CODIMENSION 2 CYCLES ON PRODUCTS OF PROJECTIVE
HOMOGENEOUS SURFACES
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ABSTRACT. In the present paper, we provide general bounds for the torsion in the codi-
mension 2 Chow groups of the products of projective homogeneous surfaces. In particular,
we determine the torsion for the product of four Pfister quadric surfaces and the maximal
torsion for the product of three Severi-Brauer surfaces. We also find an upper bound for
the torsion of the product of three quadric surfaces with the same discriminant.
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1. INTRODUCTION

Let X be a projective homogenous variety under the action of a semisimple group G over
an algebraically closed field F. The Chow group CH(X) of algebraic cycles modulo the
rational equivalence relation is well-understood as well as its ring structure. Namely, the
Chow group of X is a free abelian group with the basis of Schubert cycles. For an arbitrary
base field F', this is no longer true: the Chow group CH(X) can have torsion. Indeed, by a
transfer argument the problem of determining the Chow group of X over an arbitrary field
F reduces to computing its torsion subgroup.

For codimension d < 1, the Chow group CHY(X) is torsion-free. A nontrivial torsion
first appears in codimension 2 cycles on X and the exact structure of the torsion subgroup
is known in many cases. For a projective quadric X, the torsion subgroup of CH2(X ) is
either 0 or Z/27Z [6]. For a Severi-Brauer variety X, it is shown that the torsion subgroup
of CH? (X) is either 0 or a cyclic group if the corresponding simple algebra satisfies certain
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conditions [8]. For a simple simply connected group G splits over F'(X), it is known that the
torsion subgroup of CH?(X) is a cyclic group generated by the Rost invariant [2]. However,
the only partial results are known for their products. In this case, the structure of the
torsion subgroup is more complicated.

As a first step in determining torsion in codimension 2 cycles on the product of flag
varieties, we consider in this paper the product of two dimensional flag varieties of the same
type. For an integer n > 1, this can be divided into two classes: the set of all products of
n Severi-Brauer surfaces, denoted by SB,, and the set of all products of n quadric surfaces,
denoted by @,,. The latter has a special subclass PQ,, consisting of all product of n Pfister
quadric surfaces. Here, we view the product of two conics as the product of two Pfister
quadric surfaces since they have the same torsion subgroup in codimension 2 cycles by [3,
Corollary 2.5]. To measure the size of the torsion subgroup of codimension 2 cycles, we
introduce the following notation: M(A) = maxxec4 | CH?(X)tors|, where A is any of SB,,
Qn, and PQ,. Hence, the torsion subgroup of any element of A is an elementary abelian
group whose order is a divisor of M(A). We denote by C, the set of all products of n
conics, thus we have M(PQ,,) = M(C,).

It is well-known that M(5B1) = M(Q;) = M(C2) = 1. In [10] Peyre proved that
M(C3) = 2, thus M(PQs3) = 2. In [4], [3] and [5] Izhboldin and Karpenko proved that
M(S5B3) = 3 and M(Q3) = 2. As it is showed in [11, Theorem 2.1] and [10, Theorem
4.1], the torsion subgroup of codimension 2 cycles is closely related to a relative Galois
cohomology group in degree 3 and the above results were used to describe the cohomology
groups. Moreover, Izhboldin and Karpenko’s result was the key part of their results on
isotropy of quadratic forms.

The main goal of this paper is to extend their results to arbitrary n. First, we determine
the maximal torsion M(C,,) (= M(PQ,)) in Corollary 4.4, which gives a general lower
bound of M(Q,). In particular, we determine the torsion in the gamma filtration of the
product of four conics in Theorem 4.6 as well as its torsion in Chow group. Secondly, we
find a general lower bound of M(SB,,) in Proposition 5.2. Especially, we show that the
bound is sharp for the product of three Severi-Brauer surfaces in Theorem 5.4. The results
M(PQy) = 2° and M(SB3) = 3% give the first examples such that the torsion subgroup
CH2(X )tors 18 not cyclic in their classes. In the last part, we provide an elementary proof of
Izhboldin and Karpenko’s result for the product of two quadric surfaces and find an upper
bound for the torsion of the product of three quadric surfaces with the same discriminant
in Theorem 6.1, Proposition 6.3, and Theorem 6.5.

As Karpenko showed in [7] and [8], the topological filtration and the gamma filtration on
the Grothendieck ring can be used to find the torsion in Chow groups of codimension 2 of
projective homogeneous varieties. Moreover, the torsion in the filtrations can be computed
by studying the divisibility of certain polynomials produced by the characteristic classes
on the Grothendieck ring. We use this general approach to find the torsion in codimension
2 cycles on the product of projective homogeneous surfaces together with some additional
combinatorial arguments.

This paper is organized as follows. In Sections 2 and 3, we recall basics of the topological
filtration and the gamma filtration on the Grothendieck ring as well as their torsion sub-
groups of the product of Severi-Brauer varieties. In Section 4, we determine the bound of
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the torsion in codimension 2 cycles on the product of n conics or the product of n Pfister
quadric surfaces. In particular, we determine the torsion of the product of four conics or
the product of four Pfister quadric surfaces in terms of the indexes of the corresponding
algebras. In the last part of this section, we also present its application to a Galois co-
homology group in degree 3. In Section 5, we find a general lower bound of the torsion
in codimension 2 cycles on the product of n Severi-Brauer surfaces. Using this bound, we
determine the maximal torsion subgroup of the Chow group of codimension 2 cycles on
the product of three Severi-Brauer surfaces. In the last section, we recover a result of Izh-
boldin and Karpenko and extend it to the product of three quadric surfaces with the same
discriminant.

In the present paper, A;ys denotes the torsion subgroup of an abelian group A and
I, = {1,...,n} for any integer n > 1. We denote by min{-} and max{-} the minimum
integer of a set and the maximum of a set, respectively.

2. TWO FILTRATIONS ON THE GROTHENDIECK RING

In this section, we briefly recall definitions and properties of the topological filtration and
the gamma filtration on the Grothendieck ring K of a smooth projective variety (see [1]
and [8] for details). We also provide a useful fact concerning the torsion part of these two
filtrations on a smooth projective homogeneous variety.

Let X be a smooth projective variety and let K (X) be the Grothendieck ring of X. The
topological filtration

KX)=TX)>TYX)D...
is given by the ideal T%(X) generated by the class [Oy] of the structure sheaf of a closed sub-
variety Y of codimension at least d. We write T%%+1(X) for the quotient T¢(X)/T%(X).

Let I'%(X) = K(X) and let I''(X) be the kernel of the rank map K (X) — Z. The gamma
filtration

K(X)=T%X)>I'(X)>...
is given by the ideals T'%(X) generated by the product vy, (x1) - - - va; (7;) with z; € I''(X)
and dy + -+ +d; > d, where 7,4, is the gamma operation on K (X). For instance, we have
v (z) = 1 and v, = id, where x € K(X). Indeed, the gamma operation defines the Chern
class ¢j(z) := vj(x — rank(z)) with values in K.

For any d > 0, the gamma filtration I'Y(X) is contained in the topological filtration
T4(X). For small degree d = 1,2, two filtrations coincide. Moreover, the second quotient
of the topological filtration can be identified with the codimension 2 cycles so that we have:

(1) ?3(X) - T?3(X) = CH*(X).

Now we assume that X is a smooth projective homogeneous variety over a field F. Let
E be a splitting field of X. Then, by [11, Proposition 3.4] we have

(2) T4X) =T(X) =I"(Xp) N K(X)

ford =1,2.
Let F be either the gamma-filtration I" or the topological filtration 7" on K(X). Ap-
plying the Snake lemma to the commutative diagram involving the exact sequences 0 —
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FHYX) = FUX) — FY4H1(X) — 0 and the one over a splitting field E, we have the
following useful formula [7, Proposition 2]:

dim(X)
(3) | FUN (X s 1K (Xp)/K(X)| =[] 1FY" (Xp)/ Im(res? 1)),
d=1

where res®/ 4+l ;. Fd/d+l(X) 5 Fd/d+1(X ) is the restriction map.

3. GROTHENDIECK GROUP OF THE PRODUCT OF SEVERI-BRAUER VARIETIES

We now recall the Grothendieck group of a product of Severi-Brauer varieties. In addition,
we state some basic facts about codimension 2 cycles of a product of Severi-Brauer varieties.

Let A; be a central simple F-algebra of degree d; for 1 < i < n. Consider the restriction
map

(4) K(J]sB(4) — K([rE™),
=1

i=1

where the corresponding Severi-Brauer variety SB(A;) over a splitting field E' is identified
with the projective space P%fl. The latter ring in (4) is isomorphic to the quotient ring
Zlxy, -, xp)/(x1 — D)%, -+ (z, — 1)%), where ; is the pullback of the class of the tau-
tological line bundle on ch_l. Then by [12, §8 Theorem 4.1] (see also [10, Proposition 3.1])
the image of the map (4) coincides with the sublattice with basis

(5) {ind(AP" @--- @ AY™) a2y | 0 <y < dj — 1,1 < j <n}.

Let X be the product of Severi-Brauer varieties SB(A4;) as above. For codimension 2
cycles, one can simplify the computation of torsion subgroup by using [4, Proposition 4.7]:
if (A},...,Al,)) = (A4,..., Ay) in the Brauer group Br(F'), then

(6) CH2 (X)tors = CHz(X/)tOl’57

where X’ = [[", SB(A!).

Now we restrict our attention to p-primary algebras. Let Ai,..., A, be central simple
algebras of p-power degree with given indices ind(AY" ® --- ® A®) for all nonnegative
integers i1,...,i,. Let X be the product of SB(A;),...,SB(A,). Then, by [8, Corollary
2.15] the map (1) induces a surjection on torsion subgroups F2/3(X)to,5 — CH2(X) tors.-
Moreover, by [4, Theorem 4.5] and [9, Proposition III.1] there is a product X of Severi-
Brauer varieties SB(A4;) of algebras A; with ind(A" @ --® A%n) = ind(AY" @- - - @ ADn)
such that the above surjective map becomes bijective map

(7) I23(X) tors = CH?(X) tors-

This variety X will be called a generic variety corresponding to X.
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4. ProbpucT OF CONICS

In the present section, we provide a general bound for the torsion in codimension 2
cycles of the product of n conics in Corollary 4.4. In case of the product of four conics, we
determine its torsion in terms of the indexes of the corresponding algebras in Theorem 4.6.
In the last subsection, we present its application to a Galois cohomology group.

The following example was proved in a different way [10, Corollary 3.9].

