k(z)[Y ].


Consider p = q − q(x) ∈ T ′[Y ]. As q(x) = mz, taking residues modulo m′[Y ] we
have p = q in k(z)[Y ]. It follows by (2.3) that R = T ′[Y ]/(p) is a local ring with
maximal ideal lying over m′, with field of fractions K(z)[Y ]/(p), and residue field
k(z)[Y ]/(p). Note that K(z)[Y ]/(p) is K(z)-isomorphic to K(x). Using Chevalley’s
Theorem [7, (3.1.1)], we obtain a valuation v on K(x) that dominates T ′. Then
v also dominates T . As p(x) = 0, we have that x is integral over T ′, whereby
v(X) = 0. We obtain that q(x) = p(x) = 0. Hence, z, x ∈ κv and x is algebraic
over k. As q is irreducible in k(z)[Y ] we obtain that


[κv : k(z)] ≥ [k(z)[x] : k(z)] = deg(p) = deg(p) = [K(x) : K(z)] .


By the Fundamental Inequality [7, (3.3.4)], it follows that v is unramified over K(z)
and κv = k(z)[x] = k[x](z). Using (3.3) we obtain that v is unramified over K.
Since q(x) = 0 = q(α) and since we consider residue fields up to k-isomorphism, we
can identify ℓ = k[α] with k[x]. �


Together (3.2) and (3.5) give a full description of the non-algebraic extensions of
k that occur as residue fields of valuations on K(x) dominating T .


Assume that the valuation ring T is discrete and consider an algebraic function
field F/K. By a regular model for F/T we mean a 2-dimensional integral regular
projective flat T -scheme X whose function field is K-isomorphic to F . Given a
regular model X for F/K we denote by Xk its special fiber; by [11, (8.3.3)] Xk is a
curve.


Given an integral scheme X, a point P ∈ X, and a valuation v on the function
field of X, we say that v is centered at P if v dominates OX,P , the local ring at P .


Proposition 3.6. Assume that T is a discrete valuation ring. Let F/K be an


algebraic function field. Let X be a regular model for F/T . Let v be a Z-valuation


on F dominating T . Then v is centered at a point P of X lying in Xk. Moreover, if


the extension κv/k is neither algebraic nor algebro-rational, then Ov = OX,P where


P is the generic point of an irreducible component of Xk.


Proof. By [11, (8.3.17)] v is centered at a point P of the special fiber Xk. Since Xk is
a curve, P is either a closed point or the generic point of an irreducible component
Xk. In either case OX,P is a regular local ring.


If P is a closed point of Xk, then by [1, Proposition 3] the extension κv/k is
either algebraic or algebro-rational. Assume now that P is a generic point of Xk.
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Then P has codimension one in X, so OX,P is a regular local ring of dimension
one and thus a discrete valuation ring. As OX,P is dominated by Ov and both are
discrete valuation rings with the same field of fractions, it follows by [7, (2.3.2)] that
Ov = OX,P . �


Proposition 3.7. Assume that T is a complete discrete valuation ring. Let F/K
be an algebraic function field. Then there exists a regular model for F/T .


Proof. There exists a regular projective curve over K whose function field is K-
isomorphic to F . From this we obtain (e.g. following the first steps in [11, (10.1.8)])
a 2-dimensional projective T -scheme X with function field F . Since the structure
morphism X −→ Spec(T ) is surjective, by [11, (8.3.1)] it is flat. By [11, (8.2.40)]
T is an excellent ring. Since X is locally of finite type over T , it follows by [11,
(8.2.39)] that X is excellent.


Let X′ −→ X be the normalization of X. Since X is excellent and projective over
T , the normalization X


′ −→ X is a finite projective birational morphism, by [11,
(8.2.39) and (8.3.47)]. The singular locus of X′ is closed in X′, by [11, (8.2.38)]. We
consider the blowing-up X′′ −→ X′ along the singular locus of X′. By [11, (8.1.12)
and (8.1.22)] the blowing-up is a birational projective morphism.


