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1. Introduction

Pfister’s Local-Global Principle says that a regular quadratic form over a (for-
mally) real field represents a torsion element in the Witt ring if and only if its
signature at each ordering of the field is zero. This result has been extended in
[13] to central simple algebras with involution.

The theory of central simple algebras with involution is a natural extension
of quadratic form theory. On the one hand many concepts and related results
associated to quadratic forms have been extended to algebras with involution. Ex-
amples include isotropy, hyperbolicity, cohomological invariants and signatures.
On the other hand quadratic forms are used as tools in the study of algebras with
involution. Examples include involution trace forms and spaces of similitudes.

In this article we are interested in weakly hyperbolic algebras with involution, a
natural generalization of torsion quadratic forms considered first in [20, Chap. 5].
In [13] such algebras with involution were characterized as those having trivial
signature at all orderings of the base field, thus generalizing Pfister’s Local-Global
Principle.

We aim to give a new exposition of this result including several new aspects
and extensions. We attempt to minimize the use of hermitian forms and treat
algebras with involution as direct analogues of quadratic forms.

The structure of this article is as follows. In Section 2 we give a self-contained
presentation of Pfister’s Local-Global Principle for quadratic forms in a general-
ized version, relative to a preordering. Along the way we will set up the necessary
background material from the theory of quadratic forms and ordered fields. This
corresponds to the material covered in [10, Chap. 1]. Our approach makes crucial
use of Lewis’ annihilating polynomials, enabling us to touch on the quantitative
aspect of the relation between nilpotence and torsion.
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In Sections 3, 4 and 5 we recall the basic terminology for algebras with invo-
lution, consider their relations to quaternion algebras and quadratic forms and
study involution trace forms.

In Section 6 we treat the notion of hyperbolicity for algebras with involution
and cite the relevant results about hyperbolicity behaviour over field extensions.

In Section 7 we turn to the study of algebras with involution over ordered
fields. In (7.2) we obtain a classification over real closed fields. We then provide
a uniform definition of signatures for involutions of both kinds with respect to
an ordering. Signatures of involutions were introduced in [12] for involutions of
the first kind and in [16] for involutions of the second kind, and both cases are
treated in [8, (11.10), (11.25)].

In Section 8 we give a new proof of the main result of [13], an analogue of
Pfister’s Local-Global Principle for algebras with involution. As we present this
result in (8.5) it further covers an observation due to Scharlau in [18] on the tor-
sion part of Witt groups. In (8.7) we extend this result to a local-global principle
for T -hyperbolicity with respect to a preordering T . Some of the essential ideas
contained in Sections 7 and 8 germinated in the MSc thesis of Beatrix Bernauer
[2], prepared under the guidance of the first named author.

In its original version for quadratic forms as well as in the generalized version for
algebras with involution Pfister’s Local-Global Principle relates the hyperbolicity
of tensor powers to the hyperbolicity of multiples. For quadratic forms this
corresponds to the relation between nilpotence and torsion for an element of the
Witt ring. In Section 9 we touch on the quantitative aspect of this relation in
the setting of algebras with involution.

2. Pfister’s Local-Global Principle

We refer to [9] and [17] for the foundations of quadratic form theory over
fields. Let K be a field of characteristic different from 2. We denote by K× the
multiplicative group of K, by K×2 the subgroup of nonzero squares, and by

∑
K2

the subgroup of nonzero sums of squares in K. If
∑
K2 = K×2 then K is said to

be pythagorean.
By a quadratic form over K we mean a pair (V,B) consisting of a finite-

dimensional K-vector space V and a regular symmetric K-bilinear form B :
V × V −→ K. We mostly use a (single) lower case Greek letter to denote
such a pair and often say ‘form’ instead of ‘quadratic form’. If ϕ = (V,B) is
a form over K, we say that a ∈ K× is represented by ϕ if a = B(x, x) for
some x ∈ V , and we write DK(ϕ) for the elements of K× represented by ϕ.
Up to isometry a form of dimension n is given by a diagonalization 〈a1, . . . , an〉,
where a1, . . . , an ∈ K× are the values represented on some orthogonal basis.
Given n ∈ N and a1, . . . , an ∈ K× we write 〈〈a1, . . . , an〉〉 to denote the form
〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉 and call this an n-fold Pfister form. By [17, Chap. 4,
(1.5)] a Pfister form is either anisotropic or hyperbolic. We consider quadratic
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forms up to isometry and use the equality sign to indicate that two forms are
isometric.

LetWK denote the Witt ring ofK and IK its fundamental ideal, which consists
of the classes of even-dimensional quadratic forms over K. For n ∈ N we write
InK for (IK)n, the nth power of IK. Recall that InK is generated as a group by
the Witt equivalence classes of the n-fold Pfister forms. We sometimes write [ϕ]
to denote the class in WK given by a form ϕ.

For n ∈ N let

Ln(X) =

n∏

i=0

(X − n+ 2i) .

Note that Ln(−X) = (−1)n+1 · Ln(X). In [11], Lewis showed that these polyno-
mials have a crucial property relating to quadratic forms, and that this fact can
be applied to study the structure of Witt rings.

2.1. Theorem (Lewis). Let n ∈ N and let ϕ be a quadratic form of dimension n
over K. Then Ln([ϕ]) = 0 in WK.

For completeness we include a proof due to K.H. Leung, also given in [11].

Proof. Note that (aϕ)⊗2 = ϕ⊗2 for all a ∈ K×. Thus we may scale ϕ and
assume that ϕ = ϕ′ ⊥ 〈1〉 where ϕ′ is a form of dimension n − 1. Using the
induction hypothesis for ϕ′ we obtain that Ln−1([ϕ]− 1) = Ln−1([ϕ

′]) = 0. Since
Ln(X) = (X + n) · Ln−1(X − 1) we conclude that Ln([ϕ]) = 0. �

2.2. Corollary. Let n ∈ N and let ϕ be a quadratic form of dimension 2n over K.

Then 22n−1n!(n− 1)! · [ϕ] is a multiple of [ϕ]2 in WK.

Proof. We may scale ϕ and assume that ϕ = 〈1〉 ⊥ ϕ′ where ϕ′ is a form of
dimension 2n− 1. Then L2n−1([ϕ

′]) = 0 by (2.1). It follows that [ϕ] is a zero of
the polynomial

L2n−1(X − 1) = (X − 2n)X

n−1∏

i=1

(X2 − 4i2).

This implies the statement. �

2.3. Corollary. Let J be an ideal of WK contained in IK and such that WK/J
is torsion free. Then J is a radical ideal.

Proof. For α ∈ WK with α2 ∈ J we obtain by (2.2) that mα ∈ J for some
m ≥ 1, and as WK/J is torsion free we conclude that α ∈ J . This implies the
statement. �

An ordering of K is a set P ⊆ K that is additively and multiplicatively closed
and that satisfies P ∪ −P = K and P ∩ −P = 0. Any such set P is the positive

cone {x ∈ K | x ≥ 0} for a unique total order relation ≤ on K that is compatible
with the field operations. Let XK denote the set of orderings of K; it can be
equipped with the Harrison topology (cf. [9, Chap. VIII, Sect. 6]), but this is not
relevant in the sequel.
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Let T ⊆ K be additively and multiplicatively closed with K×2∪{0} ⊆ T . Then
T + xT = {s + xt | s, t ∈ T} is additively and multiplicatively closed for any
x ∈ K. Moreover T× = T \ {0} is a subgroup of K× containing

∑
K2. If further

−1 /∈ T , then T is called a preordering of K. Any ordering is a preordering.
Furthermore, if T is a preordering of K, then so is T + xT for any x ∈ K \ −T .
2.4. Proposition. Any preordering is contained in an ordering.

Proof. Using Zorn’s Lemma, we obtain that any preordering is contained in a
maximal preordering. For a preordering T of K that is not an ordering, there
exists an element x ∈ K \ (T ∪−T ) and then T + xT is a preordering of K that
strictly contains T . Hence, any maximal preordering is an ordering. �

If the field K has an ordering we say that it is real, otherwise nonreal.

2.5. Theorem (Artin-Schreier). The field K is real if and only if −1 /∈ ∑
K2.

Proof. The set
∑
K2 ∪{0} is a preordering of K if and only if −1 /∈ ∑

K2. Since
any ordering of K contains

∑
K2 ∪ {0}, the statement follows from (2.4). �

For a preordering T of K we set XT = {P ∈ XK | T ⊆ P}.
2.6. Theorem (Artin). Assume that T is a preordering of K. Then T =

⋂
P∈XT

P .