Example 4.1. Consider the product of two conics X = SB(Q1) x SB(Q2), where @1 and
Q2 are quaternions. Let a = ind(Q1), b = ind(Q2), and ind(Q1 ® Q2) = ¢. If ab = 1,
then the Chow group of X is torsion free, thus we may assume that ab > 1. By (5),
we have a basis {1, axy,bxy, crix2} of K(X), where x1 and x9 are the pullbacks of the
classes of the line bundles on the projective line over a splitting field E. Therefore, we have
|K(Xp)/K(X)| = abe. By substitution y,, = x,, — 1 for n = 1,2, we have a different basis
{1, ay1, bya, c(y1y2 + y1 + y2)} of K(X). Let o, = |T™"t(Xp)/Im(res™/ " 1)|. If ¢ > 2,
then by (2) we have ayy, bys € T'(X) and cy1ys € T?(X). Therefore, |@ T/ (X ) ors] is
trivial. Otherwise, by the diagonal embedding SB(Q;) < X we have y; 4 32 € Im(res'/?),
thus o < min{a,b}. As 2y1ys € T?(X), we get ay < 2. Hence, |@ T/ "1 (X)ors| is trivial
as well. In any case, CH?(X) is trivial. In particular, M(Cs) = M(PQ3) = 0.

We determine the Chow group of codimension 2 of the product of three conics.

Proposition 4.2. (c¢f. [10, Proposition 6.1, Proposition 6.3]) Let Q1, Q2, Q3 be quaternions
and X = SB(Q1) x SB(Q2) x SB(Q3). Then, we have M(C3) = M(PQ3) = 2. Moreover,
CHQ(X)K,,s is trivial except the cases where the division algebras Q; satisfying ind(Q;®Q);) =
ind(Q, ® Qa®Q3) =2 or4 forall 1 <i# j <3 and CH*(X)tors = Z/27 in these cases,
where X is the corresponding generic variety.

Proof. Let d = ind(Q1 ® Q2 ® Q3) and e;; = ind(Q; ® Q;) for 1 < i # j < 3. If one of
ind(Q;), €ij, and d is 1, then by (6) and Example 4.1 CH?*(X )0 is trivial. Therefore, by
(5) we have the following basis

{1, 2y;, eiyiy5, d(y192y3 + yive + y1ys + y2y3) }

of K(X), where y; = z; — 1, z; is the pullback of the tautological line bundle on the
projective line over a splitting field E, and e;;,d > 2.

If either d = 8 or d = 4 and e;; = 2 for some 4, j, then the set K(X)N7T3(Xg) has only
one element dyy2ys of the basis. As e;;y;y; € T?(X) and 2y, € TY(X) for k # i, j, we have
dy1y2y3 = 2€;;9192Y3 = 2yk(€ijyiy;) € T3(X), which implies that T2/3(X)to,s = CHQ(X)WS
is trivial.

Now we assume that d = ¢;; = 2 or 4 for all 1 < i # j < 3. Then, we have
|K(Xp)/K(X)| = 2%}d. Let oy, = [T™/" T (Xp)/ Im(res™/™1)|. Then, we obtain a; < 23,
oy < e?j, and a3 < 2d as 2dy1yoy3 = 2y1(dy2y3) € I'3(X). Hence, |@ F”/”+1(X)tors| < 2.
As ex(dmymams) = (3) (6y1y2ys + 212 + 2y1ys3 + 2y2y3) € T2(X), we have dy1yoys € [2(X).
Observe that T'3(X) is generated by I''(X) - I'*(X) and any element of I''(X) - I'*(X) is
divisible by 2d. Therefore, the class of dy1y2y3 gives a torsion of order 2 in I'%/3(X ). Hence,
we have I'%/3(X) yors = 2/27 and CH?(X)tors = Z/27 by (7). O
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We determine the maximal torsion in Chow group of codimension 2 of the product of n
conics or the product of n Pfister quadric surfaces.

Proposition 4.3. Let n > 2 and 1 < i < n be integers, QQ; quaternion algebras satisfying
ind(®)",Qs,.) =2 for any 1 < m < n and all distinct iy, and X = [[;", SB(Q;). Then, the
torsion subgroup CH?(X)sors of the corresponding generic variety X is

(Z)22)®N | where N = 2" — (<Z) +nt1).

In particular, M(C,) = M(PQ,) > 2.

Proof. Let 1 < i < n and let @; be a quaternion such that ind(®}",Q;,) = 2 for any
1 < m < n and all distinct i, and X = [[;_; SB(Q;). Then, by (5) we have a basis
{1,2z;, ---a;, } of K(X), where x; is the pullback of the class of the tautological line
bundle on the projective line over a splitting field F. Let y; = x; — 1. Consider another
basis {1, 2y;, - - - yi,, } of K(X).

Let j > 1. As any element of I'%*1(X) is divisible by 2771, we have

(8) 20yi, -y, € T (XO\TVFH(X)
for any 27 + 1 < k <n. Moreover, if 2j + 1 < k < 2j + 2, then we obtain
(9) 2y, ey, € TVP(X),

Then, it follows from (8) and (9) that for any j > 1 the class of 2/y;, ---y;, generates a
subgroup of I'*%/21+1(X),,,s of order 2. By the divisibility of an element of I'%*(X), any
two subgroups generated by different classes of the elements 27y;, - - - ¥, and 2y, S Yig
have trivial intersection. Hence, we have

(10) (2)22)%Ni C T2/2H(X) 1oy,

where Nj =3 % o1, (2)-

Let f; = [T/ (Xg)/ Im(res’/ )| /|K*(XE) /K" (X)|, where K*(Xg) (resp. K*(X)) is
the codimension ¢ part of K(Xg) (resp. K(X)). Then, It follows from the base of K(X)
that 51,,82 <1 and

8 < 2([i+1/2}—1)(’;) _ 2[z‘+1/2](§?)/2(’;)
for any 3 < i < n. Hence, by (3) we have
(11) 1B T/ (X ) tors| < o i s([i+1/2]-1)(7)
Therefore, it follows from (10) and (11) that for any j > 1
D2/2N (X ) rors = (2,/22)N5.
As Ny = N, the result follows from (7). O
Corollary 4.4. For any n > 2, we have M(C,) = M(PQ,,) = 2".
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Proof. Let X =[], SB(Q;:) € C, such that ind(Q;) = 2 for all i. For 1 < m < n, set
€i..i,, = max{ind(Qy"' ®---®Q;’™)}, where the maximum ranges over 0 < ji, ..., jm < 1.
If m > 3, then e;,_ 4, Vi, - Yi,, , € T%(X). As 2y;,, € T*(X), we have

(12) 2€iy . imYir * Yim € T2(X).

Since the subgroup T%(Xg) N K(X) is generated by e;,. 4, i, - - ¥, for m > 3, it follows
from (1), (2), and (12) that | CH*(X)srs| < 2VV. If ind(Q;) = 1 for some i, then by (6) the
computation of the upper bound for the torsion subgroup reduces to the case of product of
less than n conics. Hence, we have M(C,) < 2V, thus by Proposition 4.3 we obtain the
result. O

4.1. Four Conics. Let @QQ; be a quaternion algebra over a field F' for 1 < i < 4. Consider
the product X of the corresponding conics SB(Q;). If ind(Q;) = 1 for some 4, then by (6)
the problem to find torsion in CH?*(X) is reduced to the case of product of three conics
(Proposition 4.2). Hence, we may assume that ind(Q;) = 2 for all i. Let g;; = ind(Q; ® Q;),
hi = ind(Q; ® Qr ®Qp), and d = ind(Q1 ® Q2 ® Q3 ® Q4) for all integers i, j, k, | such that
{i,7,k,1} = I4. For the same reason, we may assume that g;;, h;, d > 2. By (5), we have
the following basis of K (X)

(13) {1, 2z, gijxizj, hizjrpay, deizoxsaa},

where x;, x5, x1, 2, are the pullbacks of the classes of the tautological line bundles on the
projective lines. By substitution y; = z; — 1 for all 1 <1 < 4, it follows from (13) that we
have another basis K (X)

(14) {1, 20i, gijyivss ha(yivny + viun + v+ vevn), dWivaysya + > vivve + > Yivs}-
Now we will set up some notations, which will be used in this subsection. For any integer
m € {2,4,8}, we set
Hy={1<i<4|h =m}.
Let J be the set of all indices {12, 13, 14, 23, 24, 34} of g;;. We consider the decompositions
of J:
J=J1UJoUJs=K,UL,,
where J; = {12,34}, Jo = {13,24}, J5 = {14,23}, K; = {jk, jl, kl}, and L; = J\K; for
7 < k<l Weset
G:{ij€J|gij:2}.
We will use the following lemma to find bounds for the torsion in CH?(X).

Lemma 4.5. Let 1 <m <3 and 1 <p < q<r <4 beintegers and let i,j,k,l be integers
such that {i,7,k,l} = I4. Then, in codimension 2, 3, and 4 respectively, we have

(1) Tm(res?/3) 5 222 Ynba yd=2
2yiv; + ik + yive)  if =2,
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4y yiyr, A9yl if 9ij = 2,
4yiy iy —Aviyiye+4 2 Ypygyr  if by = 2,
(2) Im(res®*) 5 < dysy;yi. 4y, dyiyry if 9ij = ik = 2,
Y 4ypyqyr ifd=2 or |G| >4 or |GNJy,|=2
or |G N K;|=3,

dryaysys i |GN Ty | = 2.
Proof. If d =2, then we have

8 if d 2.4 Gl >1 Hy| > 1
(3)F4(X9{y1y2y3y4 if 6{7}07"’ ’_ 07’! 2\_,

C2(2m1702370) = 2(y102ysya + Y Upliglr + O Uplg) € TH(X),

thus, we obtain ¢ (2x;)c1(22;)c2 (221 222324) = 8Y1y2y3ys € I'(X), which imply the results
in Lemma 4.5 (1), (3), respectively. Since 8 y,y,yr € ['*(X), the result in Lemma 4.5 (2)
follows from

c1(22;)co (201 20a3m4) = 1291Y2y3ya + 4yi (y;yk + vy + yeyr) € T (X) and

c1(2z1wowsxy)co (21 x02324) = T2Y1Y2y3ya + 12 Z YpYqYr € F3(X).
If hy = 2, then it follows from (2) and (14) that

(15) 2(yiy;yk + viy; + vivk + yiuk) € T3(X),

which completes the proof of Lemma 4.5 (1). Multiplying (15) by c¢1(2zy) and ¢ (22;),
respectively, we obtain the results in Lemma 4.5 (2). Multiplying 4y;y;yx by c1(22;), we
have the result in Lemma 4.5 (3).