We may alternate normalizalization and blowing-up until we reach a scheme that
is regular. At each step we obtain a flat projective 2-dimensional T -scheme whose
function field is F . By Lipman’s Desingularization Theorem [11, (8.3.44)], after
finitely many steps we come to a situation where the T -scheme is regular. �


Corollary 3.8. Assume that T is a complete discrete valuation ring. Let F/K be


an algebraic function field. Then there exist only finitely many Z-valuations v on F
dominating T for which the extension κv/k is neither algebraic nor algebro-rational.


Proof. By (3.7) there exists a regular model for F/T . The statement follows by
applying (3.6) to any such model. �


The result (3.8) can be extended to the situation where T is an arbitrary discrete
valuation ring. Moreover, one may ask to characterize the Z-valuations on an alge-
braic function field that dominate a given discrete valuation ring of the base field
and for which the residue field extension is neither algebraic nor algebro-rational.
We intend to develop these topics in a forthcoming article.


4. Sums of squares and valuations


From now on let K be a field of characteristic different from 2. We denote by
∑


K2 the subgroup of nonzero sums of squares in K and, for n ∈ N, by DK(n) the
set of nonzero elements that can be written as sums of n squares in K. One calls


s(K) = inf {n ∈ N | −1 ∈ DK(n)} ∈ N ∪ {∞}
the level of K. Recall that K is real if s(K) = ∞ and nonreal otherwise, and in
the latter case s(K) is a power of two (cf. [10, Chap. XI, Sect. 2]).


Lemma 4.1. Let v be a valuation on K and n ∈ N. Then s(κv) ≥ n if and only if


v(a21 + · · ·+ a2n) = 2min{v(a1), . . . , v(an)} holds for all a1, . . . , an ∈ K.


Proof. Both conditions are easily seen to be equivalent to having that any sum of
n squares of elements in O×


v lies in O×
v . �


Let Ω(K) denote the set of nondyadic Z-valuations on K. For v ∈ Ω(K), let Kv


denote the corresponding completion of K. For S ⊆ Ω(K) we define a homomor-
phism


ΦS : K× −→ Z
S , x 7−→ (v(x))v∈S .


If S ⊆ Ω(K) is a finite subset, then it follows from the Approximation Theorem (cf.
[7, (2.4.1)] or [11, (9.1.9)]) that ΦS is surjective.
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Proposition 4.2. Let S be a finite subset of Ω(K) and n ∈ N. Then


ΦS(DK(n)) = {(ev)v∈S ∈ Z
S | ev ∈ 2Z for v ∈ S with s(κv) ≥ n} .


Proof. For v ∈ Ω(K) with s(κv) ≥ n we have v(DK(n)) ⊆ 2Z by (4.1). This shows
that


ΦS(DK(n)) ⊆ {(ev)v∈S ∈ Z
S | ev ∈ 2Z for v ∈ S with s(κv) ≥ n} .


It remains to show the other inclusion. Consider a tuple (ev)v∈S ∈ Z
S such that


ev ∈ 2Z for all v ∈ S with s(κv) ≥ n. The aim is to find an element x ∈ DK(n)
with ΦS(x) = (ev)v∈S . We explain how to obtain such an element, using the
Approximation Theorem (cf. [7, (2.4.1)] or [11, (9.1.9)]) several times.


For v ∈ S with ev /∈ 2Z, as s(κv) < n we may choose xv,2, . . . , xv,n ∈ Ov such that
v(1 + x2v,2 + · · · + x2v,n) > 0. For v ∈ S with ev ∈ 2Z we set xv,2 = · · · = xv,n = 0.