Proof. For x ∈ K \ T the set T − xT is a preordering of K, hence by (2.4)
contained in some ordering P , which then contains T but not x. �

2.7.Corollary. If K is real, then
∑
K2∪{0} is a preordering and equal to

⋂
P∈XK

P .

Proof. This is clear from (2.5) and (2.6). �

Any P ∈ XK determines a unique ring homomorphism signP : WK −→ Z that
maps the class of 〈a〉 to 1 for all a ∈ P×, called the signature at P . Furthermore,
any form ϕ over K induces a map ϕ̂ : XK −→ Z, P 7−→ signP (ϕ) (cf. [17, Chap. 2,
§4]. We obtain a ring homomorphism

sign : WK −→ ZXK , ϕ 7−→ ϕ̂

called the total signature. If K is nonreal, then XK = ∅ and ZXK is the ring with
one element.

Let T be a fixed preordering of K. We write

signT : WK −→ ZXT , ϕ 7−→ ϕ̂|XT

and we denote the kernel of this homomorphism by ITK.
Let ϕ be a quadratic form over K. We say that ϕ is T -positive if ϕ is nontrivial

and DK(ϕ) ⊆ T×. If a1, . . . , an ∈ K× are such that ϕ = 〈a1, . . . , an〉, then ϕ is
T -positive if and only if a1, . . . , an ∈ T×. Hence, orthogonal sums and tensor
products of T -positive forms are again T -positive. We say that ϕ is T -isotropic
or T -hyperbolic if there exists a T -positive form ϑ over K such that ϑ ⊗ ϕ is
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isotropic or hyperbolic, respectively. We write DT (ϕ) for the union of the sets
DK(ϑ⊗ ϕ) where ϑ runs over all T -positive forms over K.

2.8. Proposition. Let n ∈ N and a1, . . . , an ∈ K×. The form 〈a1, . . . , an〉 is

T -isotropic if and only if 〈t1a1, . . . , tnan〉 is isotropic for certain t1, . . . , tn ∈ T×.

For a ∈ K×, we have that a ∈ DT 〈a1, . . . , an〉 if and only if a ∈ DK〈t1a1, . . . , tnan〉
for certain t1, . . . , tn ∈ T×.

Proof. Let ϕ = 〈a1, . . . , an〉. For t1, . . . , tn ∈ T× the form ϑ = 〈t1, . . . , tn〉 is
T -positive, and 〈t1a1, . . . , tnan〉 is a subform of ϑ ⊗ ϕ. This shows the right-to-
left implications. To show the left-to-right implications, consider a T -positive
form ϑ and an element a ∈ K that is non-trivially represented by ϑ ⊗ ϕ. Since
ϑ ⊗ ϕ = a1ϑ ⊥ · · · ⊥ anϑ it follows that there exist s1, . . . , sn ∈ DK(ϑ) ∪ {0},
not all equal to zero, such that a = a1s1 + · · · + ansn. Letting ti = 1 if si = 0
and ti = si otherwise for 1 ≤ i ≤ n, we have that t1, . . . , tn ∈ T× and that a is
represented nontrivially by 〈t1a1, . . . , tnan〉. �

2.9. Proposition. Let p be a prime ideal of WK different from IK. The set

P = {t ∈ K× | [〈1,−t〉] ∈ p} ∪ {0} is an ordering of K, and IPK ⊆ p.

Proof. For s, t ∈ P \ {0} we have that [〈1,−st〉] = [〈t〉] · ([〈1,−s〉]− [〈1,−t〉]) ∈ p

and thus st ∈ P . Therefore P is a multiplicatively closed subset ofK. For t ∈ K×

we have [〈1,−t〉] ⊗ [〈1, t〉] = 0 ∈ p and thus [〈1,−t〉] ∈ p or [〈1, t〉] ∈ p, showing
that K = P ∪−P . Since p is different from IK, which is a maximal ideal of WK
and generated by the elements [〈1,−a〉] with a ∈ K×, we obtain that P ( K.
Since K = P ∪ −P it follows that −1 /∈ P and P ∩ −P = 0. To show that P is
additively closed, we consider s, t ∈ P \{0}. As s−1t ∈ P we have s+t 6= 0. Using
[9, Chap. I, (5.1)] we see that [〈1, s+t〉] · [〈1, st〉] = [〈1, s〉] · [〈1, t〉]. As −s,−t /∈ P ,
the elements [〈1, s〉] and [〈1, t〉] do not lie in p, thus neither does their product,
for p is prime. We conclude that [〈1, s+t〉] /∈ p and thus s+t ∈ K \−P = P \{0}.
Hence P is additively closed. This shows that P is an ordering of K.

The ideal IPK is generated by the classes of forms 〈1,−t〉 with t ∈ P×, and
these belong to p. So IPK ⊆ p. �

The following statement is a generalization of Pfister’s Local-Global Principle,
relative to a preordering (cf. [10, (1.26)]).

2.10. Theorem (Pfister). Let T be a preordering of K. The ideal ITK is gener-

ated by the classes of binary forms 〈1,−t〉 with t ∈ T×. Moreover, for a quadratic

form ϕ over K the following statements are equivalent:

(i) We have signT (ϕ) = 0.
(ii) The form ϕ is T -hyperbolic.
(iii) There exists a T -positive Pfister form τ over K such that τ⊗ϕ is hyperbolic.

(iv) There exist r ≥ 0, a1, . . . , ar ∈ K× and t1, . . . , tr ∈ T× such that ϕ is Witt

equivalent to 〈a1,−a1t1〉 ⊥ · · · ⊥ 〈ar,−artr〉.
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Proof. Let J denote the ideal ofWK generated by the classes of the binary forms
〈1,−t〉 with t ∈ T×. Obviously, J ⊆ ITK. Note that ITK is equal to the
intersection of prime ideals

⋂
P∈XT

IPK and contained in IK. Given any prime

ideal p of WK such that J ⊆ p 6= IK, the set P = {t ∈ K× | 〈1,−t〉 ∈ p} ∪ {0}
is an ordering of K containing T , so that J ⊆ ITK ⊆ IPK ⊆ p by (2.9). This

shows that J ⊆ ITK ⊆
√
J .

Note that a quadratic form ϕ over K is T -isotropic if and only if ϕ ≡ ψ mod J
for a quadratic form ψ over K with dim(ψ) < dim(ϕ). In particular, ϕ is T -
hyperbolic if and only if ϕ ∈ J . From this, it follows immediately that WK/J is
torsion free. Hence J is a radical ideal by (2.3), and we conclude that ITK = J .

This shows that (i) ⇐⇒ (iv). The implications (iii) =⇒ (ii) =⇒ (i) are
obvious. Finally we have (iv) =⇒ (iii), since, with elements given as in (iv), we
may choose τ = 〈1, t1〉 ⊗ · · · ⊗ 〈1, tr〉. �

Let ϕ be a quadratic form over K and m ∈ N. We write m× ϕ for the m-fold
orthogonal sum ϕ ⊥ · · · ⊥ ϕ. We abbreviate DK(m) = DK(m × 〈1〉), which is
the set of nonzero sums of m squares in K.

A quadratic form ϕ over K is said to be torsion or weakly hyperbolic if m× ϕ
is hyperbolic for some positive integer m. The following is [15, Satz 22].

2.11. Corollary (Pfister). Assume that K is real. For a quadratic form ϕ over

K the following statements are equivalent:

(i) We have sign(ϕ) = 0.
(ii) The quadratic form ϕ is weakly hyperbolic.

(iii) There exists m ∈ N such that 2m × ϕ is hyperbolic.

(iv) There exists n ∈ N such that ϕ⊗n is hyperbolic.

(v) There exist r ≥ 0, a1, . . . , ar ∈ K× and s1, . . . , sr ∈ ∑
K2 such that ϕ is

Witt equivalent to 〈a1,−a1s1〉 ⊥ · · · ⊥ 〈ar,−arsr〉.
Proof. We consider the preordering S =

∑
K2 ∪ {0}. By (2.10) we have that (i)

and (v) are equivalent. Using (2.9), it follows that ISK is the intersection of all
prime ideals of WK and thus the nilradical of WK. This yields the equivalence
of (i) and (iv). Clearly (iii) implies (ii), which in turn implies (i). We conclude
by showing that (v) implies (iii). Given elements s1, . . . , sr ∈

∑
K2 such that ϕ

is Witt equivalent to 〈a1,−a1s1〉 ⊥ · · · ⊥ 〈ar,−arsr〉, we choose m ∈ N such that
s1, . . . , sr ∈ DK(2

m) and then have that 2m × ϕ is hyperbolic. �

2.12. Corollary (Scharlau). The order of any torsion element in WK is a 2-
power.

Proof. If K is real, this is a rephrasing of the equivalence (ii) ⇐⇒ (iii) of (2.11).
If K is nonreal, then −1 ∈ DK(2

n) for some n ∈ N, and then 2n+1WK = 0, which
yields the statement. �

2.13. Corollary (Scharlau). Any zero-divisor of WK lies in IK.
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Proof. Let α ∈ WK \ IK. By (2.1) there exists n ∈ N such that α is a zero of
L2n+1(X) =

∏n

i=0(X
2 − (2i + 1)2). Hence, for β ∈ WK with αβ = 0 we have

mβ = 0 for the odd integer m =
∏n

i=0(2i+ 1)2, thus β = 0 by (2.12). �

For n ∈ N we denote by d(n) the number of occurrences of the digit 1 in the
binary representation of n. Note that d(2n) = d(n) and d(2n+1) = d(n) + 1. In
[4, §4.4] the following observation is attributed to Legendre.

