NOTE ON THE FILTRATIONS OF THE K-THEORY

NOBUAKI YAGITA

ABSTRACT. Let X be a (colimit of) smooth algebraic variety over a subfield
of C. Let Kglg(X) (resp. K?OP(X((C))) be the algebraic (resp. topologi-
cal) K-theory of k (resp. complex) vector bundles over X ( resp. X(C))).
When Kglg(X) = K?OP(X((C))7 we study the differences of its three (gamma,
geometrical and topological) filtrations. In particular, we consider the cases
X = BG for an algebraically closed field k, and X = Gy /T} the twisted form

of flag varieties G/T for non-algebraically closed field k.

1. INTRODUCTION

Let X be a (colimit of) smooth algebraic variety over a subfield k of C. We
consider the cases that

(1.1) K?

alg (X ((C))
where K (X) (resp. K7,,(X(C))) is the algebraic (resp. topological) K-theory
generated by algebraic k-bundles (complex bundles) over X (resp. X(C)). In this

assumption, we study the typical three filtrations
FI(X) C F,(X) C F,

geo top

(X) =2 K?

top

(X(C))

namely, the gamma and the geometric filtrations defined by Grothendieck [Gr], and
the topological filtration defined by Atiyah [At]. Namely, we study induced maps
of associated rings

gri(X) = grgeo(X) = 970, (X(C)).

Atiyah showed that grj,,(X(C)) is isomorphic to the infitite term EZ of the
AHss (Atiyah-Hirzebruch spectral sequence) converging to K-theory K*(X(C)).
Moreover he showed that grf,,(X(C)) = ¢ri(X) if and only if EX is generated
by Chern classes in H*(X(C)). We will see that similar facts hold for gr},. (X).

geo
Namely, gras,(X) = AEZ*0 of the motivic AHss converging to motivic K-theory

AK** (X). Moreover we show that gr,,(X) = gr*(X) if and only if AEZ+*0 is
generated by Chern classes in the Chow ring CH*(X) =& H?**(X).

Let G be a compact Lie group (e.g., a finite group) and Gy, be the corresponding
algebraic group over an algebraically closed field k. Then by Merkurjev and Totaro

([To]), we have the isomorphisms
K%, (BGk) = R(Gy)" = R(G)" = K,

top(BG)a
where R(Gj)" (resp. R(G)") is the k-representation (resp. complex represen-
tation) ring completed by the augmentation ideal, and BGjy and BG are their

classifying spaces.
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Atiyah had conjectured in [At] that F!(BG) = F{, (BG) for all finite groups.
Weiss [Th] showed this does not hold for G Ay. For counter examples of p-groups
were given by Leary-Yagita [Le-Ya] when G is rank,(G) = 2 of class 3 with p > 5.
We will see for the same group G, F2P*2(BG},) # F20+2(BG),) = Fi2t* (BGy).

We study these filtrations detailedly for connected groups (O, SOn,...). In

particular we show

Theorem 1.1. (Let k be an algebraically closed field.) For G = Spiny, there is an

element x in K7, (BGy) such that

0+#x € gr, Y(BGy), 0#zxc grSeO(BGk), 0#x€ grtgop(BG).
These facts also hold for the extraspecial 2-group 2}‘_""6.

We consider the different type of examples, which satisfy (1.1). (See also [Ga-
Za|, [Za].) Here we do not assume that k is algebraically closed. Let us write by
M (X) the (pure) motive of X, and by M, = (M,,) the Rost motive for a nonzero
pure symbol a € KM (k)/p ([Ro1,2], [Su-Jo]). We consider the cases X such that

(1.2) M(X)= M, ® AX)
where A(X) is a sum of k-Tate motives. Then we can see that (1.1) is satisfied by
the result from([Vi-Ya],[Yal).

Some cases of flag manifolds G/P satisfy (1.2) ([Ca-Pe-Se-Za|, [Ni-Se-Za), [Pe-
Se-Za]). In particular (for p = 2) X = Gz x/T) is a such example, where Gy i, is
the nontrivial G g-torsor (induced from a Rost cohomological invariant 0 # a €
KM(k)/2, [Ga-Me-Se]) for the exceptional Lie group Ga, and T' a maximal torus
in G ([Bo], [Pe-Se-Za]). (Namely, G /T, is a twisted form of G2/T.) Note that
H*(G2/T) is torsion free, and we have

97 geo(G2k/Tk) = g1y (G2/T) = H* (G2 /T).
By using the fact that CH*(Go x/T}) is generated by Chern classes, we can show

Theorem 1.2. Let Ggj, be the nontrivial G -torsor for the Rost cohomological
invariant in Ké”( )/2 Then we have

12 (Ga/T) =2 gr2t, (Gox/Ti) = CH* (Goi /Th).

From (1.1), the gamma filtration is defined purely topologically. Thus we see
that this topological invariant is isomorphic to a purely algebraic geometric object
such as the Chow ring of twisted form.

2. FILTRATIONS

We first recall the topological filtration defined by Atiyah. Let Y be a topological
space (e.g., finitely generated CW-complex). Let K*(Y") be the complex K-theory
: the Grothendieck group generated by complex bundles over Y. Let Y be an

i-dimensional skeleton of Y. Define the topological filtration of K*(Y') by
Flp(Y) = Ker(K*(Y) = K*(Y"))

and the associated graded algebra gr},, (V) = F/,,(Y)/ F;;;l( ).
We consider the long exact sequence (exact couple)

L KR YT o KR(YY) - KA S K (YY)
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Here we have K*(Y?/Y~1) =2 K*® H*(Y*/Y*"!), which induces the (well known)
AHss

EXY (V)= HY (V) ® K* = K*(Y).
By the construction of the spectral sequence, we have
Lemma 2.1. (Atiyah [At]) gr},,(Y) = EX0(Y).

Next we consider the geometric filtration. Let X be a smooth algebraic va-
riety over a subfield k of C. Let Kglg(X ) be the algebraic K-theory which is
the Grothendiek group generated by k-vector bundles over X. It is also isomor-
phic to the Grothendieck group genrated by coherent sheaves over X (we assumed
X smooth). This K -theory can be written by the motivic K-theory AK** (Y)
([Vol,2], i.e.,

;lg(X) = @ AK* 7 (X).

In particular Kglg(X) = @ AK**(X).
The geometric filtration ([Gr]) is defined as

F! (X) = {[Ov]|codimxV > i}

geo

(and FZ2i01(X) = F2!,(X)) where Oy is the structural sheaf of closed subvariety
V oof X.

We recall the algebraic cobordism M GL** (=) [Vol] and let us write MGL**(X) =
0*(X), in fact, this is isomorphic to the algebraic cobordism defined by Levine and
Morel ([Le-Mol,2], [Vol,2]). Recall

Q (Spec(k)) = Q*(pt.) = MU**(pt.) = MU*.
Then we have the isomorphism

Q(X)@pu- Z=CH*(X), Q(X)@uu- K* =2 K? (X)

alg

where the MU* module structure of K* is given by Todd genus (see § below).
Each element z € Q*(X) is represented by a projective map x = [f : M — X| with
codimx M =i and M smooth ([Le-Mo1,2]), namely, z = f.(15s) for 1), € Q°(M)
and f, is the Gysin map. Then the geometric filtration is also defined as

F2 (X)) ={f.(0a)|f : M — X and codimx M > i}.

geo

Here we recall the motivic AHss ([Ya2, 4])
AE (X)) = B (X, K = AK* (X).

