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Abstract. Let p be a prime integer, F a field of characteristic not p, T the norm torus
of a degree pn extension field of F , and E a T -torsor over F such that the degree of each
closed point on E is divisible by pn (a generic T -torsor has this property). We prove
that E is p-incompressible. Moreover, all smooth compactifications of E (including those
given by toric varieties) are p-incompressible. The main requisites of the proof are: (1)
A. Merkurjev’s degree formula (requiring the characteristic assumption), generalizing
M. Rost’s degree formula, and (2) combinatorial construction of a smooth projective fan
invariant under an action of a finite group on the ambient lattice due to J.-L. Colliot-
Thélène - D. Harari - A.N. Skorobogatov, produced by refinement of J.-L. Brylinski’s
method with a help of an idea of K. Künnemann.


Let F be a field, p a prime integer. We say that an F -variety (by which we mean
just a separated F -scheme of finite type) is p-incompressible (resp., incompressible), if its
canonical p-dimension (resp., canonical dimension), defined as in [13, §4b], is equal to its
usual dimension. Paraphrasing the definition, an integral F -variety X is incompressible
if and only if X(L) = ∅ for any extension field L of F which is a subfield of the function
field F (X) of transcendence degree < dimX ; a connected smooth complete variety X is
incompressible if and only if any rational mapX 99K X is dominant, [13, Corollary 4.3(2)];
p-incompressibility is a p-local version of incompressibility implying the incompressibility.


Given an arbitrary F -variety V , we write nV for the greatest common divisor of the
degrees of the closed points on V . Usually, we are only interested in vp(nV ), where vp is
the p-adic valuation.


By a compactification of an F -variety V we mean a complete F -variety X containing a
dense open subvariety isomorphic to V .


Given a finite separable extension field (or, more generally, an étale algebra) K/F , its


norm torus T = TK/F , also called norm one torus and denoted by R
(1)
K/F (Gm), is the alge-


braic torus defined as the kernel of the norm map of algebraic tori NK/F : RK/F (Gm) →
Gm, F , where RK/F is the Weil transfer with respect to K/F . The group of F -points of T
is the subgroup of norm 1 elements in K×.


We consider T -torsors over F (i.e., the principal homogeneous spaces of T ) and call
them simply T -torsors. Any element a ∈ F× produces a T -torsor Ea with the set of F -
points being the set of norm a elements in K×. The isomorphism class of Ea corresponds
to the image of a under the connecting homomorphism H0(F,Gm) → H1(F, T ) of the
long exact sequence in galois cohomology, arising from the short exact sequence of the
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definition of T . This connecting homomorphism is surjective (and its kernel is the norm
subgroup). Thus every T -torsor E is isomorphic to Ea for some element a ∈ F× (whose
class modulo NK/F (K


×) is uniquely determined by E).
Note that for any E, the integer nE divides dimF K. Moreover, if K is the product of


étale F -algebras K1, . . . , Kr, then nE divides dimF Ki for each i = 1, . . . , r. In particular,
nE = dimF K is possible only if K is a field.
The main result of this note is the following theorem known for cyclic K/F (see [13,


§11d]):


Theorem 1. Assume that charF 6= p. For some integer n ≥ 0, let K/F be a (separable)
extension field of degree pn, T its norm torus, and E a T -torsor such that nE = pn. Then
the F -variety E is p-incompressible. Any smooth compactification of the variety E is also
p-incompressible.


Example 2. Let t be an indeterminate, K/F an arbitrary finite separable field extension,
and Et the TK(t)/F (t)-torsor of norm t elements (Et is the generic principal homogeneous
space of T , or generic T -torsor in the sense of [12, §3], produced out of the imbedding
of T into the special algebraic group RK/F (Gm)). Then the degree of every closed point
on Et is divisible by d := [K : F ]. Proving this, one may replace the base field F (t) by
F ((t)). If for a finite extension field L/F ((t)), the element t ∈ L is the norm for the
d-dimensional étale L-algebra K((t))⊗F ((t)) L, then v(t) is divisible by d (see [4, Theorem
in §(2.5) of Chapter 2]), where v is the extension to L of the t-adic discrete valuation on
F ((t)); therefore d divides [L : F ((t))] (see [4, Exercise 1c in §2 of Chapter 2]).


Proof of Theorem 1. According to [2, Corollaire 1], there exists a smooth projective (toric)
F -variety X containing E as an open subvariety. Clearly, E is p-incompressible if X is
so. (Actually, by [17, Proposition 4], for any extension field L/F , one has X(L) 6= ∅
if and only if E(L) 6= ∅ so that E is p-incompressible if and only if X is so.) Since the
property of being p-incompressible is birationally invariant on connected smooth complete
varieties (see e.g. [10, Remark 4.13] or [9, Lemma 3.6]), all smooth compactifications of
E are p-incompressible provided that X is so.
A connected smooth complete variety V over a field of characteristic 6= p is called


(p, n)-rigid here, if it is Rp-rigid in the sense of [14, §7] for the infinite sequence


R := (0, . . . , 0, 1, 0, . . . )


of 0 and 1 with precisely one 1 staying on the nth position. By definition, (p, n)-rigidity
of V means that vp(nV ) = vp(deg cR(−TV )), where TV is the tangent bundle of V and cR
is the Chern class corresponding to the sequence R and the prime p in the sense of [14,
§4].
By Theorem 3 right below, the variety X is (p, n)-rigid. A (p, n)-rigid variety is p-


incompressible by [14, Corollary 7.3]. This is the place where the degree formula of [14]
is used and where the characteristic assumption is needed. The projectivity assumption
made in [14] is superfluous because of [1, §10]. �


Theorem 3. For E as in Theorem 1, any smooth compactification of E is (p, n)-rigid.