2.14. Proposition. For n ∈ N the largest 2-power dividing n! is 2n−d(n).

Proof. Let n ∈ N. The largest 2-power dividing n is 2m where m is the number
of consecutive digits 1 at the end of the binary representation of n− 1, whereby
m = d(n − 1) − d(n) + 1. Hence the largest 2-power dividing n! is 2k, where
k =

∑n

i=1

(
d(i− 1)− d(i) + 1

)
= n− d(n). �

For n ≥ 1 we set ∆(n) = 2n− 1− d(n)− d(n− 1).

2.15. Theorem. Let ϕ and π be quadratic forms over K such that ϕ⊗ ϕ⊗ π is

hyperbolic. Then 2∆(n) × ϕ⊗ π is hyperbolic for n = dim(ϕ).

Proof. Assume that π is not hyperbolic, as otherwise the statement is trivial.
Then we have n = dim(ϕ) = 2k for some k ∈ N by (2.13). It follows from (2.2)
that 22k−1k!(k − 1)!× ϕ⊗ π is hyperbolic. Since we have

∆(n) = 4k − 1− d(2k)− d(2k − 1) = (2k − 1) + k − d(k) + k − 1− d(k − 1)

we conclude by (2.12) that 2∆(n) × ϕ⊗ π is hyperbolic. �

2.16. Remark. In view of (2.15) we may define a function g : N −→ N in the
following way: for k ∈ N, let g(k) be the smallest number m ∈ N such that,
for any quadratic form ϕ of dimension 2k over an arbitrary field of characteristic
different from 2 for which ϕ⊗ϕ is hyperbolic, also 2m×ϕ is hyperbolic. Applying
(2.15) with π = 〈1〉 yields that g(k) ≤ ∆(2k) = 4k − 2 − d(k) − d(k − 1). This
bound, however, does not seem to be optimal for k > 1. In fact, it is not difficult
to show that g(2) = g(3) = 2.

3. Algebras with involution

Our general references for the theory of algebras with involution are [8] and
[17, Chap. 8]. We recall the terminology that is used in the sequel.

Let K be a field of characteristic different from two and let A be a K-algebra.
We denote by Z(A) the centre of A. A K-involution on A is a K-linear map
σ : A −→ A such that σ(xy) = σ(y)σ(x) for all x, y ∈ A and σ ◦ σ = idA.

A K-algebra with involution is a pair (A, σ) where A is a finite-dimensional
K-algebra and σ is a K-involution on A such that K = {x ∈ Z(A) | σ(x) = x}
and such that either A is simple or A is a product of two simple K-algebras that
are mapped to each other by σ. We will often denote a K-algebra with involution
by a single capital Greek letter.



8 KARIM JOHANNES BECHER AND THOMAS UNGER

Let (A, σ) be a K-algebra with involution. We have either Z(A) = K or Z(A)
is a quadratic étale extension of K. We say that (A, σ) is of the first or second
kind, depending on whether [Z(A) : K] is 1 or 2, respectively. Note that A is
simple if and only if Z(A) is a field. If Z(A) is not a field then (A, σ) is degenerate;
this can only occur if (A, σ) is of the second kind.

We have dimK(A) = [Z(A) : K] · n2 for a positive integer n ∈ N, called the
degree of A and denoted deg(A). If A is nondegenerate, then deg(A) is the degree
of A as a central simple Z(A)-algebra.

We say that x ∈ A is symmetric or skew-symmetric (with respect to σ) if
σ(x) = x or σ(x) = −x, respectively. We let Sym(A, σ) = {x ∈ A | σ(x) = x}
and Skew(A, σ) = {x ∈ A | σ(x) = −x}. These are K-linear subspaces of A
satisfying

A = Sym(A, σ)⊕ Skew(A, σ).

There exists ε ∈ {−1, 0,+1} such that

dimK(Sym(A, σ)) = 1
2
n(n + ε) and dimK(Sym(A, σ)) = 1

2
n(n− ε) .

If (A, σ) is of the first kind, then ε = ±1, and we say that (A, σ) is orthogonal

if ε = 1 and symplectic if ε = −1. If (A, σ) is of the second kind, then ε = 0,
and we say that (A, σ) is unitary. The integer ε is called the type of (A, σ) and
denoted type(A, σ).

Following [8, §12], given a K-algebra with involution (A, σ), we denote

Sim(A, σ) = {x ∈ A× | σ(x)x ∈ K×} and

G(A, σ) = {σ(x)x | x ∈ Sim(A, σ)} ;
note that these are subgroups of A× and K×, respectively.

We denote by Br(K) the Brauer group of K. The group operation in Br(K)
is written additively. A central simple K-algebra A is split if [A] = 0 in Br(K).

Let Ψ denote the K-algebra with involution (A, σ). If Ψ is non-degenerate, let
[Ψ] = ±[A] in Br(L) for L = Z(A). Here, ±[A] denotes the element [A] if this is
of order at most 2 and otherwise the unordered pair of [A] and −[A]. Recall that
if Ψ is of the first kind, then [A] + [A] = 0 in Br(K). If Ψ is degenerate unitary,
then A ≃ A1×A2 for two central simple K-algebras A1 and A2 with σ(A1) = A2,
so that [A1] + [A2] = 0 in Br(K), and we set [Ψ] = ±[Ai] for i = 1, 2. If A is
simple, let ind(Ψ) denote the Schur index of A as a central simple Z(A)-algebra,
otherwise let ind(Ψ) be the Schur index of the two simple components of A (which
is the same). We also write Z(Ψ) to refer to the centre of A.

For any field extension L/K the L-algebra with involution (A⊗K L, σ⊗ idL) is
denoted by ΨL. Note that type(ΨL) = type(Ψ). If Ψ is non-degenerate unitary,
then ΨL is non-degenerate if and only if L is linearly disjoint to Z(Ψ) over K.

We now consider two K-algebras with involution Ψ = (A, σ) and Θ = (B, ϑ).
A homomorphism of algebras with involution Ψ −→ Θ is a K-homomorphism
f : A −→ B satisfying ϑ ◦ f = f ◦ σ. A homomorphism is called an embedding if
it is injective and an isomorphism if it is bijective. We write Ψ ≃ Θ if there exists
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and isomorphism Ψ −→ Θ. (This occurs if and only if either Ψ and Θ are adjoint
to two similar hermitian or skew-hermitian forms over some K-division algebra
with involution or Ψ and Θ are both degenerate unitary of the same degree.)

We further write Ψ ∼ Θ to indicate that type(Ψ) = type(Θ) and [Ψ] = [Θ].
(This occurs if and only if Ψ and Θ are either both degenerate unitary or both
adjoint algebras with involution of hermitian or skew-hermitian forms over a
common K-division algebra with involution.)

Except when Ψ and Θ are both unitary with different centres, we can define
their tensor product Ψ⊗ Θ. If Ψ and Θ are not both unitary, let Ψ⊗ Θ denote
the K-algebra with involution (A ⊗K B, σ ⊗ ϑ). If Ψ and Θ are both unitary
and with same centre L, then Ψ ⊗ Θ is the unitary K-algebra with involution
(A⊗L B, σ ⊗ ϑ), whose centre is also L. Note that in each of the cases where we
defined Ψ⊗Θ, we have

type(Ψ⊗Θ) = type(Ψ) · type(Θ) and deg(Ψ⊗Θ) = deg(Ψ) · deg(Θ) .

For a positive integer n the tensor power Ψ⊗n of a K-algebra with involution Ψ
is now well-defined.

4. Algebras with involution of small index

Involutions on central simple algebras are often considered as adjoint to her-
mitian or skew-hermitian forms (cf. [8, §4]). We will only need this approach for
algebras with involution of small index. We fix some notation for the split case.