If |G N J,,| = 2 for some m, then we have g;; = gr = 2 for some 1, j, k, [, thus the results
in Lemma 4.5 (2)(3) follow from (14) and (2).

If gi; = 2, then it follows from (14) and (2) that

(16) 2y5y;¢1 (2yk), 2viy;¢1(2y1) € T3(X).

Multiplying the first element in (16) by c1(2x;), we obtain the result in Lemma 4.5 (3). If
d = 4, then we have cy(4x120w324) = 24y1y2y3ys € THX). As 16y1y0y3y4 € T'4H(X), we
complete the proof of Lemma 4.5 (3).

If |G| > 4, then we have |G N J,,| = 2 for some m, hence the result in Lemma 4.5 (2)
follows from the case of |G N Jy,| = 2. If g;; = gir, = 2, then it follows from (14) and (2)
that

2yiyj01(21‘k), Qyiyjcl(2xl)7 2yz~ykcl (2.%'1) c F3(X)
If |G N K;| = 3, then we get gji = gj1 = g = 2, thus, by the same argument we complete
the proof of Lemma 4.5 (2). O

We determine the codimension 2 cycles of the product of four conics as in Proposition
4.2.
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Theorem 4.6. The torsion in Chow group of codimension 2 of the product X of four conics
is trivial if it satisfies one of the conditions (17), (22), (23), (25), (31), (32), (33), d = 16.
Otherwise, the torsion subgroup admits all elementary abelian group whose order is a divisor
of 2°.

Proof. Let m be an integer in I3, ); a quaternion division algebra over F' and X the product
of the corresponding conics SB(Q;) for 1 <i < 4. Set

B = [LV7 (Xp)/ Im(res' )| /| K (X ) /K (X)),

where E is a splitting field of X and K*(Xg) (resp. K*(X)) is the codimension i part of
K(Xg) (resp. K(X)). We find upper bounds of 5; using case by case analysis. Note that
we have 51 < 1.

We begin with some observations on d: if d = 2%, then we have h; = d/2 for all i, which
implies that g;; = d/4 for all 1 < i # j < 4. Therefore, we obtain 3; < 1 for all i, thus,
|® Fi/”l(X)tors] < 1, ice., CH?(X)tors is trivial. Hence, we may assume that 2 < d < 23,
Note also that we have

d§41f|H2|21, and |H8|:Olfd:2,

thus we only consider the cases where d = 4,8 (resp. d = 2,4) in the first 3 cases (resp. the
last 4 cases) of the following. In case where |Hs| = 4, we have d € {2,4,8}.

Case: |Hg| > 3. In this case, we have g;; = 4 for all 7,j. It follows from Lemma 4.5 (1)
that By < (4° - 22121y /46, By Lemma 4.5 (2), we obtain

8, < (8%-47)/8%-2 if |Hy| =1,
= | 24l otherwise.

It follows by Lemma 4.5 (3) that 84 < 2. Hence, by (3) the order of the group @I/ (X) ors
is nontrivial except the case where

(17) |Hy| =1, |Hg| = 3.

If |Hg| = 4, d = 8, then by the divisibility of elements in I'*(X) the class of 8y1y2y3y4
gives a torsion element of T'%/ 3(X)tors Of order 2. As 31823364 < 2, we have

(18) T23(X) tors = Z./2Z.
Similarly, if |Hg| = 3, h; = 4 and d = 4, then we have
(19) T2/3(X ) sors = (2./27)%?

generated by the classes of 4y;yey; and 4(yiy;ye + Yiyiyi + YiYeyt + y1y2y3ya)-
Case: |Hg| = 2. A simple calculation of index implies that 0 < |G| < 1. Hence, it follows

from Lemma 4.5 (1) that
(20) By < (46*\G|*\H2\ . 2|G\+|H2|)/46*|G\ . 9lGl
If |G| = |Hs| = 0, then we have 33 < 8%/(8? - 42). Otherwise, by Lemma 4.5 (2) we obtain

By < (837IGI-IHal . 1 H+|GI+[Haly /g2 . g2~ |Ha|  olHa|
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In summary, we have

1 if |G| =1,|H2| =0or |G| =|Hs| =1,
Bz <92 if |G| =0,|Hs| =1 or |Hy| =2,
22 otherwise.

It follows from Lemma 4.5 (3) that

(21)

B, < 1 if |G| > 1,|Hy| =0,d =38,
4= 2  otherwise.

Therefore, it follows by the same argument as in the previous case that |® T (X) o] is
nontrivial except the case where

(22) \Ho| =2 o1 |G| = |[Ha| = 1 or |G| = 1, |Hs| = 0,d = 8.

Case: |Hg| = 1. By this assumption, we have 0 < |G| < 3. It follows by the same
argument as in the previous case that we have the same upper bounds in (20) and (21) for
B2 and B4, respectively. Let Gy, = G N (Niem, K;) for n = 2,4, If |G| = |G2| = |Ha| =1
(resp. |G| = |G4| = 1,|Ha| = 2), then we have h; = 2, hy = 8, hj = hy, = 4 (resp. hj = 2,
hy = 4), and g = 2 (resp. gi; = 2) for {i, j, k,1} = I, which implies that 83 < 4%/(8-42.2)
(resp. B3 < 8-43/(8-4-2%)) by Lemma 4.5 (2). If |[Ho| = 0, |G| > 2 (resp. |Ha| = 0,|G| = 0),
then by Lemma 4.5 (2) we obtain 33 < 8-43/(8-43) (resp. B3 < 8*/(8-43)). Otherwise, by
Lemma 4.5 (2) we have

By < min{1,837ICI=1H21y . pin {4 g1 HIGIHIHR1Y /(g . 43~ 1Hzl L ol H2ly,
Therefore, we conclude that

if 0 < |Hy| < 1,|G| > 2 or [Hp| = |G| = |G| =1,
2 otherwise,
22 if 1 < |Hy| <2,|G| =0or |Ho| =2,|G| = |G4| =1,
23 if |Hy| = |G| = 0.

By the same argument, the order of the torsion |@® I'/"*1(X)ys| is nontrivial except the
following cases:

(23)

|G| > 2,|Ha| = 0,d =8 or |G| > |Ha||Hy| = 2 or |Hs||Hy| = 2,|G| = |G| =1 or |Hy| = 3.

If d =8, |G| = 6, and h; = 8, then by the same argument as above we obtain
(24) T2/3(X ) sors = (Z/22)%% and T¥4(X ) sors = Z,/27

generated by 4y;yryi, 4viy;yi, 4Yiyjyk, and 8y1y2ysya, respectively.
Case: |Hy4| = 4. By Lemma 4.5 (1), we have

(45-1G1 . 2lG1HT) 146-1GT  9lGlL i d = 2G| # 6,
2= (45-1G1 . 2IG1) /46-1G1 . 9| otherwise.



CODIMENSION 2 CYCLES ON PRODUCTS OF HOMOGENEOUS SURFACES 11

It follows from Lemma 4.5 (2) that

44 otherwise,

843 ifde {4,8},2 < |G| =|GnNL;| <3 for some i,
82-42 ifd e {4,8},]G| =1,

g4 if d € {4,8},|G| = 0.

By Lemma 4.5 (3) and (14), we obtain

1 ifd=38,|G|#0o0rd=4,|GnNJy| =2 for some m,
Bs < <2  otherwise,
22 ifd=2,|G| #6,|G N Jy| #2Vm.

44 By <

Applying the same argument, we have that the order of @I/ (X )tors 1s nontrivial except
the following cases: for some m and ¢
(25) d=2,|G|#6,|[GNJp|=20rd=4,GNJy|=2o0rd=2_8,|GNK;| =3.

If |G| = 0 and d = 4, then by (14) and (2) one has h;y;yry, 4y192y3y4 € T2(X)\I3(X)
for all {i, 4, k,1} = I since any element of I'*(X) is divisible by 23. Therefore, by (14) and
Lemma 4.5 (3) the classes of h;y;yry; and 4y1y2y3ys give torsion elements of I2/3(X) of
order 2. Moreover, the subgroups generated by these classes have trivial intersection by the
divisibility of an element of I'3(X). Hence, it follows from Corollary 4.4 that
(26) T23(X ) tors = (Z/22)%°, thus CH?(X)sors = (Z./27,)%°,
where X is the corresponding generic variety. If |G| = 0 and d = 8, then by the same
argument as above the classes of h;y;yxy; generate different subgroups of r/ 3(X)tors Of
order 2 and the class of 8y1y2ysys = 2y1(4y2ysys) generates a subgroup of 3/ X)) tors of
order 2. Therefore, it follows Corollary 4.4 that
(27) T23(X ) sors = (2/22)%* and T3/ (X) tors = Z,/21.

Case: |Hz| = 4. By (14) and Lemma 4.5 (1), one has

(d /2°  otherwise,

d/2* if|Gl=d=4or|G|=3,d=2,
(28) Be << d/2® if|G|=4,d=2o0r|G|=5,d=4,
d/2? if |G| =6,d=4or |G| =5,d =2,
(/2 i |G| =6,d=2.

It follows from (14) that 33 < 2* = 8*/4%. By Lemma 4.5 (3), we have

(29) By < {22/d if |G| > 2,|G N Jp,| =2 for some m,

23/d  otherwise.

Applying the same argument together with the upper bounds f;, we have T'2/3(X) o # 0
for any case. In particular, if |G| = 6 and d = 2, then by Proposition 4.3 we have

(30) T23(X ) tors = (Z)22)%°, thus CH*(X)yors = (Z/27,)%°.
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Case: |Hy| = 3, |[Hy| = 1. Let H, = {i € Hy||K;NG| = 3}. Then, by the same argument
as in the previous case we have the same upper bound (28) for f2 if we add one case |G| = 3,
d = 4, |[H)| = 1 to the second line of (28). It follows by Lemma 4.5 (2) that 83 < 23. By
applying the same argument as in the previous case we have the same upper bound (29)
for 4. it follows by the same argument as in the previous case that |® ri/ LX) ors| 18
nontrivial except the case:

(31) |G| =2,|GNJp| =2o0r |G| =3,|GNJy,| =2,d=4 for some m.

Case: |Ha| = 2, |Hy| = 2. By Lemma 4.5 (1), we have

d/2*  otherwise,

d/23 if 3 < |G| <4,|H)|=1or |G| =4,|H)|=0,d=2 or |G|=5,|H)| <1,d=4,
d/2? if |G| =5,|H) =2or |G| =5,|H)| <1,d =2 or |G| =6,d = 4,

d/2  if |G| =6,d=2.