For i = 2, . . . , n we choose xi ∈ K× such that v(xi − xv,i) > 0 for all v ∈ S.
We set y = x22 + · · · + x2n. For v ∈ S we have v(1 + y) = 0 if ev ∈ 2Z and
v(1+y) > 0 otherwise. We choose t ∈ K× such that, for all v ∈ S, we have v(t) = 1
if v(1+y) > 1, and v(t) > 1 otherwise. Note that (1+t)2+y ∈ DK(n). For any v ∈ S
the value v((1 + t)2 + y) is either 0 or 1 and such that v((1 + t)2 + y) ≡ ev mod 2Z.
Choose now z ∈ K× such that 2v(z) = ev − v((1 + t)2 + y) for all v ∈ S and set
x = z2((1 + t)2 + y). Then x ∈ DK(n) and ΦS(x) = (v(x))v∈S = (ev)v∈S . �


We say that a valuation v on K is real or nonreal, respectively, if the residue
field κv has the corresponding property.


Corollary 4.3. Let v ∈ Ω(K). If v is real, then v(
∑


K2) = 2Z, otherwise


v(
∑


K2) = Z.


Proof. This follows from (4.2) applied to S = {v} and all n ∈ N. �


Corollary 4.4. Let n be a positive integer and S a finite subset of Ω(K) such


that s(κv) = 2n for all v ∈ S. Then ΦS induces a surjective homomorphism


DK(2n+1)/DK(2n) −→ (Z/2Z)S . In particular, |DK(2n+1)/DK(2n)| ≥ 2|S|.


Proof. By the hypotheses on S and by (4.2), we have ΦS(DK(2n+1)) = Z
S and


ΦS(DK(2n)) = (2Z)S . From this the statement follows. �


The pythagoras number of K is defined as


p(K) = inf {n ∈ N | DK(n) =
∑


K2} ∈ N ∪ {∞} .
Case distinctions in statements involving valuations and pythagoras numbers can
often be avoided when p(K) is replaced by s(K) + 1 in case K is nonreal. We
therefore set


p′(K) =


{


p(K) if K is real,
s(K) + 1 if K is nonreal.


Note that for nonreal fields K, we always have s(K) ≤ p(K) ≤ s(K) + 1 = p′(K).


Proposition 4.5. Let v ∈ Ω(K). Then p′(K) ≥ p(K) ≥ p′(κv). Moreover, if v is


henselian, then p′(K) = p(K) = p′(κv).


Proof. Note that p(K) ≥ p(κv). If v is real, then κv and K are real, and we obtain
that p′(K) = p(K) ≥ p(κv) = p′(κv). Assume that v is nonreal. Applying (4.2) with
S = {v} we obtain x0, . . . , xs ∈ O×


v with s = s(κv) such that v(x20 + · · ·+ x2s) = 1,
and then (4.1) shows that x20 + · · ·+ x2s /∈ DK(s). Hence p(K) ≥ s+ 1 = p′(κv).


Assume finally that v is henselian. Then s(K) = s(κv), and further p(K) = p(κv)
in case v is real. This yields that p′(K) = p′(k). �


For example, by (4.5) we have that p′(K((t))) = p(K((t))) = p′(K).


Theorem 4.6. Let K be a real field. For n ∈ N the following are equivalent:
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(i) p(K(X)) ≤ 2n.
(ii) p(L) < 2n for all finite real extensions L/K.


(iii) s(L) ≤ 2n−1 for all finite nonreal extensions L/K.


(iv) p′(L) < 2n for all finite extensions L/K with −1 /∈ L×2.


Proof. See [2, Theorem 3.3] for the equivalence of (i)–(iii); the equivalence of these
conditions with (iv) is obvious. �


Corollary 4.7. Let n ∈ N be such that p(K(X)) ≤ 2n. Then p(L(X)) ≤ 2n for


any finite field extension L/K.