Let ϕ = (V,B) be a quadratic form over K. Consider the split central simple
K-algebra EndK(V ). Let σ : EndK(V ) −→ EndK(V ) denote the involution
determined by the formula

B(f(u), v) = B(u, σ(f)(v)) for all u, v ∈ V and f ∈ EndK(V ).

We denote this involution σ by adB and call it the adjoint involution of ϕ. Fur-
thermore, we call (EndK(V ), adB) the adjoint algebra with involution of ϕ and
denote it by Ad(ϕ). Note that it is split orthogonal and that ϕ is determined up
to similarity by Ad(ϕ).

4.1. Example. Let n be a positive integer and ϕ = n × 〈1〉, the n-dimensional
form 〈1, . . . , 1〉 over K. Then Ad(ϕ) ≃ (Mn(K), τ) where Mn(K) is the K-algebra
of n×n-matrices over K and τ is the transpose involution.

4.2. Proposition. For quadratic forms ϕ and ψ over K we have

Ad(ϕ⊗ ψ) ≃ Ad(ϕ)⊗ Ad(ψ) .

Proof. Denoting V and W the underlying vector spaces of ϕ and ψ, respectively,
the natural K-algebra isomorphism EndK(V )⊗K EndK(W ) −→ EndK(V ⊗KW )
yields the required identification for the adjoint involutions. �
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For a finite-dimensional K-algebra A we denote by TrdA : A −→ Z(A) its
reduced trace map (cf. [8, p. 5 and p. 22]).

A K-quaternion algebra is a central simple K-algebra of index 2. Given a
K-quaternion algebra Q, the map σ : Q −→ K, x 7−→ x − TrdQ(x) is a K-
involution, called the canonical involution on Q and denoted by canQ; this is the
unique symplectic K-involution on Q. If L is a quadratic étale extension of K
we denote by canL the unique non-trivial K-automorphism of L. We further set
canK = idK .

4.3. Proposition. Let (A, σ) be a K-algebra with involution. We have that

Sym(A, σ) = K if and only if A is either K, a quadratic étale extension of K, or

a K-quaternion algebra, and if further σ = canA.

Proof. If Sym(A, σ) = K then dimK(A) = 21−ε for ε = type(A, σ), so that A
is either K, a quadratic étale extension of K, or a K-quaternion algebra. In
any of these three cases, canA is the unique involution of type ε on A, and
Sym(A, canA) = K. �

In the cases characterized by (4.3) we call (A, σ) a K-algebra with canonical

involution.

4.4. Proposition. Let Ψ be a K-algebra with involution. Then Ψ ≃ Φ ⊗ Ad(ϕ)
for a K-algebra with canonical involution Φ and a quadratic form ϕ over K if

and only if Ψ is either split or symplectic of index 2.

Proof. Clearly, any K-algebra with canonical involution Φ is either split or sym-
plectic of index 2, and thus so is Φ ⊗ Ad(ϕ) for any quadratic form ϕ over K.
Assume now that Ψ is either split or symplectic of index 2. Then Ψ ∼ Φ for a
K-algebra with canonical involution Φ. It follows that Ψ is adjoint to a hermitian
form over Φ. Any hermitian form over Φ has a diagonalisation with entries in
Sym(Ψ) = K. Therefore Ψ ≃ Φ⊗ Ad(ϕ) for a form ϕ over K. �

For computational purposes we augment the classical notation for quaternion
algebras in terms of pairs of field elements to take into account an involution.
Let a, b ∈ K× and let Q be the K-algebra with basis (1, i, j, k), where i2 = a,
j2 = b and ij = −ji = k. This quaternion algebra is denoted by (a, b)K . For
δ, ε ∈ {+1,−1} there is a unique K-involution σ on Q such that σ(i) = δi and
σ(j) = εj. We denote the pair (Q, σ) by

(a | b)K if δ = +1, ε = +1,

(a ·| b)K if δ = −1, ε = +1,

(a |· b)K if δ = +1, ε = −1,

(a ·|· b)K if δ = −1, ε = −1.

In particular, (a ·|· b)K denotes the quaternion algebra (a, b)K together with its
canonical involution. Any K-quaternion algebra with orthogonal involution is
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isomorphic to (a ·| b)K for some a, b ∈ K×. Note that (a | b)K ≃ (−ab ·| b)K and
(a |· b)K ≃ (b ·| a)K for any a, b ∈ K×.

4.5. Proposition. Let Q be a K-quaternion algebra and let a, b ∈ K× be such

that Q ≃ (a, b)K . Then (Q, canQ) ≃ (a ·|· b)K. Moreover, for i ∈ Q× \K× with

i2 = a and τ = Int(i) ◦ canQ we have (Q, τ) ≃ (a ·| b)K.
Proof. Since canQ is the only symplectic involution on Q, any K-isomorphism
Q −→ (a, b)K is also an isomorphism of K-algebras with involution. Hence,
(Q, canQ) ≃ (a · | · b)K. Choose an element i ∈ Q× \ K× with i2 = a. Then
V = {j ∈ Q | ij+ji = 0} is the orthogonal complement of K[i] in Q with respect
to the symmetric K-bilinear form B : Q × Q −→ K, (x, y) 7−→ canQ(x) · y. By
[17, Chap. 2, (11.4)] we have (Q,B) ≃ 〈〈a, b〉〉. Since (K[i], B|K[i]) ≃ 〈〈a〉〉 it
follows that (V,B|V ) ≃ −b〈〈a〉〉. As B(j, j) = −j2 for any j ∈ V there exists
j ∈ V with j2 = b. For τ = Int(i) ◦ canQ we obtain that τ(j) = j, whereby
(Q, τ) ≃ (a ·| b)K . �

For a ∈ K×, let (a)K denote the unitary K-algebra with canonical involution
(L, canL) where L = K[X ]/(X2 − a); it is degenerate if and only if a ∈ K×2.

4.6. Corollary. Let Φ be a K-quaternion algebra with involution. If Φ is orthog-

onal there exist a, b ∈ K× such that Φ ≃ (a ·| b)K . If Φ is symplectic there exist

a, b ∈ K× such that Φ ≃ (a ·|· b)K. If Φ is unitary, there exist a, b, c ∈ K× such

that Φ ≃ (a ·|· b)K ⊗ (c)K .

Proof. Assume that Φ is of the first kind and let Φ = (Q, σ). If Φ is symplectic,
then σ = canQ and we choose a, b ∈ Q× such that Q ≃ (a, b)K to obtain by
(4.5) that Φ ≃ (a ·|· b)K . If Φ is orthogonal, we choose i ∈ Skew(Q, σ) ∩Q× and
a, b ∈ K× with a = i2 and Q ≃ (a, b)K , and obtain that σ = Int(i)◦ canQ, so that
Φ ≃ (a ·| b)K by (4.5).

Assume now that Φ is of the second kind. From [8, (2.22)] we obtain that
Φ ≃ (Q, canQ)⊗ (c)K for a K-quaternion algebra Q and an element c ∈ K×, and
by the above there exist a, b ∈ K× such that (Q, canQ) ≃ (a ·|· b)K . �

4.7. Proposition. Let a, b, c, d ∈ K×. We have (a ·| b)K ≃ (c ·| d)K if and only if

aK×2 = cK×2 and bd ∈ DK〈〈a〉〉.
Proof. We set (Q, τ) = (a ·| b)K . There exists i ∈ Skew(Q, τ ) and j ∈ Sym(Q, τ)
with i2 = a, j2 = b, and ij + ji = 0.

Assuming that bd ∈ DK〈〈a〉〉, we may write d = b(u2 − av2) with u, v ∈ K and
obtain for g = uj + vij that g ∈ Sym(Q, τ ), gi + ig = 0, and g2 = d. If further
cK×2 = aK×2, then c = f 2 for some f ∈ iK×, and we have f ∈ Skew(Q, τ) and
gf + gh = 0, and conclude that (Q, τ) ≃ (c ·| d)K .