(Of course this spectral sequence is not defined using skeleton as the topological
case. But we assume the existence of the AHss converging to the motivic K-theory
AK** (X).) Note that

AE§*7*7*// (X) o HQ*’*(X;K*N) ) CH*(X) ® K*H.

Hence AE2%*9(X) is a quotient of CH*(X) by dimensional reason of degree of

differential d, (i.e., d,AE?*** (X) = 0). Thus we have
Lemma 2.2. grZ (X) = AEZ*9(X).

geo
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Proof. Let ¢ : Q*(X) ® K* — K*(X). Then

F2 (X)) =q{f.(1p) € O (X)|f : M = X and codimx M > i}.

geo
Let ¢’ : Q*(X) — CH*(X) and ¢” : CH*(X) — E2*0. Then ¢|(Q*(X)® 1) =
q"q'. Thus we have

F2,(X)/F23(X) = ' CH'(X)

geo geo
since ¢’ is an epimorphism. O
Lemma 2.3. Let tc : Kglg(X) — K{,,(X(C)) be the realization map. Then
F;eo(X> ( ) 1Ftlop(X(C>>'

Proof. Let us write K,?OP(X((C)) simply by K(X). The Gysin map f, : K(M) —

K (X) is defined by using Thom isomorphism
K(M)= K(Thx(M)) = K(X).
Let codimx M > i. For an 2i-skeleton X?* of X(C), we can show that the map
K(Thx(M)) = K(X) — K(X?)
is zero. Because the above composition map is rewritten
K(Thx(M)) = K(Thx(M)*) — K(X?).
Its first map is zero, because H*(Thx(M)) = 0 for * < 2¢ and the exact sequence

(exact couple) for K-theory for skeletons of X (see the definition of the AHss). O

At last, we consider the gamma filtration. Let A\’(z) be the exterior power of
the vector bundle z € K7, (X) and A;(x) = 37 A*(z)t*. Let us denote

Atya—n(®) =i 27

The Gamma filtration is defined as
ng(X):{Wil(‘rl)"""yim( |@1+ +ZW>Z L eKalg(X)}'

Then we can see F!(X) C Fj.,(X) (Proposition 12.5 in [At], Atiyah proved
FI(X) C Fl,,(X) in Kipp(X). However the arguments work also in K7 (X)
and this fact is well known.) Let € : K?, 4(X) — Z be the augmentation map and
ci(z) € H*'(X) the Chern class. Recall ¢" : CH*(X) — E25*0 be the quotient

map. Then (p. 63 in [At]) we have

" (en(x)) = V" (2 — e(2))].
Lemma 2.4. (Atiyah) The condition F*(Y') = F25 (Y) (resp. F2*(X) = F2, (X))

top geo
is equivalent to that E%°(Y) (resp. AE2:*0(X)) is (multiplicatively) generated

by Chern classes in H**(BG) (resp. CH*(BG)).



3. MoRAvA K-THEORY (K-THEORY LOCALIZED AT p)

In this paper, we assume that p is a fixed prime number and consider only coho-
mology theories (Chern rings) localized at this prime p. Namely, for the notation
A*(X) means A*(X)(,) in this paper. In particular, Z always means Z, and
MU*(—) means MU* (X)) throughout this paper.

Let AMU** (X) = MGL** (X) and recall MU* = Z[z1, ..., &n, ..], deg(z;) =
(—2i,—1i). Given a sequence S = (zj,,i,,...) of generators, we can construct
generalized cohomology theory (in the Al-homotopy category) such that

t@AMU(S)***I(X) = MU(S)*(X(C)) with MU(S)* = MU*/(S).

In particular letting xpn_1 = v, and S = (z;]i # p™ — 1), we have the motivic
BP-theory ([Ya2,4])

ABP**(X) with MU*/(S) = BP* = Z[vy,vs, ...].
Then we have the isomorphisms ([Ya])
ABP** (X) = MGL** (X) @y~ BP,
MGL* (X) = ABP** (X) @ gp- MU*.
Similarly, we can construct the motivic connective Morava K-theory such that
Ak(1)* (X)) with k(1)* = Z/plvn),

and the integral connected K-theory Ak(1)** (X) with k(n) = Z[v,]. Moreover
let the (usual) motivic Morava K-theory
AR (n)"" (X) = Ak(n)™ (X)[v, "], AK (n)™*(X) = Ak(n)** (X)[v;, .
By the Landweber exact functor theorem ([Ral, [Hal), it is well known that
AK** (X) = (AMU** (X) @ pu- Z) © Z|B, B™Y

where the MU*-module structure of Z is given by the Todd genus, and B is the
Bott periodicity with deg(B) = (—2,—1). Since the Todd genus of vy (resp. v,
i>1)is 1 (resp. 0), we can write

AK** (X) = ABP** (X) ®@pp+ Z|B,B™"] identifying B’ = uv,.
Then we have
Lemma 3.1. There is a natural isomorphism
AR (X) =2 AK(1)™ (X) @gyy- ZIB, B™"] identifying v; = B~
Proof. Recall that there is the natural map (by the construction of AMU(S))
p: ABP** (X)@pp- Z[B, B~'] » AK(1)"" (X) ® 1. ZIB, B~'].
Of course, the functor
A A®g ). Z[B, B |2 A®Z{1,B, .., B"?}
is exact, and we have the spectral sequence
By (AK(1) @1y ZIB, B™Y] = AK(1)"* (X) @z . ZIB, B~Y).
Since for a BP*(BP) module A, the functor
A~ A@pp- Z[B,B"]
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is exact from the Landweber exact functor theorem, we have the spectral sequence
from the AHss for ABP** (X)

By (ABP) @pp Z[B, B™'] = ABP**(X) @pp- Z[B, B™],

which is compatible with the map p. The Es-term of the both spectral sequences
are isomorphic to

H**(X;7)® Z|B, B™].

Therefore the two spectral sequences are isomorphic. (]

We also note from the arguments in the above proof.

/

Lemma 3.2. Let E(ABP)>**" (resp. E(AK(1))5**") be the AHss coverging

T

to ABP** (X) (resp. AK(1)** (X)). Then we have
E(ABP)>**" @pp. K(1)* = B(AK(1))>**").

T

’

From above lemma, it is sufficient to consider the Morava K-theory AK (1)** (X)
when we want to study AK * (X). Hereafter of this paper, we only consider the
theories AK (1)** (X) and Ak(1)** (X) instead of AK** (X) or K*,(X). (We

alg
only consider the cohomology theories and Chow rings localied at p.)

We assume the following assumption

(*)  Kay(X) = Kip, (X(C))  (and K;,,(X(C)) =0).

alg

That is equivalent to
(x) AK(1)**(X) = K(1)*(X(C)) (and K(1)**1(X(C)) = 0).
From Lemma 2.3, we have

F,(X)C F.(X)CF}]

geo top

(X(C)).