Proof. If K is nonreal, then p(L(X)) = s(L) + 1 ≤ s(K) + 1 = p(K(X)) ≤ 2n. If
K is real and L is nonreal, then s(L) ≤ 2n−1 by (4.6) and thus p(L(X)) ≤ 2n. If L
is real, then since any finite real extension of L is a finite real extension of K, the
equivalence of (i) and (ii) in (4.6) allows us to conclude that p(L(X)) ≤ 2n. �


Theorem 4.8. Let K be henselian with respect to a Z-valuation with residue field k.
If n ∈ N is such that p(k(X)) ≤ 2n, then p(k(X)) ≤ p(K(X)) ≤ 2n.


Proof. If K is nonreal, then p(K(X)) = s(K) + 1 = s(k) + 1 = p(k(X)), and
there remains nothing to show. Assume now that K is real. Then k and k(X)
are real. Let v′ denote the Z-valuation on K(X) whose valuation ring Ov′ is the
localization of Ov[X ] with respect to the prime ideal mv[X ], as described in (3.3).
As κv′ = k(X), we obtain by (4.5) that p(K(X)) ≥ p′(k(X)) ≥ p(k(X)). This
shows the first inequality.


Let n ∈ N be such that p(k(X)) ≤ 2n. By (4.6), to prove that p(K(X)) ≤ 2n


it suffices to show that p′(L) < 2n for all finite extensions L/K with −1 /∈ L×2.
Consider such an extension L/K. Since v is henselian, it extends uniquely to a
valuation w on L. This extension is henselian and equivalent to a Z-valuation, and
its residue field κw is a finite extension of k. Since w is henselian, we have that
p′(L) = p′(κw) by (4.5) and −1 /∈ κ×2


w . Hence, p′(L) = p′(κw) < 2n, by (4.6). �


The last two statements motivate us to formulate the following two conjectures.


Conjecture 4.9. For any finite field extension L/K, one has p(L(X)) ≤ p(K(X)).


Conjecture 4.10. If K is complete with respect to a nondyadic Z-valuation with


residue field k, then p(K(X)) = p(k(X)).


We shall see in (6.9) that these two conjectures are equivalent.


5. The u-invariant for algebraic function fields


We refer to [10] for basic facts and terminology from the theory of quadratic
forms over fields of characteristic different from two. The u-invariant of K was
defined by Elman and Lam [5] as


u(K) = sup {dim(ϕ) | ϕ anisotropic torsion form over K} ∈ N ∪ {∞},
where a torsion form is a regular quadratic form that corresponds to a torsion
element in the Witt ring.


Proposition 5.1. Let v ∈ Ω(K). Let ψ be a torsion form over κv. There exist


n ∈ N, a1, . . . , an ∈ O×
v , and t ∈ K× with v(t) = 1 such that 〈1,−t〉 ⊗ 〈a1, . . . , an〉


is a torsion form over K and such that ψ is Witt equivalent to 〈a1, . . . , an〉.
Proof. Assume first that v is nonreal. Then by (4.3) there exists t ∈ ∑


K2 with
v(t) = 1. For n = dim(ψ) and a1, . . . , an ∈ O×


v such that ψ is isometric to
〈a1, . . . , an〉, we obtain that 〈1,−t〉 ⊗ 〈a1, . . . , an〉 is a torsion form over K.


Assume now that v is real. Then ψ is Witt equivalent to a sum of binary torsion
forms over κv (cf. [16, Satz 22]). Every binary torsion form over κv is of the
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shape 〈a1, a2〉 with a1, a2 ∈ O×
v such that −a1a2 ∈


∑


K2. Hence, there exist
r ∈ N and a1, . . . , a2r ∈ O×


v such that ψ is Witt equivalent to 〈a1, . . . , a2r〉 and
−a2i−1a2i ∈


∑


K2 for i = 1, . . . , r. Then 〈a1, . . . , a2r〉 is torsion form over K. We
choose any t ∈ K× with v(t) = 1. Then also 〈1,−t〉⊗ 〈a1, . . . , a2r〉 is a torsion form
over K. �


The following statement was independently obtained in [19, Proposition 5] using
different arguments, based on the theory of spaces of orderings.