For the converse, suppose that (Q, τ) ≃ (c ·| d)K . There exist f ∈ Skew(Q, τ)
and g ∈ Sym(Q, τ) with f 2 = c, g2 = d, and fg + gf = 0. It follows that
iK = Skew(Q, τ) = fK, so that aK×2 = cK×2. Moreover, ig + gi = 0 and
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jgi = ijg. As K[i] is a maximal commutative K-subalgebra of Q, we obtain that
jg ∈ K[i]. Writing jg = x+ iy with x, y ∈ K, we obtain that

bd = j2g2 = j(x+ iy)g = (x− iy)jg = (x− iy)(x+ iy) = x2 − ay2 ,

whence bd ∈ DK〈1,−a〉. �

4.8. Proposition. For a, b, c, d ∈ K× we have

(a ·| b)K ⊗ (c ·| d)K ≃ (a ·|· bc)K ⊗ (c ·|· ad)K and

(a ·| b)K ⊗ (c ·|· d)K ≃ (a ·|· bc)K ⊗ (c ·| ad)K .
Proof. Let (A, σ) = (a ·| b)K ⊗ (c ·| d)K . Then there exist elements i, j, f, g ∈ A×

such that σ(i) = −i, σ(j) = j, σ(f) = −f , σ(g) = g, i2 = a, j2 = b, f 2 = c,
g2 = d, ij+ji = fg+gf = 0, and each of i and j commutes with each of f and g.
Set j′ = fj and g′ = ig. Then σ(i) = −i, σ(j′) = −j′, σ(f) = −f , σ(g′) = −g′,
i2 = a, j′2 = bc, f 2 = c, g′2 = ad, ij′ + j′i = fg′ + g′f = 0, and each of i and j′

commutes with each of f and g′. The K-subalgebra Q of A generated by i and
j′ commutes elementwise with the K-subalgebra Q′ of A generated by f and g′,
and Q and Q′ are σ-stable. Hence

(A, σ) ≃ (Q, σ|Q)⊗ (Q′, σ|Q′) ≃ (a ·|· bc)K ⊗ (c ·|· ad)K .
This shows the first isomorphism. The proof of the second isomorphism is almost
identical, with the only difference that σ(g) = −g and σ(g′) = g′. �

4.9. Proposition. For a, b ∈ K×, we have

G (a ·|· b)K = DK〈〈a, b〉〉 and G (a ·| b)K = DK〈〈a〉〉 ∪ bDK〈〈a〉〉.
Proof. Let Q = (a, b)K and u, v ∈ Q× with u2 = a, v2 = b and uv+vu = 0. Then
Sim(Q, canQ) = Q× and thus G(Q, canQ) = DK〈〈a, b〉〉. For τ = Int(u) ◦ canQ we
obtain Sim(Q, τ) = K(u)× ∪ vK(u)× and thus G(Q, τ) = DK〈〈a〉〉 ∪ bDK〈〈a〉〉. �

5. Involution trace forms

AK-algebra with involution (A, σ) with centre L gives rise to a regular hermit-
ian form T(A,σ) : A×A −→ L over (L, canL) defined by T(A,σ)(x, y) = TrdA(σ(x)y);
this follows from [8, (2.2) and (2.16)]. We further obtain a regular symmetric K-
bilinear form Tσ : A × A −→ K defined by Tσ(x, y) = 1

2
TrdA(σ(x)y + σ(y)x).

Note that if L = K then Tσ = T(A,σ), otherwise 2Tσ = T ◦ T(A,σ) where T is the
trace of Z(A)/K. (Here, 2ϕ denotes the form obtained by scaling the form ϕ by
2, which ought not to be confused with the form 2× ϕ = ϕ ⊥ ϕ.)

Given a K-algebra with involution Ψ = (A, σ), we denote by Tr(Ψ) the qua-
dratic form (A, Tσ) over K. Note that dim(Tr(A, σ)) = dimK(A).

5.1. Example. For a ∈ K× we have Tr (a)K = 〈〈a〉〉. For a, b ∈ K× we have
Tr (a ·| b)K = 2〈〈a,−b〉〉 and Tr (a ·|· b)K = 2〈〈a, b〉〉.
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5.2. Proposition. Let Ψ and Θ be K-algebras with involution. If Ψ is of the first

kind, then Tr(Ψ⊗ Θ) ≃ Tr(Ψ) ⊗ Tr(Θ). If Ψ and Θ are both unitary with same

centre, then 2× Tr(Ψ⊗Θ) ≃ Tr(Ψ)⊗ Tr(Θ).

Proof. Let K ′ denote the centre of Ψ = (A, σ) and L the centre of Θ = (B, τ).
In view of the claims we may assume that K ′ ⊆ L. For a ∈ A and b ∈ B we have
TrdA⊗

K′B(a⊗b) = TrdA(a) ·TrdB(b), as one verifies by reduction to the split case.
Hence, TΨ⊗Θ and TΨ ⊗ TΘ coincide as hermitian forms on A⊗K ′ B with respect
to (L, canL). If L = K then we are done. Assume now that (L, canL) ≃ (c)K
where c ∈ K×. Then Tr(Θ) ≃ 〈〈c〉〉 ⊗ ϑ for a form ϑ over K. If now K ′ = K
then Tr(Ψ) ⊗ Tr(Θ) ≃ 〈〈c〉〉 ⊗ (Tr(Ψ) ⊗ ϑ) ≃ Tr(Ψ ⊗ Θ). In the remaining case
K ′ = L and Tr(Ψ) ≃ 〈〈c〉〉⊗ψ for a quadratic form ψ over K, and we obtain that
Tr(Ψ)⊗ Tr(Θ) ≃ 〈〈c, c〉〉 ⊗ ψ ⊗ ϑ ≃ 2× 〈〈c〉〉 ⊗ (ψ ⊗ ϑ) ≃ 2× Tr(Ψ⊗Θ). �

5.3. Proposition. For any form ϕ over K we have Tr(Ad(ϕ)) ≃ ϕ⊗ ϕ.

Proof. See [8, (11.4)]. �

Let A be a finite-dimensional K-algebra. For a ∈ A let λa ∈ EndK(A) be given
by λa(x) = ax for x ∈ A. The K-algebra homomorphism λ : A −→ EndK(A),
a 7−→ λa thus obtained is called the left regular representation of A.

5.4. Proposition. Let Ψ = (A, σ) be a K-algebra with involution. The left regular

representation of A yields an embedding of Ψ into Ad(Tr(Ψ)).

Proof. For a, x, y ∈ A we have that Tσ(x, λσ(a)(y)) = Tσ(λa(x), y). Thus λ iden-
tifies σ with the restriction to λ(A) of the involution adjoint to Tσ. �

5.5. Proposition. Let Ψ = (A, σ) be a K-algebra with involution of the first kind.

Then Ψ⊗Ψ ≃ Ad(Tr(Ψ)).

Proof. We expand the proof of [8, (11.1)]. Consider theK-algebra homomorphism
σ∗ : A⊗KA −→ EndK(A) determined by σ∗(a⊗b)(x) = axσ(b) for all a, b, x ∈ A.
As A⊗KA is simple and of the same dimension as EndK(A), σ∗ is an isomorphism.
For a, b, x, y ∈ A we have Tσ(x, σ∗(σ(a) ⊗ σ(b))(y)) = Tσ(σ∗(a ⊗ b)(x), y). Thus
σ∗ identifies the involution σ ⊗ σ with the adjoint involution of Tσ. �

6. Hyperbolicity

Following [1, (2.1)], we say that the K-algebra with involution (A, σ) is hyper-
bolic if there exists an element e ∈ A with e2 = e and σ(e) = 1 − e. If (A, σ) is
adjoint to a hermitian form over a K-division algebra with involution, then it is
hyperbolic if and only if the hermitian form is hyperbolic.

6.1. Proposition. The K-algebra with involution (A, σ) is hyperbolic if and only

if there exists f ∈ Skew(A, σ) with f 2 = 1, if and only if (1)K embeds into (A, σ).
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Proof. The second equivalence is obvious. To prove the first equivalence, given
e ∈ A with e2 = e and σ(e) = 1 − e, we see that f = 2e− 1 satisfies σ(f) = −f
and f 2 = 1, and conversely, for f ∈ A with these properties, e = 1

2
(f−1) satisfies

e2 = 1 and σ(e) = 1− e. �

6.2. Corollary. Let Ψ be a split symplectic or degenerate unitary K-algebra with

involution. Then Ψ is hyperbolic.

Proof. Using (4.4) we have that Ψ ≃ Ad(ϕ)⊗ Φ for a K-algebra with canonical
involution Φ, and conclude that Φ ≃ (1 · | · 1)K or Φ ≃ (1)K . In either case Ψ
contains (1)K and thus is hyperbolic by (6.1). �

Let Ψ and Θ denote K-algebras with involution.