Here we note that the gamma filtrations of topogical and algebraic geometrical are
same, i.e., [7(X) = F7(X(C)). So we have the maps of associated graded rings

9r3(X) = grpeo(X) = grio,(X(C)).

geo
Lemma 3.3. gr2(X) = grz,,(X).
Proof. 1f 0 # x € gr2(X), then 21 = ¢1(£) € AK (1)%**(X) for some bundle ¢. In

CH*(X), we know ¢1(€) = c1(det(§)) which is determined by the line bundle det(§).
Line bundles are determined by Pic(X) = CH(X). So 0 # 2 € CH'(X). O

Lemma 3.4. If an elementy € AK(1)>*(X) is represented by 0 # ' (resp.y”,y"") €
gri(X) (resp. grie,(X), gri,p(X(C))), then
i<j<k, and i=k=jmod2(p—1)).
Proof. The element y is represented
y=vjy € AK(1)**(X)/F2 y=ojy” € AK(2)**(X)/F21"

for some s,t € Z/p. O
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Remark. The above fact does not hold for y € K¢, (X) (which is a sum of
K(1)%*(X), 0<% <p—2). Let us write
y=B*y, + By + o+ BTy o
with y; € K(1)%(Y) and, y; € F2. (V). Suppose j > k. Then this means that
there is s such that 0 # y, € grs, (X) with s — s’ = 0 mod(2p — 2). Of course if

geo
s # k, then k — s’ # 0 mod(2p — 2).
To study the difference of F,,(X) and F;

top(X (C)), we consider AHss E** (BP)
converging to BP*(X). Suppose that
[y ® 2] € BP* @ H*(X(C)) = E(BP)}"°

is an permanent cycle, but [z] € H*(X(C)) itself is not (i.e., dr(z) # 0 for some
7). Let 2/ € BP*(X(C)) be a corresponding element for [v; ® 2] in E%*

Lemma 3.5. Let = € H**(X(C)) and =/ € BP* (X(C)) be elements with the
assumption above. Suppose that

0+# 2’ € BP* (X(C)) ®pp- Z[v,v'] = K(1)*(X(C))
and that ¥’ € BP* (X(C)) ®gp- Z is in the image of the Totaro cycle map
CH* (X) — BP* (X(C)) ®@pp+ Z.
Then 0 # @' € grE, (X(C)), but 0 # 2 € grass ™V (X)).

Proof. This case ¥ = * — (p — 1) in the above arguments. Let z € H*(X(C)). In
fact 2’ € Im(CH'"P*!(X)) and 0 # 2’ € gral Pt (X(C)), but 0 # 2’ = [v,®a] €
Ir70p(X(C)). 0

Next we consider the cases grZ(X) = griop(X(C)). From the Atiyah theorem
(Lemma 2.4), the following lemma is immediate.

Lemma 3.6. Suppose (x) and suppose that the infinity term E%9(K (1)) (of the
AHss for K(1)*(X(C))) is generated by Chern classes in H*(X) for all + > N.
Then for all x > N, we have

gr¥*(X) = EZO(K(1)*(X(C))) for all + > N.

Lemma 3.7. (Lemma 2.8 in [Ya3]) Suppose (x) and that H*(X(C)) is generated
by Chern classes. Then we have

CH*(X)= H*(X(C)) for*x<p-1.

Moreover if X(C) is simply connected (resp. 3-connected), then we have the iso-
morphisms for x < p (resp. x <p+1)

CH*(X) ® Z, = H*(X(C); Zy).
Proof. By the assumption, we see
gy (X) = gy, (X) = gris, (X(C)).
To compute the last graded ring, we consider AHss

Ey* (K1) = H*(X; K(1)") = K(1)"(X(C)).
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Here K (1)* = Z[vy,v1] with |v1]| = —2p+2. It is well known that the first non zero
differential is
dop-1(z) =11 ® Q1(z) mod(p).
So each element in H?*(X (C)) is not tergent of any differential d, when * < p—1.
(Of course d,(x) = 0 for Chern classes x.) Hence we have

9riep(X(C)) = H*(X(C)) for x<p—1.

Similarly, considering AHss converging to AK(1)** (X), we have the isomor-
phism
grie,(X) =2 CH*(X) for*<p—1.

Here we use the fact E3"*°(AK (1)) & CH*(X). Thus the isomorphism of the
geometric and toplogical filtrations, gives the first statements.
From the isomorphism

H"'(X;Z/p) = H'(X(C); Z/p) = 0.

we see that H11(X;Z) is p-divisible. Since the image of the differential of p-divisible
elements are also p-divisible,

H?(X(C)) = gryy,(X)

> gr2 (X) = CH*(X)/(p — divisible).
Hence we have the second isomorphism. The third isomorphism is seen similarly.
O

Remark. The first statement in the above lemma is also proved by the Riemann-
Roch formula without denominators, namely, the composition map

CHY(X) — gri . (X)S CHY(X)

geo
is multiplication by (—1)"~'(i — 1)!. Hence we get CH*(X) = grt_,(X) for i < p.
Moreover we know that CH®(X) is represented by the i-th Chern class ¢;(§) for
some bundle &.

Remark. The assumption of Lemma 2.8 in [Ya3] is not sufficient, and it should
be changed as above.

4. CLASSIFYING SPACES B(G FOR FINITE GROUPS

Let G be a compact Lie group (e.g., a finite group) and G}, be the corresponding
algebraic group over an algebraically closed field k in C. Then by Merkurjev and
Totaro ([To]), we have the isomorphisms

(1.1) K9,(BGy) = R(Gy)" = R(G)" 2 K,

top(BG)v

where R(Gj)" (resp. R(G)") is the k-representation (resp. complex representa-
tion) ring completed by the augmentation ideal and K9, (BGy) (resp. Ky,,(BG))
is the K-theory generated by k-bundles (resp. complex bundles) of the classifying
space BGy, (resp. BG).

When £ is algebraically closed, we write BG by BG simply. For Section 4-6,
we assume k is algebraically closed.

In this section, we consider cases that G are finite groups. At first, we consider
the case G = Z/p". Then H*(BG) = Zlyl/(®"y), |ly| = 2 and y1 = ci1(e) for a
nonzero linear representation e. So all three filtrations are the same. The similar
fact holds for its product.
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Theorem 4.1. (p=2,r=1 case by Atiyah [At]) Let ¢ =p" and G = ®"Z/q. Then
910p(BG) = Zly1, -, ynl /(qyi, Y] y; — yiy5)-

Hence the three filtrations are the same.

Proof. Let Q) = B, be the higher Bockstein. The integral cohomology is isomorphic
to a subring of the mod ¢ cohomology

H*(BG) C H*(BG;Z/q), when x> 0.
Here H*(BG;Z/q) = Z/q[y1, -, Yn) @ A1, ..., zp) with Qf(x;) = yi, and we know
H*(BG) 2 Z/qy1, -, ynJ{Q0 (Tiy -3 )|l <in < onyis <}

with Q()(.’L'“ .’L'ls) = Ek(—l)k_lyik% ---j:ik T
We consider the AHss converging to K(1)*(BG). We define the weight degree
for elements in this AHss by
w(vy) =0, w(y) =0, w)=1

so that w(Qf (x4, ...zi,)) = s — 1. We will prove
(1) (weight =0) N E3" = Z/qlys, -, ynl/(yly; — viy])  for x>0,

(2) (weight =1)N E;’;/ =0.
Then we can prove this theorem by the following arguments.