It follows from Lemma 4.5 (2) that

8, < {22 otherwise,
3 S

B2 <

23 if |G| =0,d=4or |G| = |Gy =1,d =4.

Applying the same argument as in the previous case, one has the same upper bound (29) for
B4. Therefore, by the same argument, the order of the torsion |® ri/ (X)) ors| is nontrivial
except the following cases: for some m and @

(32) |G| =|GNJy|=2o0r |G|=|GNK;| =3 or |G| =4,|Hy| =0,d = 4.
Case: |Ha| =1, |[Hy4| = 3. By Lemma 4.5 (1), we obtain
d/23  otherwise,
B2 < cd/2%2 if3<|G|<5,|H) =1o0r |G| =5,|H) =0,d=2or |G| =6,d=4,
d/2 if |G| =6,d=2.
In codimension 3, it follows from Lemma 4.5 (2) that

2 otherwise,
B3 <122 if |G| =|Ge| =1,d = 4,
28 if |G =0,d=4.
In codimension 4, it follows by Lemma 4.5 (2) that
1 if2<|G| <3,|GNJp| =2 for some m,d =4 or |G| >4,d =4,
By <42 otherwise,
22 f0< |G| <3,|GNJp| #2Vm,d=2.
Hence, by the same argument as above the order of ®r/ i+1(X )tors 1S nontrivial except the
following cases:
(33) 2 < |G| £3,|GNJpy| =2 for some m or |G| =4, |H)| =0 or |G| =5,|H)| =0,d = 4.
Finally, the second statement of the theorem follows from (18), (19), (24), (26), and (27). O
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Remark 4.7. Indeed, one can easily show that the upper bounds 3182083084 for each case
of the proof of Theorem 4.6 are sharp.

4.2. Galois cohomology and torsion groups. As mentioned in Section 1, the torsion
subgroup of the Chow group of codimension 2 cycles can be used to measure how far is a
relative Galois cohomology group from being a decomposable subgroup (generated by the
class of A; below) [10, Theorem 4.1]. Namely, for an F-variety X = [[,SB(4;) € C, or
SB,, we have

(34) CH?(X)tors = H*(F(X)/F,Q/Z(2))/ ®; H'(F,Q/Z(1)) U [AJ],

where H?(F(X)/F,Q/Z(2)) denotes the kernel of H3(F,Q/Z(2)) — H3(F(X),Q/Z) of
Galois cohomology groups with coefficient in Q/Z(2) and [A;] denotes the class in the Brauer
group Br(F) = H?(F,Q/Z(1)). Therefore, our main results (Corollary 4.4, Proposition 5.2,
and Theorem 5.4) tell us how large indecomposable subgroups we can have.

Moreover, by [10, Remark 4.1] there is a canonical injection from a Galois cohomology
group with the finite coefficient u%? to the torsion subgroup:

(35) H3(F(X)/F,u®?)/ @ H'(F, p,) U[A;] = CH?(X)sors-

Therefore, if the torsion subgroup CH?(X)srs is trivial, then one can write the relative
Galois cohomology group in terms of decomposable subgroups with the finite coefficient
w,,. For instance, if X € Cj satisfying one of the conditions (17), (22), (23), (25), (31),
(32), (33), d = 16 in Theorem 4.6, then we obtain | CH?(X)ss| = 1, thus by (35) we have

H3(F(X)/F,Z)27) = &} H (F,7./27) U [Q;].

5. PRODUCT OF SEVERI-BRAUER SURFACES

In this section, we find a general lower bound of the torsion in Chow group of codimension
2 of the product of n Severi-Brauer surfaces in Proposition 5.2 and prove that the lower
bound is sharp for n = 3 in Theorem 5.4.

To prove Proposition 5.2 we shall need the following lemma.

Lemma 5.1. Let p be an odd prime and letn > 2 and m; be integers such that1 < m; < p—1
forall1 <i <mn. Let ® be the polynomial ([];_(si+1)"™ —1)P in Z[s1,...,sn]. Then, the
alternating sum Z?l_:ln:jn:l(—1)31+“'+J"Cj1...jn in the quotient Z[sl, - ySnl /(S .. sh) is
divisible by p?, where Cj,...j, is the coefficient of the monomial s1' - -- sl in ®.

Proof. Let t,, = (sp + 1)m" For any 1 < ji,...,jn—1 < p — 1, we write ZZ:J dj1~~j“n,1ktk
for the coefficient of sJ' s/ in ®. Let ej,..;, , be the coefficient of sJ'---s"7 in
U, = (s1+ )P ... (5,1 + 1)P""—1 By expanding each factor (s; + 1) = ((s; + 1)P)™

of ¥,,, we have

(36) €j1orgna1 = (<£>ml +on) (( i )mn—l + 1),

jnfl

where p? | a; for all 1 <i <n— 1.
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We prove by induction on n. Assume n = 2. First, observe that Cj,o = 0 in the quotient
Zls1,s2]/(s], s5). Hence, we have

pl . pl . mok P mok — 1
Z(—I)DC]‘UQ:Z - Ciijo _Zdﬁkz < ):Zdj1k< p—1 >’

Ja=1 J2=0 k=1

which implies that

p—1
(37) > (1R ey,, = Z Zdﬂk<m2k__ 1)( 1)t

ji=jo=1 ji=1k=1
For each 1 < k <p—1, we have

(39) ol (00
As

@:ZP:()S + 1) (1P

1=

for any 1 < k < p we obtain

(39) p | dj g
From (38) and (39), it suffices to show that

p—1
maop — 1 :

(40) 1Y d" ) o

: p

Ji=1
Since dj,, = €, and 2]1 1 ( )(—1)j1 = 0, the divisibility in (40) follows from (36).

Now we assume that the result holds for n — 1. By the induction hypothesis, it is enough

to show that Zﬁ_ i 1=1jn=0(— 1)71t+inCy ;. is divisible by p%. Applying the same
argument as in the case n = 2, we have

p—1
(41) Z (—1)itHin Z Zdh . 1k(ﬂ”c;k_—l 1)(_1)j1+---+jn1.

J1==jn—1=1,jn=0 J1==jn-1=1k=1

We have p | (m"k 1) for each 1 < k < p — 1. By the same argument with t,, we also have

p | dj..j, k for each 1 <k < p. For k = p, we have p? | dj,..j,_,p by (36). Therefore, the
result immediately follows. O

We will provide lower bounds of the torsion in Chow group of codimension 2 of the
product of n Severi-Brauer surfaces, which generalize the case of n = 2 in [4, Proposition
6.3].

Proposition 5.2. Let n > 2 and 1 < i < n be integers, A; a central simple algebra
satisfying ind(A?]1 - ®A§”") =3 for any integers 0 < ji,..., 5, < 2, not all equal to 0,
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and X :_H?ZI SB(A;). Then, the torsion subgroup CH?*(X )sors of the corresponding generic
variety X contains

(2/32)N | where N = 2" + 4(;:) —(n+1).

In particular, M(SB,) > 3.

Proof. Let 1 < i <n and let A; be a central simple algebra such that ind(®Z:1A§j’“) =3
for any integers 0 < ji,...,j, < 2, and X =[], SB(A;). Then, by (5) we have a basis
{1,32]" ---x]"} of K(X), where z; is the pullback of the class of the tautological line bundle
on the projective plane and 1 < m < n. ‘ ‘

Let y; = x; — 1. Consider another basis {1,3y]! ---y/"} of K(X). Let By = {byg =
3yp%y2}7 By = {bpqr = 3ypyqyr}v B3 = {b;)qr = 3yp%yqy7‘}7 and Dg = {dil---is = 3(,%‘1 tee yis)Q}
for all distinct 1 < p,q,7 <n and 3 < s <n. Then we have y3 = 0, |B;| = (Z), |Ba| = (g),
|Bs| =3(3), and |Ds| = (). Set

n
m

n
N = |Bi| + [Bo| + |Bs| + 3Dy = 2° +4(’;> _(n+1).
s=3

It follows from (2) that each element of By, By, B3, D is in T'?(X). If any element of
Bi, By, B3, D, is in I'3(X), then by applying Lemma 5.1 with y; = —1 forall 1 <4 < n
we have 3 is divisible by 9, which is impossible. Therefore, any element of By, By, B3, D;
is in T2(X)\I'*(X). Since 3byq = 3y2(3y2) € T'*(X), 3bygr = 3ypyq(3yr) € D3 (X), 30}, =
3y2(Byqyr) € D3(X), 3diy..i, = 3y (3y2,---y2 ) € I'Y(X), any element of By, Ba, B3, D,
gives a torsion of I'%/3(X) of order 3.

We show that any two subgroups generated by any two elements of By, By, Bs, Ds have
trivial intersection. Let by, and by, be two different elements of By. If b,y & by, € 3(X),
then by applying Lemma 5.1 with y, =y, = =1,y = 0 for all 1 <1 # p,q < n we obtain
3 is divisible by 9, which is a contradiction. Hence, the subgroups generated by b,, and by,
have trivial intersection. Moreover, by the same argument the subgroup generated by b,
has trivial intersection with any subgroup generated by any element of By, Bs, and D;.

Let z be either 1 or a product of z1,--- ,x, which does not contain any of z,, x4, and

x,. Consider the sequence ﬁl’?qr consisting of the coefficient of /3 in

/
Opgr
(42) c3 (3:6122:6(1%2) ,C3 (3xpx3xrz) ,c3(3xpzy222), 3 (3:62.%32%2) ,C3 (33012?30(1303 )

c3 (3xpx3x%z) ,C3 (3x§x3x%z) ,c3(3xprqa,2), respectively.

Then, by a direct calculation, we have 3, = (66, 30,30, 132,132, 60,264, 15). Hence, each

/ / / / / / 3 LR :
element of 3, — By, Bpgr — Brpgr and By, — By, is divisible by 9, i.e.,

(43) 9| B;qr - B;pr’ ﬁzlvqr - ﬁ;“pq’ ﬁtlmr - ﬁ;“pq'

Consider another sequence (4, consisting of the coefficient of by, /3 in (42). Then, we have
Bpgr = (12,12,12,24,24,24,48,6). Therefore, we have

(44) 9 ’ qur - BII)qrv /qur - /8(/1177‘7 /qur - ﬁ;pq-
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Let b/, and b}, be two different elements of Bs. If ¥/, . £b},, € I'*(X), then by applying

pqr tuv pqT tuv
Lemma 5.1 with y, =y, = y» = =1,y = 0 for all 1 <1 # p,q,r < n we obtain 3 is
divisible by 9, which is impossible. Therefore, the subgroups generated by b;,,,. and b},
have trivial intersection. Assume that b/, + bu, € I?(X) or b}, £ d;,..;, € I?(X). Then,

this contradicts the divisibility in (43). Hence, the subgroup generated by b;qr has trivial
intersection with any subgroup generated by any element of By and Ds.