Proposition 5.2. For v ∈ Ω(K) we have u(K) ≥ 2u(κv).


Proof. Let v ∈ Ω(K). To prove the statement it suffices to show that to any
anisotropic torsion form ψ over κv there exists an anisotropic torsion form ϕ over
K with dim(ϕ) ≥ 2 dim(ψ). Let ψ be an anisotropic torsion form over κv. We
choose n ∈ N, a1, . . . , an ∈ O×


v , and t ∈ K× with v(t) = 1 as in (5.1). Then
〈1,−t〉 ⊗ 〈a1, . . . , an〉 is a torsion form over K. Let ϕ denote its anisotropic part.
Then ϕ is a torsion form and isometric to 〈b1, . . . , bs〉 ⊥ −t〈c1, . . . , cr〉 for certain
r, s ∈ N and c1, . . . , cr, b1, . . . , bs ∈ O×


v . Applying residue homomorphisms (cf. [18,
Chap. 6, §2]), it follows that the forms 〈b1, . . . , bs〉 and 〈c1, . . . , cr〉 over κv are Witt
equivalent to ψ. As ψ is anisotropic we conclude that dim(ϕ) ≥ r+s ≥ 2 dim(ψ). �


A generalization of (5.2) for arbitrary nondyadic valuations is given in [3, (5.2)].


Corollary 5.3. Let k be the residue field of a non-dyadic Z-valuation on K. For


every algebraic function field F/K there exists an algebraic function field E/k such


that u(F ) ≥ 2u(E).


Proof. Let T denote the discrete valuation ring with field of fractions K and residue
field k. Let F/K be an algebraic function field. Choose x ∈ F transcendental over
K. Consider the valuation ring T ′ in K(x) described in (3.3). Note that T ′ is a
discrete valuation ring. Since F/K(x) is a finite extension, there exists a Z-valuation
v on F dominating T ′. The residue field E of v is a finite extension of k(x), hence
an algebraic function field over k. By (5.2) we obtain that u(F ) ≥ 2u(E). �


We define


û(K) = 1
2 sup{u(F ) | F/K algebraic function field } .


For nonreal fields û coincides with the strong u-invariant defined in [8, Definition
1.2], by the following result.


Corollary 5.4. For any algebraic extension L/K we have


u(L) ≤ 1
2u(K(X)) ≤ û(K) .


Proof. If L is a field of odd characteristic p, then the Frobenius homomorphism
given by x 7−→ xp shows that any quadratic form over L is obtained by scalar
extension from a quadratic form defined over Lp. Therefore every torsion form
defined over an algebraic extension of K comes from a torsion form defined over
a finite separable extension of K. Since any finite separable extension of K is the
residue field of a Z-valuation v on K(X), the first inequality now follows from (5.2).
The second inequality is obvious. �


6. Function fields over complete discrete valued fields


In this section we assume that K is the field of fractions of a complete discrete
valuation ring T with residue field k of characteristic different from 2. We want
to apply the following reformulation of the local-global principle in [4, (3.1)] to
the study of the u-invariant and the pythagoras number of algebraic function fields
over K.
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Theorem 6.1 (Colliot-Thélène, Parimala, Suresh). Let F be an algebraic function


field over K. A regular quadratic form over F of dimension at least 3 is isotropic


if and only if it is isotropic over F v for every v ∈ Ω(F ).


Proof. This slightly more general version of [4, (3.1)] follows from [9, (9.10)]. �


We now can extend the result [8, Theorem 4.10] to the current setting, thus
covering real function fields. C. Scheiderer independently gave a more geometric
proof in [19, Theorem 3].


Theorem 6.2. We have û(K) = 2û(k).