We consider the AHss converging to the motivic AK (1)*(BG). The weight w(z)
of an element 2 € H** (X : Z/q) is defined as 2+’ —x. Since z; € HY(BG;Z/q)
and y; € H>Y(BG;Z/q), their weights are in fact w(z;) = 1 and w(y;) = 0. The
degree of the motivic AHss is

deg(dor—1) = (2r — 1,r —1,-2(r — 1)) with (r—1) =0 mod(p — 1),
namely, w(da,—1) = —1 which means
dor—1(weight = s) = (weight = s — 1).

From (2), (weight = 0)-parts are not a target of any diffrential ds,_1 for r > q.
By the naturality of realization map from the motivic AHss to the usual AHss, we
get the same fact for the AHss for K(1)*(BG). Since K(1)*(BG) is generated by
only weght = 0 elements, we have the theorem.

The first nonzero differential is known daq—1(z;) = v%+p+'”+p“1y§ [Ya2]. We see
(1) from

dag—1(Qo(w172)) = dag—1(y172 — Yy221) = Y193 — Y12

Now we prove (2). Let z € Ker(das—1) and = > a;;Q((z;z;). Then (since d,

is a derivation)

dog1(x) =Y ai(yiy? —yly;) =0 in Z/qlyr, ., ynl-

Here we consider them in mod(x;,y;|i > 4). Then we see a1z = aj,y3 and we see
(by dividing y1y2y3)
—1 —1 -1 -1 -1 -1
app(yi —ys ) +tans(ys —y3 ) +ah (i —yl ) =0.
This implies that a/, € ideal(y? ", y2™", y&™"). Moreover we see that a1 contains
y4. Similarly ass, a13 contains y{ and yd respectively.
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On the other hand , we see

d2q-1(Qp(12223)) = d2g—1()_ yrwas)

= yiydes — > piwoy = yiydes — > ysziyd
= yiiws —ysm1) = — > yiQ4(waws)

Taking off a”’ da,—1Qp(z12223) for some adequate o’ € Z/q[y1, ..., yn], we can prove
(2). O
Recall that a group G is called an extraspecial p-group if its center Z(G) = Z/p

and there is a central extension

0= Z/p—G— @& Z/p—0.

For each prime p, such groups have only two types, namely, p}f%, Pt (eg.,
217? = Dy the dihedral group (of order 8), p'** = Qs the quaternion group). We

here only write down the case pr for p > 3. The cohomology is known ([Yal,3])

H®*"(BG) = (Y ® B) ® Z[cp) / (p°cp)

where Y = Z[y1, y2]/ (pyi, y195 — yiy2), B =Z/p{c2,...,cp-1} and |y;| = c1(e;) and
¢i = ¢i(§) for some linear representations e; and p-dimensional representation &.
Hence the even dimensional part of this cohomology is generated by Chern classes
and all three filtrations are the same. The odd degree part is

HOdd(BG) =Y ® Z/plcp{ar, a2}/ (y2a1 — yraz,y5a1 — yTaz) |ai| = 3.
Theorem 4.2. Let G = pi™ and p > 3. Then
9110p(BG) 2Y @ (Z{cp} @ B) ® Zley]/ (P cp)-
Proof. We know the Milnor cohomology operation
vy tdyp—1 = Q1 : H*'(BG) — H**"(BG)
is injective and Q1 (a;) = yicp. Hence we see
grK(1)(BG) = B = K(1)* ® H**"(BG)/(Q: H*™(BG))
= K(1)* @ H*"(BG)/(yicp).
|

When p > 5, the groups of rank,G = 2 are classified by Blackburn. When
groups are of class 2 (i.e., [G,[G,G]] = 1), cohomology rings are generated by
Chern classes ([Le-Ya],[Yal]), and hence all three filtrations are the same. Define
the class 3 p-group (i.e., [G,[G,G]] # 1) by

G(4,1) = (a,b,cla? =P = P =[b,c] =1,
[a,b7] =P, [a,c] = ).

Let G = G(4,1). Then there is an element z,41 € H*’*?(BG) [Le-Ya],[Ya] such

that it is permanent in AHss for K(1)*(BG) and x,41 is not represented by Chern

class. But all elemnts in H"*"(BQG) is represented by transfers of Chern classes
[Ya]. Of course Chow rings have the transfer map. Hence we have

Theorem 4.3. Let p > 5 and G = G(4,1). Then gry,,(BG) = gry.,(BG) but
gri(BG) % gri.,(BG) fori=4,2p+2.

geo
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Proof. The first isomorphism follows from that all elements in H¢"*"(BG@) is repre-
sented by transfer of Chern classes. The second statement follows from x4 is not
represented by Chern classes and the element x,.1 € E?P720 represents a nonzero
element in gr?(BG) from Lemma 3.4. g

5. CONNECTED GROUPS WITH p = 2

Throughout this section, let p = 2. At first we consider the case G = O,,. The

mod 2 cohomology of the classifying space BO,, of the n-th orthogonal group is
H*(BOn;Z/2) = H*((BZ/2)";2/2)" = Z/2[wr, ..., w,]

where S,, is the n-th symmetry group, w; is the Stiefel-Whiteney class which re-
stricts the elementary symmetric polynomial in Z/2[x1, ..., z,]. Each element w? is
represented by Chern class ¢; of the induced representation O,, C U,,. Let us write
w? by ¢;. _

Recall the Milnor operation @; which is defined Qo = 3 and Q; = [Q;_1, PP ].
Let us write by Q(¢) the exteria algebra A(Qo, ..., Q;). W.S.Wilson ([Wi],[Ko-Ya])
found a good Q(i)-module decomposition for BO,,, namely,

H*(BOn, Z/Q) = @i:_lQ(i)Gi with Qo...Q;G; € Z/Q[Cl, ey Cn].

Let us write by P(n)* = BP*/(p,...,v;—1). The BP*-theory is then computed
Hence we have K(1)*(BG) = P(1)*(G-1 ® QoGo).

Moreover, by Wilson, it is known that

BP*(BO,) = BP*[[c1,...,cn]]/(c1 — €]y cycn — 1)

1

where ¢ is the conjugation of ¢;. Hence K (1)*(BG) is generated by Chern classes
from H*(BG). Thus from Lemma 2.4, all filtrations are same.

Here Gj_1 is quite complicated (see for details [Wi]), namely, it is generated by
symmetric functions

Zx%ilJrl...:I:ii’ﬁlxi{il...xi{fq, k+qg<n,
with 0 <4 < ... <idp and 0 < j; < ... < jg ; and if the number of j equal to jy is
odd, then there is some s < k such that 2i, + 2° < 275, < 2i, + 2571,

Thus when k < 1, there is not above j,, that means numbers of j = j, are
always even.

Theorem 5.1. Let G = Oy,. Then all three fitrations are the same, and gry,,(BG) =
A® B/2 with (y; = 2% so that Y y1 = 1)

A=Z) (o) (Yao-1925)"} B =Z{D_ui(yoys) ... (y2s92611)7 }-
(Note A/2 = G_1 and B/2 = QvGy.)