Let bpgr and by, be two different elements of By. Suppose that byg, by, € I'3(X). Then,
by applying Lemma 5.1 with y, =y, =y, = =1,y =0 for all 1 <1 # p,q,r < n we obtain
—3 is divisible by 9, which is a contradiction. Therefore, the subgroups generated by by,
and by, have trivial intersection. If by, & d;,...;; € ['*(X), then we obtain a contradiction
by the divisibility in (44). Hence, the subgroup generated by by, has trivial intersection
with any subgroup generated by any element of Dj.

Let 3 < s, < n and let d;,..,, and di’l"'i;/ be two different elements of D; and Dy,

y € I'*(X), then by applying Lemma 5.1 with y;, = --- =

respectively. If d;,..;, = di’l---z
yi, = —land y; = 0 for all 1 <[ # 41,...,is < n we have 3 is divisible by 9, which is a
contradiction. It follows that the torsion subgroup I'*/3(X) s contains (Z/3Z)®V, so does

CH?(X) tors- 0

5.1. Three Severi-Brauer surfaces. We consider the product of three Severi-Brauer
surfaces. Let Aq, As, A3 be a central simple algebras of degree 3 over F' and let X be
the product of the corresponding Severi-Brauer surfaces SB(A;), SB(Az), SB(A3). If one of
A1, Ay, As is split, then by (6) the problem to compute torsion in Chow group of codimension
2 is reduced to the case of product of two Severi-Brauer varieties, which was done in [4,
Theorem 5.1]. Therefore, we may assume that ind(A,,) = 3 for all 1 < m < 3. Let
e; = ind(A; @A), fi = ind(A¥*® Ap), d = ind(A; © A;® A3), and g; = ind(A*® A; @ Ay,)
for all 4, j, k such that {i, j, k} = I5. For the same reason, we may assume that e;, f;, d, g; > 3.
By (5), we have the following basis of K (X)

(45) {1, 3z,,, 322, €T, fixdxy, drirors, eriay, gim?xjxk, girixias, dm%x%x%},
J J J

where x,, is the pullback of the class of the tautological line bundle on the projective plane.
We will need the following lemma to find upper bounds of the torsion.

Lemma 5.3. Let i,j,k be integers such that {i,j,k} = I3 and let y,, = x, — 1 for all
1 <m < 3. Then, we have

(1) 3y, € T*(X) in any case and 3y;jyx € T*(X), 3yFur + 3y,u; € D3/4(X) ife; = 3,
(2) 3yFyr — 3yjyp € T¥U(X) if fi =3,
(3) 32 im1 Ut € Tm(res?3), 6y1yays+33,, 1y 2y € T¥/4(X) and yiy3y3 € TO(X)

ifd =3,
(4) 330 1=y Y2+ 3(wiy2 +y2y;) +12y1y2y3 € T4(X), 3(y;yr — vivk — viy;) € Im(res?3)
if 9i =3,

(5) 3ytysys — 3yiyays € T3(X) if fin = gm = em = 3 for all m.
(6) 3y?y2y? — 6yydys € T3(X) if frn = gm = em = d =3 for all m.
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Proof. (1) By (45), we have v2(3z,, —3) = 3y2, € I'*(X). Since 3y;y; € K(X), this element
is in I'?(X). The rest of them follow from direct computation of c3(3z;xy).

(2) By (45) and Lemma 5.3 (1), the elements 9yj2.yk = 3yj2.(3yk) and 9y,y7 = 3y;(3y?) are
in F3(X ), the result follows from the calculation of 63(336?%).
(3) By (45), we obtain 3(y1y2ys + mel:l ymy1) € T3(X). Thus, the first inclusion imme-

diately follows. As 27(y1y2y3)? € T'°(X), the rest of them follow from the computations of
c3(3z1wows) and cg(6z12273).

(4) By the calculation of c3(3z?z;xy), the first inclusion follows. By (45) we get 3z2z;z) €
I'?(X). Hence, the second inclusion follows by expanding the element 3(y; +1)%(y; +1) (yx +

1).
(5) By direct calculation, we have
150(y7 y3ys —yTy2y3) =—6(cs(3x12523) + c3(3123)) +6(c3 (3z12225) + c3(31125))
+3(c3(33a3x3)+ c3(37323)) — 3(c3(3x3won?) + c3(3x022))
— 963(33@%3@2) + 963(33@%3@3) + 42¢3(3x129) — 42¢3(3x123).

Since 3y?(3y3ys) — 3y? (3y2y3) € T'*(X), the result follows.
(6) It follows by a direct computation that

15097 y3y3 — 3007 y3ys = 4(c3(3x12223) — c3(3xTa3ws)) +6(c3 (327 w2) + c3(3w123))
+2(63(3x1x§) + 63(3.%'2.%'3))—2(03(3.%'%1'2.%%) + 03(3m1x%x§))
+ 8(e3 (323 xow3) + c3(3x12323)) —8(c3(3w123) + ¢3(3x223))

+ c3(3x2x323) — 16¢3(3112273) — 36¢3(31172).
As 9y2y3y3 € T*(X) by Lemma 5.3 (3) and 3y?(3y3ys) € ['*(X), the result follows. O

Applying Proposition 5.2, we prove the main result of this section.

Theorem 5.4. The mazximal torsion in Chow group of codimension 2 of the product of
three Severi-Brauer surfaces is (Z/3Z)%%. In other words, M(SB3) = 38.

Proof. Let Ay, As, A3 be division algebras of degree 3 over F' and let X be the product of
the corresponding Severi-Brauer surfaces SB(A;), SB(A2), SB(A3). Set

By = [T (Xp) / Tm(res™ ") | /| K (Xg) /K™ (X)),

where E is a splitting field of X, 1 <n <6, and K"(Xg) (resp. K"(X)) is the codimension
n part of K(Xg) (resp. K(X)).

We shall find upper bounds of 3, for 1 < n < 6. First of all, by (45) we have 5; < 1. For
the rest of them, we will find upper bounds using case by case analysis. Let i, j, k be integers
such that {i,75,k} = Is, f = fifafs, 9 = 19293, € = e1eze3, G = {1 < m < 3|gm, = 3}
and H = {1 <m < 3| fn = 9}. Observe that if one of {e1,eq,e3} is 3 (say, e; = 3), then
d, gm <9 for 1 <m < 3 and 9y192y3 = 3y;yx(3y;) € [¥(X) by Lemma 5.3 (1).
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Case: e = ea = e3 = 3. By Lemma 5.3 (1), we have o < 1. If d = 3, then by Lemma
5.3 (1) and (3) we get 3y12y3 € Im(res®/4). Hence, by Lemma 5.3 (1), (2), and (4) we have

36 if |[H| =0,
33 fifjmin{g;, g;} if |[H =1, f, =9,
33 fimax {34161 32} if |H| =2, fi = 3,
33 max {36161 34} if |H| = 3.

f2 B3 <

It follows from 5.3 (1) that 9y;y,v7, 93/12?/32 € Im(res*/?), thus we obtain 34 < 3'%2/3%¢g. Again,

by Lemma 5.3 (1), we have 3yz~2(3yj2yk +3j;y3) € Im(res*/®). Therefore, we have 5 < 35/g.
It follows from Lemma 5.3 (3) that we have 85 < 33/32. Finally, by (3) we conclude that

31°/g% if |[H| =0,
3% min{g;, g;}/9° if [H =1, fr =9,
30 max {34161 32} /¢?  if |H| = 2,
3" max{30-1¢1 34y /g% if |H| = 3.

(46) & TV (X)) rors| <

The maximum upper bound of (46) is 3! when g,, = f,, = 3 for all 1 < m < 3 and
d € {3,9}. If g, = f;n = d = 3, then by Lemma 5.3 (5) and (6) we have a := 3y2y3ys —
3yyay3, b == 3y2y3y? — 6yydys € T3(X)\['*(X) as any element of I'*(X) is divisible by
9. Hence, the classes of a and b give torsion elements of I'*/4(X) of order 3 since 3a =
3yi (3y3ys) — 3yi(3y293),3b = 9yTy3y3 — 3yi(3y3ys) € T*(X). Moreover, we have a — b,
a+b ¢ T* as any element of I'*(X) is divisible by 9, thus the subgroups generated by a and
b have trivial intersection. By Proposition 5.2, we have

T23(X ) tors = (Z/3Z)%% and T34(X ) ors = (Z./37,)%.
In this case, by (7) we have
(47) CH?(X ) tors = (Z./3Z)%8,

where X is the corresponding generic variety. If g,, = f,, = 3 and d = 9, then by the same
argument the class a is a torsion of I'3/ 4(X). Moreover, we have either Qy%ygyg is a torsion
of order 3 in T*?(X) @ T'/%(X) or B < 1. Therefore, we obtain

(48) & T (X ) tors | < 3%,
Case: e; = e; =3 and e, = 9. By Lemma 5.3 (1), (3) and (4) we have
B2 < (3° min{d, g1, g2, 93}) /3’e.
If d =9, then by Lemma 5.3 (1), (2), and (4) we have
Pfwin{o, g} i |H]=0,
3° f1 fr9t9n if [H[=1,fs=09,

3lHl+1g if |H| > 2,

f2Bs <
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where s and ¢ are integers such that {s,t} = {i,j}. Similarly, if d = 3, then it follows by
Lemma 5.3 (1), (2), (3), and (4) that

32 f min{9, g } if |[H| =0,

32ftfl€gs min{gtagk} if |H| = 1afs = 95

32f;f; max{3*-1¢ 32} if [H| =1, f, =9,

3lHl+1g if |H| > 2,

f?Bs <

where the minimum of the first inequality ranges over 1 < m < 3. By Lemma 5.3 (1), we
have 9yiy;u2, 9922 € Im(res'/%). Hence, B < 312/(3'9)

By Lemma 5.3 (1), we have 3yz~2(3yj2yk + 3yjy,z),3yj2(3yi2yk + 3yy) € Im(res®/6). If
fi = 3 (resp. f; = 3), then by Lemma 5.3 (2) we obtain 3yl-2(3yj2.yk — 3y;y?) € Im(res/6)
(resp. 3yj2.(3yi2yk — 3y;y7) € Im(res®5)). Moreover, if d = 3, then by Lemma 5.3 (3)
3y2(—3y1y2y3 + 32?,17121 y2u) = 9y2yyi + 9yzyj2y,% € Im(res®%). Therefore, we conclude
that 85 < 3%/g (resp. 37/g) if one of {f;, fj,d} is 3 (vesp. otherwise). By Lemma 5.3 (3),
we have g < 3. In conclusion, we have
(49) |® F"/"+1(X)tors| < 38 for all cases.