Proof. For any algebraic function field E/k, by (3.4) there exists an algebraic func-
tion field F/K and a Z-valuation on F with residue field E, and using (5.2) we
obtain that u(E) ≤ 1


2u(F ) ≤ û(K). This yields that 2û(k) ≤ û(K).
To prove the converse inequality, we need to show for an arbitrary algebraic


function field F/K that u(F ) ≤ 4û(k) holds. Fix F/K. By (6.1), any anisotropic
form over F remains anisotropic over Fw for some w ∈ Ω(F ). It thus suffices to
show that u(Fw) ≤ 4û(k) for every w ∈ Ω(F ). Fix w ∈ Ω(F ). As u(Fw) = 2u(κw),
it suffices to show that u(κw) ≤ 2û(k). This is clear by the definition of û in case
κw/k is an algebraic function field. If the extension κw/k is algebraic, it follows from
(5.4) that u(κw) ≤ û(k). In the remaining case, κw is a finite extension of K. Then
κw is complete with respect to a nondyadic Z-valuation, and the corresponding
residue field ℓ is a finite extension of k. Then u(κw) = 2u(ℓ) ≤ 2û(k), by (5.4). �


Corollary 6.3. Let m ∈ N. If u(E) = m for every algebraic function field E/k,
then u(F ) = 2m for every algebraic function field F/K.


Proof. Let F/K be an algebraic function field over K. Using (6.2) we obtain that
u(F ) ≤ 2û(K) = 4û(k). By (5.3) there exists an algebraic function field E/k with
u(F ) ≥ 2u(E). If we assume that u(E) = m holds for every algebraic function field
E/k, we obtain that 2û(k) = m and conclude that u(F ) = 2m. �


Theorem 6.4. We have u(K(X)) = 2 · sup {u(ℓ(X)) | ℓ/k finite field extension} .


Proof. Let F = K(X). As u(F ) ≥ 2, it follows from (6.1) that


u(F ) ≤ sup {u(F v) | v ∈ Ω(F )} .


Consider v ∈ Ω(F ). We have u(F v) = 2u(κv). If v is trivial on K, then κv is a finite
extension ofK, hence complete with respect to a Z-valuation w with Ow∩K = T and
whose residue field κw is a finite extension of k, so that u(κv) = 2u(κw) ≤ u(k(X))
by (5.4) and thus u(F v) ≤ 2u(k(X)). If v is nontrivial on K, then by (2.2) and (3.2)
κv/k is either an algebraic extension or algebro-rational. In any case we obtain that
u(κv) ≤ u(ℓ(X)) and thus u(F v) ≤ 2u(ℓ(X)) for a finite extension ℓ/k. This shows
that


u(F ) ≤ 2 · sup {u(ℓ(X)) | ℓ/k finite field extension} .
Given a finite field extension ℓ/k, it follows from (3.4) that there exists a Z-valuation
on K(X) with residue field ℓ(X), which by (5.2) implies that u(K(X)) ≥ 2u(ℓ(X)).
This shows the claimed equality. �


We turn to the study of sums of squares and the pythagoras number.


Theorem 6.5. Let F/K be an algebraic function field. For any m ≥ 2 we have


that DF (m) = F×∩(⋂v∈Ω(K)DFv(m)). Moreover, p(F ) = sup{p′(κv) | v ∈ Ω(F )}.
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Proof. Applying (6.1) to the quadratic forms m × 〈1〉 ⊥ 〈−a〉 for a ∈ F× shows
for any m ≥ 2 the claimed equality of sets. Note that Ω(F ) contains a nonreal
valuation v, and we have that p(F v) = s(κv) + 1 ≥ 2. As p(F ) ≥ 2, we obtain that


p(F ) = inf{m ≥ 2 | DF (m) = DF (m+ 1)}
= inf{m ≥ 2 | DFv(m) = DFv (m+ 1) for all v ∈ Ω(F )}
= sup{p(F v) | v ∈ Ω(F )} .