6.3. Proposition. If Ψ and Θ are hyperbolic with Ψ ∼ Θ and deg(Ψ) = deg(Θ),
then Ψ ≃ Θ.

Proof. If Ψ and Θ are degenerate unitary, the statement follows from [8, (2.14)].
Otherwise Ψ and Θ are adjoint to hyperbolic hermitian or skew-hermitian forms
of the same dimension over a common K-division algebra with involution, and
these are necessarily isometric. �

6.4. Proposition. If Ψ is hyperbolic, then Ψ⊗Θ is hyperbolic.

Proof. This is obvious. �

6.5. Proposition. If Ψ is hyperbolic, then Tr(Ψ) is hyperbolic.

Proof. By (5.4) Ψ embeds into Ad(Tr(Ψ)), which implies the statement. �

6.6. Proposition. Let a ∈ K×. We have that a ∈ G(Ψ) if and only if Ad〈〈a〉〉⊗Ψ
is hyperbolic.

Proof. See [8, (12.20)]. �

6.7. Theorem (Bayer-Fluckiger, Lenstra). Let L/K be a finite field extension of

odd degree. Then ΨL is hyperbolic if and only if Ψ is hyperbolic.

Proof. See [8, (6.16)]. �

The following is a reformulation of the main result in [6].

6.8. Theorem (Jacobson). Let Φ be a K-algebra with canonical involution and ϕ
a quadratic form over K. Then Ad(ϕ)⊗Φ is hyperbolic if and only if ϕ⊗ Tr(Φ)
is hyperbolic.

Proof. Let ϕ = (V,B) and Φ = (A, σ) with σ = canA. Then Tσ(x, x) = x+σ(x) ∈
K for x ∈ A. TheK-algebra with involution Ad(ϕ)⊗Φ is adjoint to the hermitian
form (VA, h) over Φ obtained from ϕ, with VA = V ⊗K A and h : VA × VA → A
determined by h(a ⊗ v, b ⊗ w) = σ(a)B(v, w)b for a, b ∈ A and v, w ∈ V . Then
(VA, Tσ ◦ h) is a quadratic form over K isometric to ϕ ⊗ Tr(Φ). The isotropic
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vectors for h and for Tσ ◦ h coincide. It follows that a maximal totally isotropic
K-subspace for Tσ ◦ h is the same as a maximal totally isotropic A-subspace for
h. This implies the statement. �

6.9. Theorem (Bayer-Fluckiger, Shapiro, Tignol). Let a ∈ K× \ K×2. Then

ΨK(
√
a) is hyperbolic if and only if (a)K embeds into Ψ or Ψ ≃ Ad(ϕ) for a

quadratic form ϕ over K whose anisotropic part is a multiple of 〈〈a〉〉.
Proof. Assume first that Ψ is split orthogonal, so that Ψ ≃ Ad(ϕ) for a form ϕ
over K. Then ΨK(

√
a) is hyperbolic if and only if ϕK(

√
a) is hyperbolic, which by

[9, Chap. VII, (3.2)] is if and only if the anisotropic part of ϕ is a multiple of
〈〈a〉〉.

In the remaining cases, the statement is proven in [1, (3.3)] for involutions of
the first kind, and an adaptation of the argument for involutions of the second
kind is provided in [13, (3.6)]. �

6.10. Remark. There is an overlap in the two cases of the characterization given
in (6.9). Assume that a ∈ K× \K×2 and ϕ is a form over K. Then (a)K embeds
into Ad(ϕ) if and only if ϕ is a multiple of 〈〈a〉〉, if and only if the anisotropic part
ϕan of ϕ is a multiple of 〈〈a〉〉 and ϕ ≃ ϕan ⊥ 2m×H for some m ∈ N.

6.11. Corollary. For any a ∈ K× \K×2 such that ΨK(
√
a) is hyperbolic, we have

that DK〈〈a〉〉 ⊆ G(Ψ).

Proof. As DK〈〈a〉〉 = G (a)K , the statement follows immediately from (6.9). �

6.12. Proposition. Let Q1 and Q2 be K-quaternion algebras. The K-algebra

with involution (Q1, canQ1
) ⊗ (Q2, canQ2

) is hyperbolic if and only if one of Q1

and Q2 is split.

Proof. Let (A, σ) = (Q1, canQ1
) ⊗ (Q2, canQ2

). If one of the factors is split, it is
hyperbolic, and thus (A, σ) is hyperbolic. Assume now that (A, σ) is hyperbolic.
Then by (6.1) there exists f ∈ Skew(σ) with f 2 = 1. We identify Q1 and Q2 with
K-subalgebras of A that commute with each other elementwise and such that
σ|Qi

= canQi
for i = 1, 2. Then Skew(σ) = Q′

1 ⊕Q′
2 where Q′

i is the K-subspace
of pure quaternions of Qi for i = 1, 2. Writing f = f1 + f2 with fi ∈ Q′

i for
i = 1, 2, we obtain that 1 = f 2 = f 2

1 + f 2
2 + 2f1f2. As f 2

1 , f
2
2 ∈ K, we conclude

that f1f2 ∈ K. This is only possible if f1f2 = 0, that is, if either f1 = 0 or f2 = 0.
If, say, f2 = 0, then f = f1, which then is a hyperbolic element with respect to σ
contained in Q1, whereby Q1 is split. Hence, one of Q1 and Q2 is split. �

6.13. Theorem (Karpenko, Tignol). Let Ψ be a non-hyperbolic K-algebra with

involution such that Ψ⊗Ψ is split. There exists a field extension L/K such that

ΨL is not hyperbolic and, either ΨL is split or Ψ is symplectic and ind(ΨL) = 2.

Proof. See [7, (1.1)] for the orthogonal case and [19, (A.1) and (A.2)] for the
other cases. �
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Note that the condition in (6.13) that Ψ⊗Ψ be split is trivially satisfied if Ψ
is a K-algebra with involution of the first kind.

We mention separately the following special case of (6.13), which was obtained
earlier by more classical methods. It will be used in (9.4).

6.14. Theorem (Dejaiffe, Parimala, Sridharan, Suresh). Let a, b ∈ K× and let L
be the function field of the conic aX2 + bY 2 = 1 over K. Let Ψ be a K-algebra

with orthogonal involution such that Ψ ∼ (a ·| b)K. Then Ψ is hyperbolic if and

only if ΨL is hyperbolic.

Proof. If the conic aX2+bY 2 = 1 is split over K, then L is a rational function field
over K and the statement is obvious. Otherwise Φ = (a ·|· b)K is a K-quaternion
division algebra with involution and Ψ is adjoint to a skew-hermitian form over
Φ, in which case the statement follows alternatively from [3] or [14, (3.3)]. �

7. Algebras with involution over real closed fields

Let Ψ be aK-algebra with involution. For n ≥ 1 we set n×Ψ = Ad(n×〈1〉)⊗Ψ.

7.1. Proposition. Assume that K is pythagorean and Ψ ∼ (−1 ·| −1)K . Then

Ψ ≃ Ad(ϕ)⊗ (−1 ·| −1)K for a form ϕ over K. Moreover, 2×Ψ is hyperbolic.

Proof. Let Q = (−1,−1)K . We may identify Ψ with (EndQ(V ), σ) where V is
a finite-dimensional right Q-vector space and σ is the involution adjoint to a
regular skew-hermitian form h : V × V −→ Q with respect to canQ. Since K
is pythagorean, any maximal subfield of Q is K-isomorphic to K(

√
−1). We

fix a pure quaternion i ∈ Q with i2 = −1 and obtain that any invertible pure
quaternion in Q is conjugate to an element of iK×. This yields that h has
a diagonalization with entries in iK×. It follows that ih : V × V −→ Q is
a hermitian form with respect to the involution τ = Int(i) ◦ canQ and has a
diagonalization with entries in K×. This yields that Ψ ≃ Ad(ϕ) ⊗ (Q, τ) for a
form ϕ over K. Moreover, (Q, τ) ≃ (−1 ·| −1)K . This shows the first claim.

As Ad〈1, 1〉 ≃ (−1 ·| 1)K we obtain using (4.8) that

2× (Q, τ) ≃ (−1 ·| 1)K ⊗ (−1 ·| −1)K ≃ (−1 ·|· −1)K ⊗ (−1 ·|· 1)K .
By (6.1) this K-algebra with involution is hyperbolic, and thus so is 2×Ψ. �

7.2. Theorem. Assume that K is real closed.

(a) If Ψ is split orthogonal, then Ψ ≃ Ad(r × 〈1〉 ⊥ η) for a hyperbolic form η
over K and r ∈ N such that sign(Tr(Ψ)) = r2.

(b) If Ψ is non-split orthogonal, then Ψ ≃ r × (−1 ·| −1)K for a positive integer

r, the form Tr(Ψ) is hyperbolic, and Ψ is hyperbolic if and only if r is even.

(c) If Ψ is split symplectic, then Ψ ≃ r × (1 ·|· 1)K for a positive integer r, and
both Ψ and Tr(Ψ) are hyperbolic.