Example. When G = O, we have the isomorphism gry,,(BG) = Z[ca] ©
Z7./2]c1].
When G = SO,q4, (since SOpqq X Z/2 = Opq4), the situations are same. Let
G = SO3,. Then from Field, we have ([Fi], [Ma-Vi], [In-Ya])
CH* (BG) = Z[CQ, ...an]{ygn} D CH* (BOQn)/(Cl),

BP*(BG) = BP*[c3, ..., can]{y2n} ® BP*(BOs2,)/(F1)
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where I} = ker(Bdet*) and y3, = (—1)"22"2¢y,,. Hence
Yop = (—1)*2"*1w2n S H*(BG)(Q)

By Field, it is shown that just (n — 1)lys, (for n > 2) is represented by Chern
classes (Theorem 8, Corollary 2 in [Fi]). Thus we have

Theorem 5.2. Let G = SOs,, and n > 3. Then
9Ttop(BG) = gry.,(BG) = Zca, ca, ..., con]{yan} & griy,(BO2,)/(c1).
However we have gr2"(BG) % gr2t,(BG).

geo

We note when G = SOy, all the three filtrations are same, since y, is represented
by Chern classes.

Proposition 5.3. Let G = SOyp41) and p # 2. Then
gTj;(BG) = Z(p) [025 seey c?p+2] & (Z(;D){17 yl} S2) Z/p{y})
with |y’ =2(p+ 1) and |y| = 4.
We consider the exceptional Lie group Gs. Let G = Ga. Its mod(2) cohomology
is well known
H* (BG, Z/Q) = Z/Q[w4, We , ’LU7]
and integral cohomology is
H*(BG) = Z[w4, CG] ® (Z{l} S¥) Z/2[w7]{w7})
We can compute the AHss for BP*(BG) ([Ko-Yal, [Sc-Yal)
grBP*(BG) 2 Z[cy, cs) @ (BP*{1,2ws} & P(3)*[c7]{c7}).

Here we can show the element {2w,} is represented by a Chern class 5. We see
K(1)*(BG) =2 K(1)*[ca,c6] ® {1,2w4}), and ([Ya2], [Gu])

CH*(BG) = BP*(BG) ®@pp~ Z = L[ch, cu, co, 7]/ ((ch)? — 4ea, 2¢7).
Theorem 5.4. Let G = Go. Then all three filtrations are the same
Irrop(BG) = CH*(BG)/(c1) 2= Ly, ca, c6]/((c3)* — dea).
Next we study the case G = Spiny. Its mod(2) cohomology is
H*(BG;Z/2) 2 7./2[ws, we, wr, ws].
The infinity term of the AHss for BP*(BG) is still computed
grBP*(BQG) = Z[ca, 6] ® (BP*[cs]{1, 2wy, 2ws, 2waws, v1ws }
SP(3)"[crl{cr} @ P(4)"[cr, es]{cres}).
Hence we see
grK(1)*(BG) = K(1)*[c4, cs, cs]{1, 2wy, 2ws, 2waws, viws }.

Here it is known that 2wy, 2ws, 2wswsg are represented by Chern classes, and write
them ¢}, ¢}, c. But it is proved (Theorem 6.2 in [Sc-Ya]) that vqws is not repre-
sented by (transfer) of Chern classes while it is in the image of cycle map. Let
cl(§) = [viws] ([Gu], Lemma 9.6 in [Ya], §9 in [Ka-Te-Yal]). Totraro’s conjecture
also holds this case
CH*(BG) = BP*(BG) ®pp+ Z
= Zca, co, cs] @ (241, ¢5, ¢}, ¢5}  Z/2{¢} & Z/2[erl{er})

with |£] = 6. Moreover, we can prove
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Lemma 5.5. Let G = Spin;. Any element x € BP*(BG) such that
0 # a = [vywsla € BP*(BP) with a € Z|ca, cs, cs),
can not be generated by Chern classes of BP*-theory.

Proof. Let N = Z(G) =2 Z/2 be the center of G and N@® A is a maximal elementary
abelian 2-subgroup of G, so A = (Z/2)3. A representation ¢ of G is said to be a
spin representation, if /N # 0. For a nonspin representation 7, we know the total
Chern class

nivea =nla € BP[cy, c6, c7].

For a spin representation y, we have
(X)Iv = (1 +wu)” € BPY(BN) = BP"[u]/([2](u)) |u] =2

where [2](u) = 2u + v1u? + ... is the 2-th product of the BP*-formal group laws.
Here we note s = 85’ since cg|y = u8. It is known that viws|y = viu? [Sc-Yal.
Then

c(X)|n = (1 + 8u+ 28u? + ... + u®)*.
Here we can compute

8u = dvu? = 2vud = v3ut, 28u? = 14vu® = Toul, ...

Thus we see that viu? is not represented by the restriction of Chern classes. (How-

ever v2u* has its possibily, infact |vjws| = 4 and it is represented by the Chern
class ¢z.)
Of course ¢(x @ n) = c¢(x)c(n), we get the lemma. O

Theorem 5.6. Let G = Spiny. Then

gr:op(BG) = Z[C4a Cﬁaw8]{1a 0/2}3

9o (BG) = Zea, cg, cs)(Z{1, ¢h, ¢y, cg} © Z/2{€})
where deg(§) =6 (resp. =4) if a = geo (if a =7).

Recall that 2?2" is the extraspecial 2-group, which is isomorphic to the central
product of n-copies of the dihedral group Dg of order 8. Let G = 2?6. There is an
inclusion i : G C Spins and its induced map i* : H*(BSpinz; Z/2) — H*(BG;Z/2)
is also injective by Quillen [Qu]. Let j : Z/2 = Z(G) C G. Then it is know [Qu],
[Sc-Ya] j*i*(wg) = u* € Z[u]/(2u) C H*(BZ(Q)). Hence we have in K (1)*-theory

§ " (nwg) = vut # 0 € K(1)*(BZ(G)) = K(1)*[u]/(2u — viu?).

This element v; ® wg is not generated by Chern classes also in H*(BG). Hence we
have

Corollary 5.7. Let G = 217%. Then there is an element x € AK(1)*(BG) such
that

0£ze€e gri(BG), r=£&€ grgeo(BG), and = wg € grfop(BG).
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6. CONNECTED GROUPS FOR p ODD

In this section, we assume p > 3. At first we consider the case G = PGL,. Its
mod p cohomolgy is given by Vistoli and Kameko-Yagita ([Vi], [Ka-Ya]), namely,
there is a short exact sequence

0—M/p— H*(BG) - N —0

where M = Z[z4, xg, ..., T2p] additively (but not as rings), and N = N'@A(Qo, @Q1){uz},
|ug| = 2 for some Z/p-module N’. The BP-theory BP*(BQG) is also studied There
is a short exact sequence

0— BP*®M — grBP*(BG) = N" =0

where grN” = P(3)* @ N’ ® QoQ1(u). Therefore we see gr*K(1)*(BG) = M
additively. Totaro’s conjecture also holds this case. Thus we have

Theorem 6.1. Let G = PGL,. Then
griop(BG) = gri o (BG) (=2 M additively).

geo

When p = 3, it is known (page 2274 in [Ka-Ya]) that M /3 = Z/3]ca, c3, 6]/ (c3 —
cZ). Hence the gamma filtration is the same when p = 3. However, for p > 5, it
seems unknown that M above is generated by Chern classes or not.