Moreover, by (4.5) we have p(F v) = p′(κv) for every v ∈ Ω(F ). �


Theorem 6.6. Let n ∈ N and assume that p(k(X)) ≤ 2n and that
∑


E2/DE(2
n) is


finite for every algebraic function field E/k. Then p(K(X)) ≤ 2n and
∑


F 2/DF (2
n)


is finite for every algebraic function field F/K.


Proof. By (4.8) we have p(K(X)) ≤ 2n. Consider an algebraic function field F/K.
By (6.5) the natural homomorphism


∑


F 2/DF (2
n) −→


∏


v∈Ω(F )


∑


(F v)2/DFv(2n)


is injective. To prove that
∑


F 2/DF (2
n) is finite, it thus suffices to show that the


set
S = {v ∈ Ω(F ) | p(F v) > 2n}


is finite and that
∑


F v2/DFv(2n) is finite for each v ∈ S. Let


ΩT (F ) = {v ∈ Ω(F ) | Ov ∩K = T and κv/k is transcendental }.
Consider v ∈ Ω(F ) \ ΩT (F ). Then v is trivial on K, so κv is a finite extension


of K. Hence κv is complete with respect to a Z-valuation whose residue field ℓ is a
finite extension of k. We conclude that p(F v) = p′(κv) = p′(ℓ) ≤ 2n. This shows
that S ⊆ ΩT (F ).


Consider now v ∈ ΩT (F ). Then κv/k is an algebraic function field, in particular


|∑ (F v)
2
/DF (2


n)| ≤ 2 · |∑ (κv)
2
/Dκv


(2n)|, which is finite by the hypothesis. If
κv/k is algebro-rational, then p′(κv) ≤ p(K(X)) ≤ 2n, thus p(F v) = p′(κv) ≤ 2n.
The finiteness of S thus follows from (3.8). �


Theorem 6.7. Assume that n ∈ N is such that p(E) ≤ 2n for any algebraic function


field E/k. Let F/K be an algebraic function field. Then p(F ) ≤ 2n + 1 and the


set S = {v ∈ Ω(F ) | s(κv) = 2n} is finite with |∑F 2/DF (2
n)| = 2|S|. Moreover,


ΦS : F× −→ Z
S induces an isomorphism


∑


F 2/DF (2
n) −→ (Z/2Z)S .


Proof. For any algebraic extension ℓ/k we have that p′(ℓ) ≤ p(ℓ(X)) ≤ 2n. In
particular, we have p′(E) ≤ 2n for any algebro-rational function field E/k. Note
further that p′(κv) = 2n + 1 for any v ∈ S.


Consider v ∈ Ω(F ). If v|K is trivial, then κv is a finite extension of K and
therefore complete with respect to a Z-valuation w whose residue field κw is a finite
extension of k, whence p′(κv) = p′(κw) ≤ 2n by (4.6) and in particular v /∈ S.
Suppose that v|K is nontrivial. By (2.2), Ov ∩ K is thus the complete discrete
valuation ring on K, and the extension κv/k is either algebraic or an algebraic
function field. If κv/k is algebraic then p′(κv) ≤ 2n and in particular v /∈ S. If
κv/k is an algebraic function field, then p(κv) ≤ 2n and thus p′(κv) ≤ 2n + 1, with
equality holding if and only if v ∈ S, and in this case κv/k is not algebro-rational.
Hence, for v ∈ Ω(F ) we have p′(κv) = 2n + 1 if v ∈ S and p′(κv) ≤ 2n otherwise.


By (6.5) we conclude that p(F ) ≤ p′(F ) ≤ 2n + 1 and furthermore
∑


F 2 =
(


⋂


v∈S


DFv (2n+1)
)


∩
(


⋂


v∈Sc


DFv (2n)
)


,


where Sc = Ω(F )\S. Moreover, using (3.8) we obtain that S is finite. By (4.4) then
ΦS : F× −→ Z


S induces a surjective homomorphism
∑


F 2/DF (2
n) −→ (Z/2Z)S .
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It remains to show that this homomorphism is also injective. In view of (6.5) and
the above equality for


∑


F 2, it suffices to verify that Φ−1
S (2ZS) ⊆


⋂


v∈S DFv (2n).