Case: e; =3 and e; = e, = 9. By Lemma 5.3 (1), (3) and (4) we obtain

62 < (34 mln{ij gk} min{dv gl})/gge
In codimension 3, by Lemma 5.3 (1), (2), (3), and (4) we have

3959k if [H]=0,d =9,
3fgimin{g;, g } if [H]=0,d =3,

2.8 < 3% fi fegigk %f |H|=1,fi=9,d=09,
33 f; frmax {34161 9y if |H| =1,f; =9,d =3,
3%y if [H]=1,fi #9,
3lH1+24 if |H| > 2.

By Lemma 5.3 (1), we get 3y2-2(3yjyk),3yi(3yj2yk + 3y;yi) € Im(res*/®). Hence, it follows
from Lemma 5.3 (2) that 84 < 3%/g (vesp. 37/g) if |H| = 3 (resp. otherwise).
By Lemma 5.3 (1), we obtain 3y? (3yj2yk +3y;y3) € Im(res®). Therefore, by Lemma 5.3
(2) and (3) we have
93 if |[H| <1ord=3,
g-B5<49%-27 if |H| =2,d # 3,
9.-27%  if |H| = 3,d # 3.
Finally, by Lemma 5.3 (3) 8¢ < 3. Therefore, for all cases we have
(50) & DX s | < 3,
Case: e = ey = e3 = 9. By Lemma 5.3 (1), (3) and (4) we have

By < 3% max{1/3%,1/3IG1+ B/ /33,
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In codimension 3, by Lemma 5.3 (2), (3) and (4) we obtain 33 < (33fg)/df?. It follows
from Lemma 5.3 (4) that

95.27 if [H| <1,

eg-Pa << 94-272  if |H| =2,

93.27% if |[H| = 3.
In codimension 5, by Lemma 5.3 (2) and (3) we obtain
93 if d=3,
92.27 ifd#3,|H| <1,
9.27% ifd#3,|H| =2,
273 if d # 3,|H| = 3.

g-Bs5 <

Finally, by Lemma 5.3 (3) we have 3¢ < 33/ max{9,d}. Therefore, for all cases we obtain
(51) |8 T/ (X)) gors| < 37.
In conclusion, the result follows from (47), (48), (49), (50), and (51). O

6. PRODUCT OF QUADRIC SURFACES

In this section, we obtain upper bounds for the torsion in Chow group of codimension
2 of the product of two quadric surfaces in Theorem 6.1 and the product of three quadric
surfaces with the same discriminant in Theorem 6.5. In the case of the product of two
quadric surfaces, we also provide a sharp lower bound in the gamma filtration in Proposition
6.3.

Let F be a field of characteristic different from 2 and let ¢ = (¢, —a, —b,ab) be a non-
degenerate quadratic form over I of rank 4 for ¢,a,b € F*. If the discriminant is trivial,
then the quadric surface corresponding to the form ¢ is birational to P! x SB(Q), where Q
is the quaternion F-algebra determined by a and b. Otherwise, the quadric is isomorphic
to Ry p(SB(Q)), where Ry is the Weil restriction over a quadratic field L = F(y/c). We
shall write disc () for the discriminant c.

Consider two quadric surfaces with the corresponding quaternions ()1, ()2 and quadratic
extensions L1, Lo as above. We set

SB(Ql) X SB(QQ) if disc Qz = 1,
(52) X = ¢SB(Q1) x Rp,,r(SB(Q2)) if disc@1 =1 # disc Qo,
Ry, /r(SB(Q1)) X Rp,/r(SB(Q2)) if disc@; # 1.

Then, by [3, Corollary 2.5] the torsion in codimension 2 cycles of X of the first and second
cases of (52) is isomorphic to that of the product of two quadric surfaces. Therefore, it
suffices to consider X for the torsion in codimension 2 cycles of the product of two quadric
surfaces. We call X the variety associated to the product of two quadric surfaces.
Consider the last case of (52). If ind(Q1)r, = ind(Q1)r, = 1, then the associated variety
X has torsion-free Chow groups. Thus, we may assume that ind(Q1)r, = 2. We choose a
splitting field E of X as follows. If ind(Q2)r, = 1, then we take a maximal subfield (# Lo)
of @ for E. Otherwise, we take for £ a common maximal subfield (# L1, Ls) of Q1 and
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Q2 if ind(Q1 ® Q2) < 2 or the tensor product of maximal subfields Ej(# L) of @ and
EQ(;'é Ll) of Qo if 1nd(Q1 ® QQ) = 4. Hence, d := [E : F] =4 if 1nd(Q1 ® Qz) = 4 and
d = 2 otherwise. For the second case (52), we choose a splitting field E in the same way.

The theorem below was proven in [3]. Here, we give an elementary proof which does not
use any cohomological method and K theory of quadrics. Moreover, we find upper bound
of the total torsion in the topological filtration of the product of two quadric surfaces with
nontrivial discriminants.

Theorem 6.1. [3, Theorems 5.1, 5.7, 5.8, 5.9] Let X be the variety associated to the product
of two quadric surfaces. Then, the torsion subgroup CH?(X)sos is either trivial or Z./27,
i.e., M(Qz) < 2.

Proof. Let Q; be a quaternion algebra for ¢ = 1,2, X the variety associated to the product
of two quadric surfaces of @);, and E the splitting field of X. If disc@; = 1 for all ¢, then
the variety X is torsion free. From now on we only consider the other cases. To apply (3)
we shall find upper bounds of a,, := |T"/"*1(Xg)/ Im(res™/"*+1)| for each of the following 3
cases.

Case: L1Ly := L1 ® Lo is a biquadratic field extension. Let L = LiLy. Then, we have
Xg = RELl/E(]P’l) X RELQ/E(]P’l) and Xgr, = P! x P! x P! x P!, which have torsion-free Chow
groups. For each 1 < k < 4, let x; be the pullback of the class of tautological line bundle on
the projective space in K(Xgr). We set xj,...;, =z, ---x;, for 1 <iy < ... <ip <4. By
the action of the Galois group of EL/E, we have the following bases of K (Xg) and K(X),
respectively:

(53)  {1,m2i—1 + 24, x12, T34, (21 + x2)(x3 + 24), T12(23 + 24), T34(21 + 22), T1234} and

(54) {1,ei(woi—1 4+ x2i), T12, T34, [ (X1 + 22) (23 + 24), €2x12(23 + 24), e1234(T1 + 22), T1234 },
where e; = ind(Q;)r, and f = ind(Q1 ® Q2)r. Then, we have |K(Xg)/K(X)| = e2e3f. If
e1 = ey = 1, then f = 1. Hence, we may assume that ejeq > 2.

Let yp, = o, — 1. Set yi,..i), = i, -+ yi,, for 1 <4y < ... <, < 4. We will use other bases
for K(Xg) the basis (53) by replacing xj by yi and for K(X)

(55) {1, ei(y2i—1 + y2:), 212, 234, f (Y1 + y2) (Y3 + ya), e2212(y3 + ya), e1234(y1 + Y2), 212234},
where 212 = y1 + y2 + y1y2 and 234 = Y3 + Y4 + Y3y4.

It follows from 212,234 € K(X) that y1 + y2,y3 + ya € Im(resl/Q)7 thus we have o = 1.
By the same argument, we get (y1 + y2)(y3 + y4) € Im(res®/3). In addition, it follows from
the basis and (2) that ejy12, eays3s € T?(X). Hence, as < eqes.

If ind(Q1 ® Q2) = 1, then it follows from closed embeddings SB(Q1) x Ry, /r(SB(Q1)) —
X and Ry, /p(SB(Q1)) x SB(Q1) < X that we have ys4(y1 +y2), y12(ys +y4) € Im(res?/?),
respectively. Otherwise, it follows from ejy12 - (Y34 + y3 + y4) and egyss - (Y12 + y1 + y2)
that e1y12(ys + ya), e2ysa(y1 + y2) € Im(res3/4). Therefore, ag < 1 if ind(Q; ® Q2) =1 and
ag < ejey otherwise.

By a transfer argument, we have ay < d. Hence, we obtain

1 if ind(Q1 ® QQ) =1,

@Tn/n—f—l X . <
| (Heors| < d/f otherwise.
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If f =1, then ind(Q; ® Q3) < 2, thus d = 2. Therefore, |T2/3(X ) sors| < 2. Moreover, the
order of the group @T"™/ ™" (X ) sors is trivial if f =4 or f =d =2 or ind(Q; ® Q) = 1.

Case: Ly = Ly. Let L = Ly = Ly. Then, Xg = Rpr/p(P') X Rpr/p(P'). Applying
the same argument with the previous case, we have the basis (53) (resp. (54)) replacing
(x1 + x2)(x3 + x4) (vesp. f(z1 + z2)(x3 + x4)) with two elements x13 + 294 and z14 + o3
(resp. f(x13 + x24) and f(x14 + wo3) for K(Xpg) (resp. K(X)). As e; = 2, we have
|K(Xp)/K(X)| = 4e3 /2.

Similarly, we use other bases for K (Xg) the basis by replacing x; with y; and for K(X)
the basis replacing f(y1 + v2)(ys + ya) with two elements f(y13 + yo4 + Zi:l yr) and
J(y1a + y23 + Zi:l Yk)-

By the same argument used in the previous case, we have oy = 1. In codimension
2, we have 2y19, €ay34, (y1 + ¥2)(y3 + ya) € Im(res®?). If f = 1, then e; = d = 2, and
X = Ry /p(SB(Q1)) X R p(SB(Q1)), thus by the diagonal embedding Ry ,p(SB(Q1)) < X
the sum of all elements of codimension 2 in the basis is contained in the group Im(res*?).
Moreover, if f # 1, then f(y13+v24), f(y14+y23) € T?(X). Therefore, we obtain ap < 2esf.

If f =1, then we have z12(y12 + Y34 + Y13 + Y24 + Y14 + Y23) € Im(res3/4). Otherwise,
we obtain 2y12(y3 + y4), e2yza(y1 + y2) € Im(res®*). Hence, we have a3 < 2 if f = 1 and
a3 < 2e9 otherwise. Finally, we get oy < d, thus

1 if f=1,

56 T "X ) ors| <
(56) @ (X |_{d/f otherwise.

Hence, the group @T™™ 1 (X)ps is trivial except the case where f = 2 and d = 4. In
the latter case, we can further reduce the upper bound of ay to 2 if 2yj934 € T 4(X ).
Hence, the group &T™/ "H1(X ) tors is trivial in this case. If 2y1934 ¢ T*(X), then the class
of 2y1934 = 2y12 - 234 — 212 - 2(y13 + y2u) € T3(X) gives a torsion element of order 2 in
T3/ 4(X)tors- Therefore, the group T2/ 3(X) tors is trivial in all cases.