For exceptional Lie groups, we can compute BP*(BG) except for (G,p) =
(Es,p = 3). So we know g}, (BG), but it seems not so easy to compute CH*(BG)
now, and gry.,(BG) seems unknown. For example, when G' = F; we can com-

pute BP*(BG). The mod(3) cohomology is generated by x4, xs, x9, 20, %21, ... (by
Toda). The BP-theory is also computed

gTBP* (BG) =~ BP* [Clg, 624]{1, 31‘4} &) BP* QE® P(g)*[$26]{z26}
where E = Z[x4, zs]{abla,b € {z4, x5, 220} }. Hence we have
grk(l)*(BG) = f((l)* X (Z[Clg, 024]{1, 3.1‘4} & E)

It is now unknown whether the element 22 € E is in the image of the cycle map.
If it is so, then gr} (BG) = gry,,(BG), otherwise gri ,(BG) % gri,,(BG) for
i =12,16.

7. ROST MOTIVES

In this section, we do not assume that k is algebraically closed. At first, we recall
the (generalized) Rost motive ([Rol1,2]). Let M(X) be the motive of (smooth)
variety X. For a non zero symbol a = {ay, ..., a,} in the mod 2 Milnor K-theory
KM (k)/2, let ¢a = ({ag,...,an)) be the (n + 1)-fold Pfister form. Let Xy, be
the projective quadric of dimension 2"*! — 2 defined by ¢,. The Rost motive
M,(= My,) is a direct summand of the motive M (X4, ) representing X4, so that
M(X,,) = M, @ M(P"~1).

Moreover for an odd prime p and nonzero symbol 0 # a € K, %_1 /p, we can define
([Ro2],[Vo4,5],[Su-Jo]) the generalized Rost motive M,, which is irreducible and is
split over K /k if and only if a|x = 0 (as the case p = 2).

The Chow group of the Rost motive is well known. Let & be an algebraic closure
of k, X| = X ®p k, and i : CH*(X) — CH*(X|;,) the restriction map.
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Lemma 7.1. (Rost [Rol,2],[Vo4], [Vi-Ya], [Ya3,4]) The Chow group CH*(M,) is
only dependent on n. There are isomorphisms
CH*(M,) = Z{1} & (Z{co} ® Z/p{c1, ..., ca-1})[y]/ (ciy? )
and  CH"(Maly) = Z[y]/(y")
where 2deg(y) = |y| = 2(p" "t + ...+ p+ 1) and |c;| = |y| + 2 — 2p*. Moreover the
restriction map is given by i5(co) = py and ig(c;) =0 fori > 0.

Remark. The element y does not exist in CH*(M,) while ¢;y exists. Usually
CH*(M,) is defined only additively, however when CH*(M,) has the natural ring
structure (e.g., p = 2), the multiplications are given by ¢; - ¢; =0 for all 0 < 4,5 <
n—1.

For the simplicity of notation, hereafter we always write by Q*(X) the BP*-
version of the algebraic cobordism

Q*(X) @mu~ BP* =2 ABP**(X).
Hence we mean Q* = BP*.
Let I,, be the ideal in Q* generated by vy, ..., Vn_1, i.€.,
In = (p = Vo, V1, "'avnfl) C .

Then it is well known that I,, and I, are the only prime ideals stable under the
Landweber-Novikov cohomology operations ([Ral) in Q*.

The category of cobordism motives is defined and studied in [Vi-Ya]. In partic-
ular, we can define the algebraic cobordism of motives. The following is the main
result in [Vi-Ya] (in [Yad] for odd primes).

Lemma 7.2. ([Vi-Ya], [Ya4]) The restriction map
i = O (Ma) = Q" (Malg) = Q[y]/(y")
is injective and there is an Q*-module isomorphism
V' (Mo) 2 {1} @ Li{y, -, y" 7' C Q*[4]/(v7)
such that viy = ¢; in Q*(M,) Qq« Z =2 CH*(M,).
We consider the following assumption for X
Assumption (x). There is an isomorphism of motives
M(X)=2 M, ®A(X) with A(X) = @,T"
where T is the k-Tate module.
Lemma 7.3. Suppose Assumption (x). Then
Kog(X) 2= Kayy (X ) = K

alg 1op(X(C))-
Proof. Since M (X |j) is a sum of k-Tate modules, we have the isomorphism Kglg (X|z) &
K},,(X(C)) from

Koig(T) 2 K (S*1[g) 2 Kip, (5%).

alg
For the first isomorphism, we only need to show K7 (M) = K

alg
Q*(M,) = (BP* @ Ideal(p,v1, ..., vn—1){p})

by ¢; — v;p. Hence v;c; = vi¢;. Therefore fori > 1, we see ¢; = 0in Af((l)Q*’*(Mn)
where v; = 0. So we have

AK(1)>*(M,,) = K(1)*{1,¢c0,c1}/(vico = pey) = AK(1)2*{1,¢1}

(My,|z). Recall
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>~ AK(1)>*{1,v1p} = AK (1) {1, p} = AK(1)**(M]|3).

8. FLAG MANIFOLDS G/T

Now we consider the flag variety G/T. Let G be a simply connected Lie group
and T the maximal torus. Moreover we assume its cohomology is

H*(G;Z/p) = Z/plyl/(y") @ A1, ..., 70)

with |y| = 2(p+ 1) and |z;| = odd. Then it is well known that the cohomology of
G/T is torsion free ([Tod]) and

H*(G/T) = Zly, t1,....,te] / (fy, b1, ..., be)

where f, = y? mod Ideal(t;) and (b1, ...,bs) is a regular sequence in Z[ty, ..., tg].

Let k be a subfield of C which contains primitive p-th root of the unity. Let us
denote by Gy, the split reductive group over k£ which corresponds GG. By definition, a
G-torsor Gy, over k is a variety over k with a free Gg-action such that the quotient
variety is Spec(k). A Gi-torsor over k is called trivial, if it is isomorphic to Gy or
equivalently it has a k-rational point. In this paper by Gy, we mean the nontrivial
torsor at any finite extension K/k coprime to p.

Let H be a subgroup of G. Given a torsor Gy over k, we can form the twisted
form of G/H by

(Gk X Gk/Hk)/Gk = Gk/Hk.

Letting X = G/T, we consider cases such that Assumption hold. By [Pe-Se-Za),
exceptional Lie groups (Ga,p = 2) and (Fy,p = 3) are such cases. The filtrations
of such spaces are also studied by Gabrier and Zainouline ([Ga-Za|, [Za], [Ju]) as
the twisted gamma filtrations.

At first, we consider the case (G,p) = (G2,2). We recall the cohomology from
Toda-Watanabe [To-Wal

H*(G/T;Z) 2= Zlt, ta, y] /(8 + tata + 13,15 — 2y, 9°)
with |t;| = 2 and |y| = 6. Let P be the maximal parabolic subgroup such that G/P
is isomorphic to a quadric. Then from (3.6) and H*(P/T) = Z{1,t1} ([To-Wal)
H*(G/P;Z) = Llts, )/ (t5 — 2y,5°) = Z{1,y} @ {1, t2, 13}
Of course this is isomorphic to gry,,(G/P).