Proof. Since the property of being (p, n)-rigid is birationally invariant [14, Remark 7.5],
it suffices to construct one (p, n)-rigid smooth compactification of E. For this, let Γ be
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the galois group of the normalization L of K/F and let X be the Γ-set corresponding to
the étale F -algebra K in the sense of [11, §18]. The cardinality of the set X is equal to
pn = [K : F ].


The cocharacter lattice N of the split torus TL is the lattice of the elements in the
free abelian group Z[X] on X with the sum of coordinates = 0. There exists a smooth
projective fan A of the lattice N (we do not require that A is invariant under the action
of Γ on N yet), for instance, a fan producing the toric variety given by the projective
space (see [6, Exercise of §1.4]).


The symmetric group S of all permutations of the set X act on N by permutations of
the coordinates. By [2, Theorem 1], there exists a smooth projective S-invariant fan B of
N which is a subdivision of A. This produces a smooth projective toric variety Xk (over
any given field k) endowed with an action of S (see [3, §5.5]) as well as with an action of
the split k-torus with the cocharacter lattice N . In particular, Γ acts on XF . Twisting
XF by the principal homogenous space SpecL of the constant group Γ (quasi-projectivity
of XF is needed for existence of the twisting, see [5, Proposition 2.12] or [16, V.20]) we get
a smooth projective T -equivariant compactification X of T (cf. [2, Preuve du Corollaire 1
á partir du Théorème 1]). Twisting afterwards X by the T -torsor E as in [5, Proposition
2.12] (using (quasi-)projectivity once again), we get a smooth compactification Y of E.
We claim that the variety Y is (p, n)-rigid.


First of all, by [17, Proposition 4], we have vp(nY ) = vp(nE) = n. Therefore to check
(p, n)-rigidity of Y we have to check that vp(deg cR(−TY )) = n, where R is the sequence
introduced above. The integer deg cR(−TY ) can be expressed in terms of the fan B (see
[6, Propositions of §4.3 and of §5.2]) and therefore does not depend on the base field
anymore so that we may replace Y by Xk with an arbitrary chosen field k.


Let us choose a field k (of characteristic 6= p) possessing a degree pn cyclic extension
field l such that for its norm torus T ′ = Tl/k there exists a T ′-torsor E ′ with vp(nE′) = n
(we can find it using Example 2). Fixing an arbitrary bijection of the (order pn cyclic)
galois group Γ′ of l/k with the set X, we get an action of Γ′ on X and therefore on Xk.
Twisting Xk by the principal homogeneous space Spec l of Γ′ and then by the T ′-torsor
E ′, we get a smooth compactification Y ′ of E ′. Another smooth compactification of E ′ is
given by a Severi-Brauer variety of certain central division k-algebra of degree pn (cf. [13]).
Concretely, if E ′ is given by some a ∈ k×, the Severi-Brauer variety of the cyclic division
algebra (l/k, a) can be taken. The Severi-Brauer variety is (p, n)-rigid by [14, §7.2],
therefore Y ′ is (p, n)-rigid. Since vp(nY ′) = n, it follows that vp(deg cR(−TY ′)) = n. �


A (p, n)-rigid variety is actually strongly p-incompressible in the sense of [8, §2]. There-
fore for E as in Theorem 1, any smooth compactification of E is strongly p-incompressible.
This statement is stronger than the part of the statement of Theorem 1 saying that any
smooth compactification of E is p-incompressible. It can be formulated in terms of E
alone (without mentioning its compactification) as follows:


Corollary 4. Let E be as in Theorem 1 and let Y be an integral complete (not necessarily
smooth) F -variety such that vp(nY ) ≥ n (= vp(nE)) and vp(nYF (E)


) = 0 (i.e., YF (E) has a


closed point of a prime to p degree). Then


(1) dimY ≥ dimE;
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(2) if dimY = dimE then vp(Y ) = n and vp(nEF (Y )
) = 0.


Proof. Apply the strong incompressibility of a smooth compactification of E given by a
toric variety X , taking into account [17, Proposition 4] saying that for any extension field
L/F , X(L) = ∅ provided that E(L) = ∅. �


Here is an application of Theorem 1 suggested in [13, §11d]:


Corollary 5. For any p-primary (separable) field extension K/F in characteristic 6= p,
the essential p-dimension as well as the essential dimension of the functor of non-zero
norms of K/F (defined as in [13, Example 11.11]) is equal to the degree [K : F ].


Proof. A proof for the case of cyclic K/F is given in [13, §11d]. The only missing point
to make it work in the general case was absence of Theorem 1 (for non-cyclic K/F ). �


Remark 6. In the case of cyclic K/F , the statement of Corollary 5 as well as the
statement of Theorem 1 hold also in characteristic p due to existence of a proof of p-
incompressibility for Severi-Brauer varieties avoiding a use of the degree formula (see [8,
Examples 2.4 and 3.3]). On the other hand, neither Theorem 3 nor Corollary 4 are known
in characteristic p even for cyclic field extensions. One may expect that Theorems 1,
3 and Corollaries 4, 5 hold in characteristic p for general K/F . This is so in the case
of [K : F ] = p (i.e., in the case of n = 1) due to results of O. Haution, [7, Corollary
10.2] (for Theorem 1 and Corollary 5 alone it suffices to use [15, Proposition 1.5(2)]=[13,
Proposition 2.4(2)]).


Acknowledgements. I am grateful to Alexander Sergeevich Merkurjev for involving
me into the subject.
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Mathématique de l’Université de Nancago [Publications of the Mathematical Institute of the Univer-
sity of Nancago], 7. Hermann, Paris, 1984. Actualités Scientifiques et Industrielles [Current Scientific
and Industrial Topics], 1264.
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