(d) If Ψ is non-split symplectic, then Ψ ≃ Ad(r × 〈1〉 ⊥ η)⊗ (−1 ·|· − 1)K for a

hyperbolic form η over K and r ∈ N such that sign(Tr(Ψ)) = 4r2.
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(e) If Ψ is non-degenerate unitary, then Ψ ≃ Ad(r × 〈1〉 ⊥ η) ⊗ (−1)K for a

hyperbolic form η over K and r ∈ N such that sign(Tr(Ψ)) = 2r2.
(f) If Ψ is degenerate unitary, then Ψ ≃ r× (1)K for a positive integer, and both

Ψ and Tr(Ψ) are hyperbolic.

These cases are mutually exclusive and cover all possibilities, and the integer r is
unique in each case.

Proof. It is clear that exactly one of the conditions in (a)–(f) is satisfied. As K
is real closed, the only finite-dimensional K-division algebras are K, K(

√
−1),

and (−1,−1)K . Therefore we have Ψ ∼ Φ for the K-algebra with involution

Φ =





(K, idK) if Ψ is split orthogonal,

(−1 ·| −1)K if Ψ is non-split orthogonal,

(1 ·|· 1)K if Ψ is split symplectic,

(−1 ·|· − 1)K if Ψ is non-split symplectic,

(−1)K if Ψ is split non-degenerate unitary,

(1)K if Ψ is degenerate unitary.

If Ψ is split-symplectic or degenerate unitary, then Ψ is hyperbolic by (6.2),
whence Tr(Ψ) is hyperbolic by (6.5), and using (6.3) it follows that Ψ ≃ r × Φ
for some r ∈ N. This shows (c) and (f).

Next, suppose that Ψ is non-split orthogonal. Then by (7.1) we have Ψ ≃
Ad(ϕ)⊗ (−1 ·| −1)K for a form ϕ over K, and as G (−1 ·| −1)K = K×2∪−K×2 =
K× we may choose ϕ to be r × 〈1〉 for some r ∈ N. We thus have Ψ ≃ r × Φ
with r ∈ N such that deg(Ψ) = 2r. Furthermore, Tr(Φ) is hyperbolic by (5.1),
and thus so is Tr(Ψ) ≃ r2 × Tr(Φ). This shows (b).

In each of the remaining cases (a), (d), and (e), by (4.4) we have that Ψ ≃
Ad(ϕ)⊗Φ for a form ϕ over K. Since K is real closed and ϕ is determined up to a
scalar factor, we choose ϕ to be r×〈1〉 ⊥ η for some r ∈ N and a hyperbolic form
η over K. It further follows that Tr(Ψ) ≃ ϕ⊗ ϕ⊗ Tr(Φ) by (5.2) and (5.3) and
thus sign(Tr(Ψ)) = r2 · sign(Tr(Φ)). As in either case Tr(Φ) is positive definite by
(5.1), we have that sign(Tr(Φ)) = dimK(Φ). This establishes the cases (a), (d),
and (e).

Finally, note that in each case the non-negative integer r is determined by
deg(Ψ) or dim(Tr(Ψ)), respectively. �

7.3. Corollary. Assume K is real closed. Then Tr(Ψ) is hyperbolic if and only if

2 ×Ψ is hyperbolic, if and only if either Ψ is hyperbolic or Ψ ≃ r × (−1 ·| −1)K
where r ∈ N is odd.

Proof. We shall refer to the cases in (7.2). In each of the cases (b), (c), or (f),
both Tr(Ψ) and 2 × Ψ are hyperbolic. Assume that we are in one of the cases
(a), (d), or (e), and let r be the integer occurring in the statement for that case.
Then Tr(Ψ) is hyperbolic if and only if r = 0, if and only if Ψ is hyperbolic. �
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7.4. Corollary. Let P be an ordering of K and Ψ a K-algebra with involution.

Then signP (Tr(Ψ)) = [Z(Ψ) : K] · s2 for some s ∈ N.

Proof. By (7.2) the statement holds in the case where K is real closed and P is
the unique ordering of K. The general case follows immediately by extending
scalars to the real closure of K at P . �

Let P be an ordering of K. The integer s occurring in (7.4) is called the
signature of Ψ at P and denoted signP (Ψ). With k = [Z(Ψ) : K] we thus have

signP (Ψ) =
√

1
k
signP (Tr(Ψ)) .

7.5. Proposition. Let Ψ and Θ be two K-algebras with involution. If Ψ and Θ
are both unitary, assume that they have the same centre. For every ordering P
of K we have that signP (Ψ⊗Θ) = signP (Ψ) · signP (Θ).

Proof. This follows immediately from (5.2). �

7.6. Proposition. Let ϕ be a quadratic form over K. For every ordering P of

K we have that signP (Ad(ϕ)) = |signP (ϕ)|.
Proof. This is clear as Tr(Ad(ϕ)) ≃ ϕ⊗ ϕ by (5.3). �

8. Local-global principle for weak hyperbolicity

We say that the algebra with involution Ψ is weakly hyperbolic if there exists
a positive integer n such that n × Ψ is hyperbolic. We say that Ψ has trivial

signature and write sign(Ψ) = 0 to indicate that signP (Ψ) = 0 for every P ∈ XK .

8.1. Lemma. Assume that there exists a ∈ K× \ ±K×2 such that ΨK(
√
a) and

ΨK(
√
−a) are hyperbolic. Then 2×Ψ is hyperbolic.

Proof. Let a ∈ K× \±K×2 be such that ΨK(
√
a) and ΨK(

√
−a) are hyperbolic. By

(6.11) a and −a both belong to G(Ψ). As G(Ψ) is a group, we conclude that
−1 ∈ G(Ψ), so 2×Ψ ≃ Ad〈〈−1〉〉 ⊗Ψ is hyperbolic by (6.6). �

8.2. Proposition. Assume that K is nonreal and let n ∈ N be such that −1 is a

sum of 2n squares in K. Then 2n+1 ×Ψ is hyperbolic.

Proof. By the assumption, the Pfister form π = 2n+1 × 〈1〉 over K is isotropic,
whereby it is hyperbolic. Hence, 2n+1 ×Ψ ≃ Ad(π)⊗Ψ is hyperbolic. �

8.3. Lemma. Assume that 2n × Ψ is not hyperbolic for any n ∈ N, and that

for every proper finite extension L/K there exists n ∈ N such that 2n × ΨL is

hyperbolic. Then K is real closed and sign(Ψ) 6= 0.

Proof. By (8.2) the field K is real, by (8.1) its only quadratic field extension is
K(

√
−1), and by (6.7) K has no proper finite field extension of odd degree. Thus

K is real closed, by [17, Chap. 3, (2.3)]. It follows from (7.2) that Ψ ≃ Ad(ϕ)⊗Φ
for a form ϕ over K and a non-degenerate K-algebra with canonical involution
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Φ. As K is real closed, it follows with (5.1) that Tr(Φ) is positive definite, and
thus sign(Ψ) is equal to |sign(ϕ)| or to 2 · |sign(ϕ)|. As Ψ is not hyperbolic, ϕ is
not hyperbolic, and we conclude that sign(Ψ) 6= 0. �

8.4. Lemma. Assume that Ψ is split and let r ∈ N. Then Ψ⊗2r is hyperbolic if

and only if Tr(Ψ)⊗r is hyperbolic.

Proof. Replacing Ψ by Ψ⊗r we may in view of (5.2) assume that r = 1. If Ψ is
symplectic then Ψ and Tr(Ψ) are hyperbolic by (6.2) and (6.5). If Ψ is orthogonal,
then Ψ⊗2 ≃ Ad(Tr(Ψ)) by (5.5), implying the statement. Assume now that Ψ is
unitary. Then Ψ ≃ Ad(ϕ) ⊗ (a)K for a form ϕ over K and some a ∈ K×. We
obtain that Ψ⊗2 ≃ Ad(ϕ⊗ ϕ)⊗ (a)K and Tr(Ψ) ≃ ϕ⊗ ϕ⊗ 〈〈a〉〉. Using (6.8) we
conclude that Ψ⊗2 is hyperbolic if and only if Tr(Ψ) is hyperbolic. �

8.5. Theorem. The following are equivalent:

(i) sign(Ψ) = 0;
(ii) Ψ is weakly hyperbolic;

(iii) 2n ×Ψ is hyperbolic for some n ∈ N;

(iv) either Ψ⊗m is hyperbolic for some m ≥ 1, or K is nonreal and Ψ is split

orthogonal of odd degree.

These conditions are trivially satisfied if K is nonreal.