Case: one of discQ; is trivial. Let disc@; = 1. Then, we have Xp = P! x RL2E/E(IF’1).
We have the following bases of K(Xg) and K (X), respectively:

{1, 21,22 + 3,223, x1 (22 + x3), x123} and {1, e1z1, ea(z2 + x3), x23, fr1(x2 + 23), €12123},

where e; = ind(Q1)r,,e2 = ind(Q2)r,, f = ind(Q1 ® Q2)r,. It follows that we obtain
|K(Xg)/K(X)| = e2eaf. We will use other bases for K(Xg) the above basis by replacing
x by yx and for K(X)

(57) {1, e1y1, e2(y2 + y3), 223, f(y1 + 1) (y2 + y3), e1y1223},

where 293 = Y2 + y3 + yo3.

Obviously, we have a; < e;. In codimension 2, we have esyss, e1y1(y2 + y3) € T?(X).
If f =1, then (y12 + Y13 + y2 + ¥3) + 223 — 2(y2 + y3) = Y12 + y13 + Y23 € T?*(X). Hence,
we get g < min{eq, e} if f =1 and ag < ejes otherwise. Finally, we have oz < d, thus
the same upper bound (56) is obtained for the order of the group &7 n/ "1 X) tors. Hence,
the group @I/ ™1 (X )sors is trivial if f = 1 or f =d = 2 or f = 4. Assume that f = 2
and d = 4. Then it follows from (57) that 2y103 € T?(X). If 2y193 € T3(X), then we have
ag < 2. Therefore, the group T/ "H1(X)ors is trivial in this case. Otherwise, the class of
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2u123 gives a torsion element of order 2 in T%/3(X). In any case, we have |T%/3(X)ors| < 2.
In conclusion, the result follows from (1). O

Remark 6.2. Observe that the proof of Theorem 6.1 indicates when the torsion in Chow
group of codimension 2 of X is trivial. Moreover, the proof still works if we replace the
topological filtration by the gamma filtration.

Now we provide a nontrivial torsion subgroup in the gamma filtration:

Proposition 6.3. With the above notations, we have T2/3(X)iors = Z/27 if L is a bi-
quadratic extension, f =2, and d = 4.

Proof. Tt follows from the basis (55) that 2y1234 € K(X). Hence, by (2) we have 2yj1234 €
I%(X). As d =4, 4yja34 € [3(X). We show that this element is not contained in I'*(X) by
computing the Chern classes of the elements in the basis (54).

Consider the basis (54) of K(X) with f = e; = 2, where i = 1,2. It follows from Whitney
formula that we have ¢1(2(x2i—1 + ®2i)) = 2(y2i—1 + y2i), c1(x2i—1 + T2;) = Yy2i—1 + Y2i, and
ca(2i—1 + w2;) = Y2i—1Yy2;. Therefore, we have

(58)  ca(2(zai1 + 22:i)) = 4y2i_1Y2i, 1(T2i129i)? = 2y2i_1y2; and c;(ze;_ 1) = 0.
Similarly, we obtain ¢;(2(x2i—1 + 22;)) =0 for 3 < j < 4.

Let z = (21 + 22)(23 + 74), 2’ = (y1 + y2)(y3 + y4), u = Y123 + Y124, and v = Y134 + Yo34.
Then, by a direct computation, we have

2 hor i) + 2 for j = 1,
/ N
(59) ¢i(z) = i?@zf ;r j;yj; i()u + 0+ Y12 + Y34) Ei j - ;
2y1234 for j = 4.
Since ¢3(22) = c1(2)? + 2¢2(2), it follows from (59) that
(60) 02(22’) = 8y1234 =+ 147 + 16(u + v+ Y12 + y34).

As ¢3(22) = 2(c1(2)ca(2) +c3(2)) and ¢4(22) = 2(c1(2)e3(2) +ca(2)) + e2(2)?, it follows from
(59) that

(61) ¢j(22) =0 mod 4 for j = 3,4.

Let w = x12(x3 + x4). Then, we obtain ¢;(w) = 2212 + y3 + y4 + 2’ + v and cy(w)=
4y1234 + 3u + 2(y12 +v) + Y13 + Y14 + Y23 + Y24 + y34. Therefore, we have

2(8y1234 + 9u + 4v + 6y12 + 3y13 + 3y23 + Y14 + 3y24 + 2y34) for j =2,
(62) ¢;j(2w)=1 4(10y1234 + 3u + 2v) for j =3,
8Y1234 for j = 4.

Let w' = x34(21 + x2). Then, we have the Chern classes (62) for 2w’ by replacing 1, 2, 3, 4
with 3, 4, 1, 2, respectively.

It follows from (58) that c1 (w12)%c1(234) = e1(212)%c1(21234) = 2(uty1234), c1(w34)%c1(212)
= c1(w34)%c1(21234) = 2(v + y1234). Since cq(x) is divisible by 2 for any element x €
{2z, 2w, 2w, 2(x9;—1 + w2;)}, one can see easily that the subgroup generated by the prod-
ucts of three of the first Chern classes of any element of the basis (54) is generated by
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2(u + y1234) and 2(v + y1234) modulo 4. Similarly, using (58), (60), (62) one sees that the
subgroup generated by the products of the first and second Chern classes of any element
of the basis (54) is also generated by 2(u + y1234) and 2(v + y1234) modulo 4. It follows
from (61) and (62) that the third and fourth Chern classes of 2z, 2w, 2w’ is divisible by
4. Therefore, the subgroup I'*(X) is generated by 2(u + y1234) and 2(v + y1234) modulo 4.
Hence, 2y1234 is not contained in T'3(X) and this element gives a torsion of I'/3(X) of order
2. The result immediately follows from Remark 6.2. U

Remark 6.4. If X is a corresponding generic variety to X in Proposition 6.3, then we
obtain CH?(X) = Z/27, which recovers a theorem of Izhboldin and Karpenko [5, Theorem
14.1]. Indeed, it is possible to find such a variety by showing that the gamma filtration for
the variety Ry, ,p(SB(Q})) X Rr,/r(SB(Q%)) x Rr/r(SB(2, Q] ® Q%)) is torsion free, where
L = L1 Ly is a biquadratic extension and SB(2, Q] ® @) is the generalized Severi-Brauer
variety of rank 2 left ideals in the biquaternion algebra (Q} ® Q5)r.

6.1. Three quadric surfaces with the same discriminant. In this subsection we con-
sider the product of three quadric surfaces with the same discriminant. Let QQ1, Q2, Q3 be
three quaternion F-algebras and let L be the quadratic extension over F' corresponding to
three quadratic surfaces with the same discriminant as above.

We set

63) X = {SB(Ql) x SB(Q2) x SB(Qs) if discQ; = 1,

Rp,p(SB(Q1)) x R p(SB(Q2)) x Ry p(SB(Q3)) otherwise

and call it the variety associated to the product of three quadric surfaces with the same
discriminant. Then, by the same argument as in the case of two quadric surfaces, the torsion
in codimension 2 cycles of X is isomorphic to that of the product of three quadric surfaces
with the same discriminant.

Let h = ind(Q1 ® Q2 ® Q3), J = {{1,2},{3,4},{5,6}}, and fp; = ind(Qumax{r,s}/2 @
Qmax{t,u}/2)L for any {{p’ Q}a {T’ 8}’ {t’ u}} =J. Set

Fo ={{p.q} € J| fpqg =m} for m =1,2,4.

Consider the second case of (63). If ind(Q;)r = 1 for all 1 < ¢ < 3, then the variety
X has torsion-free Chow groups, thus we may assume that ind(Q1)r # 1. We choose a
splitting field E of X as follows. If ind(Q2)r = ind(Q3)r = 1, then we take a maximal
subfield for E. If ind(Q2)r = 2 and ind(Q3)r = 1, then we take for F a common maximal
subfield of @1 and Q2 if ind(Q ® Q2) < 2 or the tensor product of maximal subfields of @
and Q2 if ind(Q1 ® Q2) = 4.

Now we may assume that ind(Q;)r = 2 for all 1 < i < 3. If h = 8, then we take for
E the tensor product of maximal subfields of @;. If h = 1, then |Fy| = 3, thus we take
the tensor product of a common maximal subfield of @)1 and Q2 and a maximal subfield
of Qs for E. If |Fy| > 2, then we have (Q1)r ~ (Q2)r ~ (Q3)r, thus we take for F a
maximal subfield of Q. If h € {2,4}, |Fi| <1, and |Fy| > 1, then there exist Q; and Q;
such that ind(Q; ® Q;) = 4 for some 1 < i # j < 3, thus we take for E the tensor product
of maximal subfields of @; and @; which also splits the remaining quaternion algebra. If
h € {2,4}, |F1| = 1, and |Fy| = 0, then there exist Q; and Q; such that (Q;)r, ~ (Q;)r, for
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some 1 < i # j < 3, thus we take for FE the tensor product of a maximal subfield of @); and
a maximal subfield of the remaining quaternion algebra. Hence, we have

2 if |F| > 2,
d:=[E:F]=<4 ifh=1orhe{24},|F| <1,
8 ifh=8.

Theorem 6.5. The torsion subgroup in the codimension 2 Chow group of the product of
three quadric surfaces with the same discriminant is contained in (Z/27)%7.

Proof. Let Q; be a quaternion F-algebra for 1 < i < 3 such that the corresponding qaudrics
have the same discriminant. Let X be the associated variety to the product of three quadric
surfaces of ); and E be the splitting field of X as above. If the discriminant is trivial, the
result follows from Proposition 4.2. Hence, we may assume that the discriminant is non-
trivial, thus we have XE = REL/E(]Pl) X REL/E(]Pl) X REL/E(]P)l) and XEL = ]P)l X ]P)l X
P! x P! x P! x PL.