Since G/P is a quadric, we have the decomposition ([Bo], §7 in [Pe-Se-Zal)
Theorem 8.1. (Theorem 5.2 in[Ya5]) There is a ring isomorphism

gr3(G/P) = gry.o(Gy/Py) = CH™ (G / Py)

geo
= Loy lta, ul/ (15, 2u, tu, u®) = Lo [t2]/(85) ® Z/2[t2]/ (t3){u}
with |ta] = 2, |u| = 4.
Proof. Recall that
From the decomposition of the motive, we have the 2*-module isomorphism

O (Gr/Pry) = Q" {1,013, 2y} @ {1, ta, t5} C Q*(Gy/ Py).
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Since CH*(X) =2 Q*(X) ®q+ Z, we have the isomorphism
CH*(GIC/P]C) = Z{lv 2y}{15 t2, t%} ® Z/2{’U1y}{1, t2, t%}

(Note 2v1y = v1(2y) € Q<°Q*(Gr/Pr).)

Here the multiplications are given as follows. Since 2y = 3 mod(Q<°) in
O*(Gr/Ty), we can take 2y = t3 € CH*(G/Py) so that

Z{1, 2y {1, 12,13} = Z[ta] /(3) € CH*(G/ ).

Let us write u = v1y in CH*(Gy/Tx). Then tiu = 2yv1y = 0 and u? = v?y? =0
in O*(Gy/T) ®q+ Z. Hence we have the second isomorphism for in the theorem.

Since |u| = 4, the element u is represented by Chern classes, we see the first
isomorphism. O

Remark. The space Gy /T, is isomorphic to the quadric defined by the maximal
neighbor of the 3-Pfister form. Hence its Chow ring is computed in [Ya5].
It is well known that the representations (over C)) are written as

R(G/T) = R(T)/R(G).
Therefore each element which is represented by Chern classes is written as an
element in Q*(Gy/Ty)
C(f) = H(l + At + )\gtg) S Q*[tl,tg] A € Z/2

modulo ((t1,t2)Q2<°Q*(G%/T%)). By the similar arguments, we have (see Theorem
5.3 in [Yah])
Theorem 8.2. There are ring isomorphisms
gri(G/T) = CH* (G /Ty) = Z[t1, t2]/ (15, 2u, t3u, u?)
where u = t% + t1tg + t%.

Proof. The Chow ring is isomorphic to
(*) CH*(Gk/Tk) = CH*(Gk/Pk){l, tl}
= (2{1,2y} © Z/2{viy}){1, 2, 831{1, t1}.
Here 2y = t3. Since viy € (t1,t2) and v1y = 0 € CH* (G /T}), we see
vy = At + tita +13)  mod((t1,t2)Q2<°Q*(Gy/Tk))
for A € Z. We can take A = 1 mod(2). Otherwise 11y = 0 € Q*(Gy/Tx)/2, which
is an * /2-free, and this is a contradiction. Hence we can take t7 4 tt5 + 13 as v1y.
Hence in CH*(Gy,/T}) we have the relation
(t3)? =0, (tHu=0, u> =0, 2u=0.
([
Next we consider the case (G, p) = (Fy,3). Let Gy, be a nontrivial G-torsor at

3 as previous sections. Let Py be a maximal parabolic subgroup of Gy given by

the the first three vertexes
1 2 3 4
0 —— 0=>=0——0
of the Dynkin diagram. Then Nikolenko- Semenov-Zainoulline ([Ni-Se-Za]) showed

that there is an isomorphism
M(Gy/Py) = ®1_oMs(i).
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We first recall the ordinary cohomology of G/P ([Is-To], [Du-Za]).
H*(G/P)i) = Zt,yl/(rs,m12), [t} =2, |y =8
where rg = 3y? — 8 and ri» = 26y> — 5t12. Hence we can rewrite
H*(G/P) = Z{1,t,...t"} @ {1,y,9°}.
Recall the Rost motive CH*(Mal;) = Z[y]/ (y*),
CH*(Ma) = Z{1} & Z{3y, 3y*} & Z/3{v1y, v1y°}.

Of course, the above y € CH*(M,) can be identified with the same named element
in H*(Gy/Pyx) by the restriction map CH*(M,) — CH*(M,|;;) C CH*(Gy/Px).
From the above theorem, we have the decomposition

(*) CH*(Gy/Py) 2 Z{1,t,...,t"} @ (Z{1, 3y, 3y*} ® Z/3{v1y, v1y*}).
The ring structure is given as follows.
Proposition 8.3. ( Theorem 6.2 in [Ya5])
97 geo(Gr/ Pr) = CH*(Gy / Py)
=~ Z[t, b, a1, as]/ (19, 180, b% = 3t%, bay, 3a;, ta;, ayas)
> Z{1,t,..,t"} ® (Z{1, /3t 1%} © Z/3{ay, as})
where |b] = 8 and |a1| = 4, |az| = 12.
Proof. From the relation rg in CH*(G/P), we have
3y? =8 vz € QY (G/P) for ve Q<O
Hence we can take 3 instead of 3y? in (). Of course
(3y)? = 3t® + 3vx € Q*(Gi/Pr).

Hence we write by b = \/3t* the element 3y. Write by a1, as the elements vy, v1y?
respectively. Elements in 1,.Q<° C Q(Gy/Py) reduces to zero in CH*(Gy/Tk).
Therefore we have the desired multiplicative results. O

The element b = 3y is represented by a Chern class ¢4(§) for some £ by the
Riemann-Roch theorem without denominators. Unfortunately, we do not know if
as = v1y? are Chern classes in CH*(BG) or not.

Proposition 8.4. If ay = v1y?> € CH*(Gy/Py) is not represented by a Chern
class, then

gr-(G/P) 2 Z[t,b,a1]/(t*°,t3b,b* = 3t% bay, 3a1, t%ay1, a})
where |b] = 8 and |ai| = 4.

Proof. 1f v1y? is not represented by Chern class of CH*(Gy/Pk) ( or Q*(Gy/Py)),
then the corresponding nonzero element in gr.(G/T) is v¥y?, which is written as

(v1y)? = (a1)*. O
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9. FILTRATIONS OF THE MORAVA K-THEORY

For most groups G in the preceding sections, it is known that K(n)°%(BG) =0
(while Kriz gave some examples with K (n)°4(BG) +# 0). Hereafter, we only
consider spaces X such that

(9-1) K(n)*(X(C)) = K(n)**(X(C)) =0,
(9.2) K(n)"(X(C)) = AK(n)*""(X)
Then we can define the three filtrations for the Morava K (n)-theory.
F(n)io, = Ker(K(n)"(X(C) = K(n)"(X(C)*),

top
F(n)%2 = {f.(lp)|f : M — X and codimxM > i}

geo

Fn)? = (e ™ (@1) - oo e ™ @) in + v > ).

i1 Tm

Here (™ ) is the Chern class for AK(n ** _theory for some k-representation
i y P

s : X = BGLy. This Chern class is induced from the isomorphism
AK (n)**(BGLy) = K(n)* @pp- Q*(BGLy),
in fact, it is well known that in Q*(X), we can define Chern classes canonically (see
[Mo-Le] for example). However each element in K (n)*(X(C)) (for n > 2) need not
to be represented by K (n)*-theory Chern classes. Hence we need the assumption
(9.3) F)=K(n)*(X).

(We also consider the cases where (9.3) does not hold.) Of course the assumptions
are satisfied for K (1)*-theory, if they are so for K (1)*-theory.
Recall P(n)*(X) be the cohomology theory with the coefficient

P(n)* = BP*/(p,v1,...;Upn—1)-
It is well known, for all X,
P(n)*(X) @pp- K(n)" = K(n)"(X).
Let us write by E(P(n))** (resp. E(K(n))>*) the AHss converging to P(n)*(X)

T

(resp. K(n)*(X)). Then we have
E(P(n))** @pp+ K(n)* = E(K(n))>* .