Consider x ∈ F× and v ∈ S with v(x) ∈ 2Z. Then x = t2y with t ∈ F× and
y ∈ O


×
v ∩ (


∑


F 2), so that y + mv ∈
∑


κv
2. Since F v is complete and p(κv) ≤ 2n,


it follows that x = t2y ∈ DFv (2n). This shows the claim. �


Theorem 6.8. Let F/K be an algebraic function field. There exists an algebraic


function field E/k such that p′(E) ≥ p′(F ). Moreover, if F/K is algebro-rational,


then one may choose E/k to be algebro-rational.


Proof. If p′(F ) ≤ p′(k(X)), we put E = k(X). Now assume that p′(F ) > p′(k(X)).
Then p(k(X)) < ∞ and thus p(K(X)) < ∞ by (4.8). Since F is K-isomorphic to
a finite extension of K, it follows by [17, Chap. 7, (1.13)] that p(F ) <∞. By (6.5)
there exists v ∈ Ω(F ) such that p(F ) = p′(κv) = p(F v).


Assume first that v|K is trivial. Then κv is a finite extension of K and thus
carries a complete Z-valuation w whose residue field κw is a finite extension of k.
We obtain that p′(κv) = p′(κw) and thus choose E = κw(X) to have an algebro-
rational function field E/k with p′(E) ≥ p′(F ).


Assume now that v|K is nontrivial. Then by (2.2) v dominates T . If κv/k is an
algebraic function field, we may choose E = κv to have that p′(E) ≥ p′(F ). By (3.2)
if F/K is algebro-rational, then so is E/k. Consider finally the case where κv/k is
an algebraic extension. Since p′(κv) = p′(F ) < ∞, there exists a finite extension
ℓ/k contained in κv/k with p′(ℓ) ≥ p′(κv), and thus we may choose E = ℓ(X) to
have p′(E) ≥ p′(ℓ) ≥ p′(F ). �


Corollary 6.9. We have p′(K(X)) = sup {p′(ℓ(X)) | ℓ/k finite field extension}.


Proof. The statement is trivial if k is nonreal. Assume that k is real. Given an
arbitrary finite extension ℓ/k, by (3.5) there is a Z-valuation on K(X) with residue
field ℓ(X), whereby (4.5) yields that p′(ℓ(X)) ≤ p′ (K(X)). On the other hand, by
(6.8), there exists a finite extension ℓ/k with p′ (K(X)) ≤ p′(ℓ(X)). �


Note that (6.9) shows the equivalence of the two conjectures (4.9) and (4.10).


Recall that the field K is said to be hereditarily quadratically closed if L× = L×2


for every finite field extension L/K. The following result applies in particular to
the situation where R is a real closed field.


Theorem 6.10. Let n ∈ N and K = R((t1)) . . . ((tn)) for a field R such that R(
√
−1)


is hereditarily quadratically closed. Let F/K be an algebraic function field. Then


u(F ) = 2n+1, 2 ≤ p(F ) ≤ 3, and the group
∑


F 2/DF (2) is finite.


Proof. As F is a finite extension of a rational function field, it follows by [10,
Chap. VIII, (5.7)] that p′(F ) ≥ p(F ) ≥ 2. We prove the statement by induction
on n. For n = 0 we obtain from [6, Theorem] that u(F ) = 2 and conclude by [10,
Chap. XI, (6.26)] that p(F ) = 2, hence


∑


F 2 = DF (2) and p′(F ) ≤ 3. Assume
that n > 0. Applying the induction hypothesis to all algebraic function fields over
k = R((t1)) . . . ((tn−1)), we obtain by (6.3) that u(F ) = 2n+1, by (6.8) that p′(F ) ≤ 3,
and by (6.6) that


∑


F 2/DF (2) is finite. �
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