For each 1 < k < 6, let a3 be the pullback of the class of tautological bundle on the
projective line in K(Xgr). Set xj..;, = x4 ---x;, for 1 < iy < ... < i < 6. It follows
from the action of the Galois group Z/2Z & Z/2Z & 7Z./2Z of LE/E that we have the bases
of K(Xg) and K(X), repectively:

{1, @p + 2q, Tpgy Tpr + Tgs, Trs(Tp + Tg), Tprt + Tgsus Tpgrss Tpg(Trt + Tsu), Tpgrs(Te + Tu),
qurstu} and

{1, epg(@p + 2q), Tpgs fru(Tpr + Tqs), €pgrs(Tp + q), 9(Tpre + Tgsu)s Tpgrs, FpgTpq(Trt + Tsu),
etuqum(xt + xu)v qurstu}7

where epy = Ind(Quax(p,g1/2)L, 9 = Ind(Q1 ® Q2 ® Q3)r, and p,q,7,s,t,u range over
{{p, q}, {?“, 8}, {t,u}} =J. Then, we have ’K(XE)/K(X)’ = (612634656f12f34f569)4.

Let yp = 2 — 1 and y;,...5, = Ysy -+ ¥4, for 1 < 43 < ... < 4 < 6. To simplify the
computation, we shall use other bases for K (Xg) the above basis replacing xj with y; and
for K(X)

{17 epq(yp + yq)v Zpqs ftU(sz + ZqS)v epqzrs(yp + yq)a g(zprt + quu)7 ZpqRrs, quzpq(zrt + Zsu)7
zpqzrsztu}a
where Zpg = Yp¥Yq T Yp + Ygqs Zpr = Yp¥Yr + Yp + Y, and Zprt = Yprt + Zpr + Ypt + Yrt + Yt

Let oy, = [T/ (X )/ Im(res™™t1)|. We will find upper bounds of o, for 1 < n < 6.
Observe that any basis element of K (Xg) multiplied by d is contained in the image of the
restriction map. Since z,, € K(X), we get y, + y, € Im(res'/?). Hence, we have a; = 1.
We divide the proof into three cases.

Case: fpq # 1 for all {p,q} € J, ie., |Fi| = 0. It follows from the basis of K (X) that

epq¥pq € THX) and (y,+y,)(yr+ys) € Tm(res?3) for any {p, ¢} # {r,s} € J. Since fy, # 1,
we obtain fu, (Ypr + ygs) € T?(X) for any {t,u} € J. Therefore, we have

(64) ag < erzesaese f12.f34f56.

Since z,, € T'(X), we have e,syrs - (Yp + y4) € Im(res®*). Moreover, as 212234256 € T3(X)

we obtain Y Yprt + Ygsu € Im(res3/ 4), where the sum ranges over all such elements in the
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basis. As fy, # 1, the element fy,(ypr + Ygs) - (Yt + yu) is contained in the group Im(res®/*).
Hence, we have

(65) az < (e1zesaess)’ f12.f34 fs6d/ max{ fia, f3a, fo6}-

AS €pgUpgs Foq(Urt+su) € T2(X), we obtain epersUpgrss €pq¥pg” foq (Yrt +Ysu) € THX). As
pqlpq - Zrs * 2t € Im(res?/?), we have ay < [1,yes pg min{d, e12e34€56/€pg } min{d, fpgepq}-

It follows from epqyp, € T2(X) that we have as < [1,4es min{d, e12esaes56/€pq}. Obvi-
ously, ag < d. Hence, we obtain

(66) ’@ Tn/n—l—l(X) d2 H min{d, 612634656/6pq} min{d, quepq} .

tOI‘S‘ S 4 2
g* max{ f12, f34, f56} oty o

Let B be the right-hand side of the inequality of (66). We first consider the case where
G := g = h. Then, one can compute B for each subcase of g = h. Consider a subcase
where G = 4 and [Fy| = 1. Then, f,, = 2 for some pg € J. If 2y,.s, € T4(X), then
20rstu(Yp + yq) € Im(res®/%), thus we can reduce the upper bound B(= 2%) to 1. Hence,
we have |@ T/ "1 (X)sos| < 1. Otherwise, by Lemma 6.6 (1) below we obtain either
‘@ Tn/nJrl(X)tors‘ < 227 T3/4(X)tors = T4/5(X)tors = Z/QZ or ’@ Tn/nJrl(X)tors’ < 2
T3/*(X)tors = Z,/27.. Therefore, T?3(X)sors = 0 in any case.

Let By = {{p,q} € J|epy = 2}. Then, we may assume that |Es| > 1. If G = 1, then
we have |Fy| = |E2| = 3 and d = 4. Therefore, by Lemma 6.6 (2) we can reduce the upper
bound 2° (resp. 2!%) obtained by (64) (resp. 65) to 2° (resp. 2°).

Applying the same argument, together with Lemma 6.6 to each subcase of g = h, we
obtain

(67)
1 lfG:4,O§|F2|§2OI‘G:|E2|:CZ:2,|F2|:3’
IT2/3(X ) ors| < 2 (resp. 2°) if G =8 or G = 4(resp. 2),|Fs| = 3,|Es| = 3,
o= 2t ifG =By =2|F=3d=40rG=2,0<|F| <2,
26 if G =1.

Now we consider the case where H := g = h/2. By the same argument, we have the same
upper bound (67) for [T%/3(X)iors| if G = H = 1,2. Similarly, if H = 4, then we obtain

1 if H=4,|F|=2,|E| =2,
(68) IT3(X ) tors| < 4 22 if H=4,2 <|Fy| <3,|Ey| =3,
2° (resp. 2%) if H = 4,|F3| = 0(resp. |Fy| =1).

Case: |Fy| = 1. Let fun, =1, e = epq = €5, and € = ey,. For any number ¢, we write
m(t) for min{d, ¢}. Then, Lemma 6.6 (3) and the above argument implies that

|® T"/n+1(X)tors| < (eze/qufm) (e3el2m(qu)m(fm)d) (edm(62)m(ee’)zm(que)m(frse)).
(m(eQ)m(ee')Q) (d)/(eze’qufrsg)4,

where each term inside the parentheses of the numerator is the upper bound of «,, for
2<n<6.
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By the same argument used above, Lemma 6.6 (1) and (2) yield
2  ifG(or H)=2,|F| =2,|Fy| =2,
(69  |T*(X)tars| <22 if G(or H) =2,|F3| = 2,|Ey| =1 or G (or H) =1,
27 if G(or H)=2,0< || <2, |E) =3.

Case: |Fy| > 2. Then, we have |F}| = |E3| =3, d = 2, and g € {1,2}. It follows from
Lemma 6.6 (3) that yp, + Ygs — (Ypg + Urs) € T?(X) for all {p,q} # {r,s} € J. Since we
have 2y,, € T?(X) and (yp + y4) (yr +ys) € Im(res??) for all {p, ¢} # {r, s} € J, we obtain
a9 S 23.

As d =2 and ) yprt + Ygsu € Im(res3/ 4), where the sum ranges over all such elements

in the basis, it follows from Lemma 6.6 (3) that ag < 25. Similarly, by Lemma 6.6 (3) we
have ay < 2°. As d = 2, we obtain a5 < 2% and ag < 2. In conclusion, we have

(70) |® Tn/nJrl(X)torS‘ < 27/94
for1 <g<2.
The result follows from (67), (68), (69), and (70). O

Lemma 6.6. With the above notation, the followings hold:
ErsYrstu (resp. etuyrstu) € T3 (X)7
(1) If qu = €rs (7"9517- qu = 6tu)7 then ErsYrstuipq (7’6317- etuyrstuzpq) € T4(X)7

EpaCrs - Y123456(TESP. €pgeruYi23a56) € T°(X).
Moreover, if in addition esyrsty (Tesp.  ewyrstu) ¢ THX), then we have a subgroup
(ersYrstu (TESP. €10 Yrstu)) < T3/4(X)tors of order ey, (resp. eps). If in addition eysYrstuzpg
(resp. etYrstuzpg) ¢ T°(X) and epyersy123456 € T°(X), then we obtain a subgroup (e,sYrsty -
(Yp + yq) (resp.  ewYrstu(Up + Yq))) C T4/5(X)to,5 of order ey, (resp. ers). If in addition
epgCrsy123a56 (T€sp. epgerutizzase) ¢ TO(X), then we have a subgroup (€pqersyi123456 (resp.
epqetuy123456)> - T5/6(X)tors of order ey (7’65}?- ers)-

(?/pr + ?/qS) + (?/pt + ?/qu) + (?th + ?/su) - (?/pq + Yrs + ytu) € Im(reSZ/g),
(2) If g =1, then $ (yr + Ys) Wpt + Yqu — Ypg — Ytu) + Yrs(Up + Yg + Y¢ + yu) € Im(res™/*),
(Yp + Yo) (Yrt + Ysu — Yrs — Ytu) + Ypg(Yr + s + ye + yu) € Im(ves®?).
Ypr + Ygs — Ypq + Yrs) € TQ(X)a
Ypa(Yr + Ys) — Yrs(Yp + yq) € Im(res®?),
(3) Ifftu — 17 then 4/5
Ypq(Urt + Ysu T Yru + Yst) — Yrs(Upt + Yqu + Ypu + Ygt) € Im(res™?),
Ypgtu T Yrstu + ytu(ypT + yqs) + ytu(yps + yqr) € Im(res4/5).

Proof. (1) For simplicity, we give the proof for the case of f,; = e,s. In this case, we have

ErsYrs - (ytu + Yy + yu) - (yrs +yr + ys) : qu(yrt + ysu) = €rsYrstu € Tg(X)-
It follows from the previous result that e,syysty - 2pg € T4(X) and €pqYpq * ErsYrstu € T°(X).
Since we have Ctultu * €rsYrs € T4(X)a €rsYrs * Ctultu * Zpg — CtulrsY123456 € TS(X) and
€pgUpq * €rsYrs * Etultu € TC(X), the second statement immediately follows.



28 S. BAEK

2) If g = 1, then 2, + 2gsu — (2pg + 2rs + 200) € T?(X), which implies the first result. As
P q Pq
Yr + Ys, Yp + g € Im(res'/?), the remaining results follow by multiplication the first result
by these elements.

(3) Since fr, = 1, we have Ypr + Ygs — (Upg + Urs) = 2Zpr + 2gs — (2pg + 2rs) € T?(X). As
Yp+yq € Tm(res'/?), the second and third results follow from (y, + ) (Ypr +Ygs — Ypg — Yrs) €

Tn(res¥/4) and (e + ) lpa (5 + 5) — a3 + )] € Im(res™5), respectively.
The assumption implies that (Quax{p,q1/2)L = (Qmax{r,s}/2)r =: Q. Hence, the last one
follows from the closed embedding Ry, (SB(Q)) X Ry /r (SB(Qmax{t,u}/2)) = R r(SB(Q))x

Rp/r(SB(Q)) x Rp/r(SB(Qmax{t,u}/2))- O
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