T T

If (9.1)-(9.3) are satisfied, then K (n)-version (exchanging BP*(X) to P(n)*(X)).
of all lemmas in §2 also hold.

Lemma 9.1. Suppose that Q*(X)/p = BP*(X(C))/p and it is generated by (BP*-
) Chern classes. Then (9.1)-(9,3) are satisfied.

Proof. We consider the maps
O (X)@pp- K(n)" B AK?*(X) 8 K(n)*(X(C)).

Here the map p; is an epimorphism because Q*(X) (resp. AK(n)?**(X)) is gen-
erated as a BP*-module (resp. K (n)*-module) by elements in CH*(X).
On the other hand by Ravenel-Wilson-Yagita [Ra-Wi-Ya], we know that (1.2)
implies
K(n)"(X(C)) = K(n)" @pp- BP*(X(C)).
From the supposion in the theorem, we see that p2p; is an isomorphism. This
means that p1, p2 are also isomorphisms. O
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For X = BG, G = finite abelian, p1i+2, O, Gy and PSL3 (p = 3) satisfy the
assumptions in the above lemma.
Of course gr},,(X) and gr(n);,,(X) are quite different. Let G'= Z/p. Then

K(n)*(BG) = K(n)"(y]/(y"").
and this is generated by Chern classes in H*(BG;Z/p).

Theorem 9.2. Let G = ®°Z/p. Then all three filtrations of K(n)*(BG) are same
and

gr(n)5op(BG) 2 Z/plys, oo ys) /(s g2,

Similarly, we have

Theorem 9.3. Let G = O,,. Then all three filtrations of K(n)*(BG) are same
and

gr(n)iop(BG) = {Z YUl (Yor1ss2)” T (Yarr1yarr2) 2}
where 0 <7 < ... <, < 2" <ig < ... < .
For example, gr(n);,, = Z/2[ca] © Z)2{c\ch)i + 25 < 27},
Next we consider the case G = SOs,, Recall for m > 3, ya,, is not represented
by Chern classes

Theorem 9.4. Let G = SOs,, and m > 2. Then
97(N) geo (BG) = Zlcz, cay .oy com{yam} @ gr(n)geo (BO2m )/ (c1).
However gr(n)?}(BG) 2 gr(n)5eo (BG) 2 gr(n)ioy(BG).

Proof. We only need the second nonisomorphism of the second statement. Since
Yom = (=1)*2m"twsy,, € H*(BG) is zero in H*(BG;Z/2). Hence 0 # ya,, €
P(n)*(BG) is represented in the AHss converging to P(n)*(BG) as element in
E;é*, with *’ < 0 and * > 2m. O

Next consider the case G = G5 (and p = 2). By the computation of the AHss
for P(1)*(BG) (= BP*(BG;Z/2)), we have

K(1)*(BG) = K(1)"[ca, c]{1, viwe }-
By the direct computation of the AHss for K (2)*(BG), we see
K(2)"(BG) = K(1)"[ca, c6]{1, waws }-
Therefore we have
Theorem 9.5. Let G = G5. Then
gr(i)a(BG) = Z/2[cs, csl{1, a}
cacs lal =10 if i =2. a=top

where a*> =< ¢ la| =6 ifi=1. a=top
0 la]=4 ifi=1,2. a#top.

Proof. The above a is represented as a = waqwg (resp. wg, v1We, Vowswg) when
1=2, a=top (resp. i =1, a =top,i =1 a # top), and i = 2 « # top)). O

When n > 1, the geometric and topological filtrations are quite different.
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Theorem 9.6. Let G be a simply connected simple Lie group such that H*(G) has
p-torsion. Then forn > 1

9r()geo(BG) # 0 but  gr(n)y,,(BG) = 0.

Proof. The space BG is 3-connected and H*(BG) = Z. Let us write by x its 4-
dimensional generator. By [Ka-Ya2], it is known that pr € H*(BG) is represented
as the Chern class ¢y for some representation. Hence gr(n)i, (BG) # 0.

geo
To see gr(n)3

top(BG) = 0, we only need to show

(%) dapr—1(x) = vp ® Qu(z) #0
in the AHss converging to K (n)*(BG).

For these groups, it is well known that there are embedding Go C G for p = 2,
(Fy C G for p =3 and G = Eg for p = 5). We will prove (x) for G = F; and
p = 3, then we can see (x) the other groups when p = 3. (The other primes cases
are similar).

Let G = Fy and p = 3. Then G has a maximal elementary p-group A = (Z/3)3.
We consider the restriction map for i : A C G,

i*: H*(BG;Z/p) — H*(BA;Z/p) = Z/ply1, y2, y3) @ A1, 22, z3).

The restriction image is i*(z) = Qo(z1z223) (see [Ka-Te-Ya]). Hence we show

i*(Qn(x)) = QnQo(z17273) = Zy’fnyzzs #0.
J

Now we recall arguments for quadrics. Let m = 2m’ + 1. and let us write the
quadratic form ¢(z) defined by

2
q(x1, .y Ty) = T122 + oo + Typ—2Tip—1 + x5,

and the projective quadric X, defined by the quadratic form ¢. Then it is well
known that (in fact SO(m) acts on the affine quadric in A™ — 0)

X, = SO(m)/(SO(m —2) x S0(2)).
Let G = SO(m) and P = SO(m — 2) x SO(2). Then the quadric ¢ is always split
over k and we know CH*(Gy/Py) =2 CH*(X,).

In particular we consider the case m = 2" — 1. Let p = {1} € KM (k)/2 =
k*/(k*)%. We consider fields k such that

04 o™ € K2 (k)/2.
Define the quadratic form ¢’ by
q (X1, ) = 22+ o 22
Then this ¢’ is a subform of
((=1,..,=1)) = ¢pnt
the (n+ 1)-th Pfister form associated to p"*1. (That is, ¢ is the maximal neighbor

of the (n + 1)-th Pfister form.) Of course q|; = ¢'|; and we can identify Gy /Py, =
X, . From Lemma 7.2 (or Rost’s result), we know

CH*(Xy|5) = Z[t,y)/ (2"~ = 29,57).
As stated in §7, there is a decomposition of motives
M(Xy) = M, ® Z/2[t]/(t*" 7).
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Hence we have the additive isomorphism
CH*(Xg,) = Z[t]/ ("7 @ (Z{1, 0} ® Z/2{cn 1 wos Can-1})-

With identification 2" ~! = 2y = Cn,0, and u; = ¢, ; for i > 0, we also get the ring
isomorphism

Theorem 9.7. ( [Ya5]) Let Gi /Py be the above quadric Xo . Then there is a ring
isomorphism

CH*(Gy/Py) = Z[t) /(1" =) @ 2/2[t] /(2" 1) {ur, ooy 1 }
where u; = vy € V(G /p) ®a- Z(2) so usu; = 0. Hence we have for 1 <i<mn—1
97(8)geo G/ Pi) 2 Z[E) /(1" =2) @ 2/2[t])/ (¢2" 1) {us}.

Proof. In K(i)*(X), we see v; = 0 for ¢ # j. Since vju; = v;u;, we see u; = 0 for
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