Proof. Trivially (iii) implies (ii), and by (7.5) any of the conditions implies (i).
Suppose that 2n ×Ψ is not hyperbolic for any n ∈ N. By Zorn’s Lemma there

exists a maximal algebraic extension L/K such that 2n×ΨL is not hyperbolic for
any n ∈ N. By (8.3) L is real closed and ΨL has nonzero signature at the unique
ordering of L. For the ordering P = L2 ∩K of K we obtain that signP (Ψ) 6= 0.
This shows that (i) implies (iii).

To finish the proof we show that (i) implies (iv). We may assume that Ψ is
simple as otherwise Ψ is hyperbolic. Replacing Ψ by Ψ⊗e for some positive integer
e and using (7.5), we may further assume that Ψ is split. Assuming (i) we have
sign(Tr(Ψ)) = 0. Note further that dimK(Ψ) = dimK(Tr(Ψ)). If dim(Tr(Ψ))
is odd, we conclude that K is nonreal and Ψ is split orthogonal of odd degree.
If dim(Tr(Ψ)) is even, we obtain by (2.11) that Tr(Ψ)⊗r is hyperbolic for some
positive integer r, and then Ψ⊗2r is hyperbolic by (8.4). �

8.6.Corollary. Assume that Z(Ψ) ≃ K(
√
a) with a ∈ ∑

K2 in case Ψ is unitary,

and otherwise that ΨR ∼ (−1,−type(Ψ))R for every real closure R of K. Then

Ψ is weakly hyperbolic.

Proof. In view of the hypothesis, we obtain from (7.2) that Tr(Ψ) becomes hy-
perbolic over every real closure of K. Therefore sign(Ψ) = 0, and it follows by
(8.5) that Ψ is weakly hyperbolic. �

Let T be a preordering of K. We say that a K-algebra with involution Ψ
is T -hyperbolic if there exists a T -positive quadratic form τ over K such that
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Ad(τ)⊗Ψ is hyperbolic. It is clear from (4.2) that a quadratic form ϕ over K is
T -hyperbolic if and only if Ad(ϕ) is T -hyperbolic.

8.7. Theorem. Let T be a preordering of K. We have signP (Ψ) = 0 for every

P ∈ XT (K) if and only if Ψ is T -hyperbolic. Moreover, in this case there exists

a T -positive Pfister form ϑ over K such that Ad(ϑ)⊗Ψ is hyperbolic.

Proof. Assume first that Ψ is T -hyperbolic. Let ϑ be a T -positive form over K
such that Ad(ϑ)⊗Ψ is hyperbolic. By (7.5) then signP (ϑ) · signP (Ψ) = 0 for any
ordering P of K. For any P ∈ XT we have signP (ϑ) > 0 as ϑ is T -positive, and
we conclude that signP (Ψ) = 0.

Assume now that signP (Ψ) = 0 for every P ∈ XT . Then ϑ⊗Tr(Ψ) is hyperbolic
for some T -positive Pfister form ϑ over K, by (2.10). By (5.2) and (5.3) we have
Tr(Ad(ϑ) ⊗ Ψ) ≃ ϑ ⊗ ϑ ⊗ Tr(Ψ). We conclude that Ad(ϑ) ⊗ Ψ has trivial total
signature. By (8.5) there exists n ∈ N such that 2n × Ad(ϑ) ⊗ Ψ is hyperbolic.
Hence, the isomorphic K-algebra with involution Ad(2n × ϑ) ⊗ Ψ is hyperbolic.
As 2n × ϑ is a T -positive Pfister form, this shows the statement. �

9. Bounds on the torsion order

By (8.5), for a K-algebra with involution Ψ such that Ψ⊗n is hyperbolic for
some n ∈ N, we have that 2m×Ψ is hyperbolic for some m ∈ N. In this situation,
one may want to bound m in terms of n and the degree of Ψ. We restrict to the
case n = 2, that is, where Ψ⊗2 is hyperbolic, and use the function ∆ : N −→ N

introduced in Section 2 to bound m.

9.1. Theorem. Let Ψ be a K-algebra with involution such that Ψ⊗2 is split hy-

perbolic. Let m = deg(Ψ) if σ is orthogonal or unitary, and m = 1
2
deg(Ψ) if σ

is symplectic. Then 2∆(m) ×Ψ is hyperbolic.

Proof. In view of (6.13) it suffices to consider the situation where Ψ is either
split orthogonal, or split unitary, or symplectic of index 2. Then by (4.4) we have
Ψ ≃ Ad(ϕ) ⊗ Φ for a form ϕ over K with dim(ϕ) = m and a K-algebra with
canonical involution Φ. As Ψ⊗2 is hyperbolic, it follows from (8.4) in the split
case and from (5.5) in the non-split case that Tr(Ψ) is hyperbolic. By (5.2) and
(5.3) we have Tr(Ψ) ≃ ϕ⊗ϕ⊗Tr(Φ). Hence, (2.15) yields that (2∆(m)×ϕ)⊗Tr(Φ)
is hyperbolic. We conclude using (6.8) that 2∆(m) × Ψ ≃ Ad(2∆(m) × ϕ) ⊗ Φ is
hyperbolic. �

9.2. Theorem. Let Ψ be a K-quaternion algebra with involution and m ∈ N. If

2m×Ψ⊗2 is hyperbolic, then 2m+1×Ψ is hyperbolic. Moreover, the converse holds

in case Ψ is split.

Proof. Suppose first that Ψ is split. If Ψ is symplectic then it is hyperbolic.
Assume that Ψ is orthogonal or unitary. Then either Ψ ≃ Ad〈〈a〉〉 for some a ∈ K×

or Ψ ≃ Ad〈〈a〉〉 ⊗ (b)K for some a, b ∈ K×. Either way, as 〈〈a, a〉〉 ≃ 2 × 〈〈a〉〉 it
follows that Ψ⊗2 ≃ 2×Ψ. This yields the claimed equivalence in the split case.
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We derive the implication claimed in general for Ψ orthogonal or unitary by
reduction to the split case by means of (6.13). Assume finally that Ψ is symplec-
tic. Then Ψ⊗2 ≃ Ad(Tr(Ψ)) by (5.5) and thus 2m × Ψ⊗2 ≃ Ad(2m × Tr(Ψ)) by
(4.2). Hence, if 2m × Ψ⊗2 is hyperbolic, then 2m × Tr(Ψ) is hyperbolic, and it
follows by (6.8) that 2m ×Ψ is hyperbolic. �

The following example shows that the converse in (9.2) does not hold in general.

9.3. Example. Let m ∈ N. Assume that K is either k(t) or k((t)) for a field k.
Let a ∈ Dk(2

m+1)\Dk(2
m). The form 2m×〈〈a,−t〉〉 over K is anisotropic. Hence,

2m × (a · | t)⊗2
K ≃ Ad(2m × 〈〈a,−t〉〉) is anisotropic, whereas 2m+1 × (a · | t)K is

hyperbolic.

9.4. Theorem. Let a, b ∈ K×. Then 2 × (a · | b)K is hyperbolic if and only if

a ∈ DK〈1, 1〉 ∪ DK〈1, b〉. For n ∈ N with n ≥ 2 we have that 2n × (a ·| b)K is

hyperbolic if and only if a = x(y+b) with x ∈ DK(2
n−1) and y ∈ DK(2

n−1)∪{0}.
Proof. Note that 2×(a ·| b)K ≃ (−1 ·| 1)K⊗(a ·| b)K ≃ (−1 ·|· a)K⊗(a ·|· −b)K by
(4.8). Hence, by (6.12), 2 × (a ·| b)K is hyperbolic if and only if one of (−1, a)K
and (a,−b)K is split, which happens if and only if a ∈ DK〈1, 1〉 ∪ DK〈1, b〉.

Let n ≥ 2. Let L denote the function field of the conic aX2+ bY 2 = 1 over K.
Note that (a, b)L is split and thus 2n × (a ·| b)L ≃ Ad(2n × 〈〈a〉〉L). Using (6.14)
2n × (a · | b)K is hyperbolic if and only if 2n × (a · | b)L is hyperbolic, which is
the case if and only if 2n × 〈〈a〉〉L is hyperbolic. Using [9, Chap. X, (4.28)] we
conclude that this happens if and only if 〈1,−a,−b〉 is a subform of 2n×〈〈a〉〉 over
K, which is, if and only if (2n−1)×〈〈a〉〉 ⊥ 〈b〉 is isotropic. Finally, this occurs if
and only if a = x(y + b) for some x ∈ DK(2

n − 1) and y ∈ DK(2
n − 1) ∪ {0}. �

9.5. Question. If K is pythagorean and sign(Ψ) = 0, is then 2 × Ψ necessarily

hyperbolic?
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