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Abstract. We prove the formula ed(X ) = cdim(X ) + ed(A) for any gerbe X


banded by an algebraic group A which is the kernel of a homomorphism of


algebraic tori Q → S with Q invertible and S split. This result is applied to
prove new results on the essential dimension of algebraic groups.


1. Introduction


Essential dimension is a notion of complexity of algebraic and geometric objects,
introduced by J. Buhler and Z. Reichstein [BR97] around 1995 and in its most
general form by A. Merkurjev [BF03].


The essential dimension of an algebraic group G over a field F is defined as the
least integer n such that every G-torsor over a field extension K/F is obtained up
to isomorphism by scalar extension from a G-torsor over an intermediate field K0


of transcendence degree at most n over F . It is denoted by ed(G).
The essential dimension of an algebraic stack X over F is defined similarly (see


section 2), where G-torsors are replaced by objects of X . For every algebraic group
(and every group algebraic space) G over F there is the classifying stack BG, whose
objects are G-torsors. In particular ed(G) = ed(BG).


An algebraic stack X of finite type over F is called a gerbe, if it becomes iso-
morphic to BG for some group algebraic space G over a finite extension of F (see
[Stacks, Definition 06QC and Lemma 06QH]). In particular BG is a gerbe for any
algebraic group G.


Let A be an abelian algebraic group over F . If there are natural isomorphisms
Aut(x) ≃ AU for x ∈ X (U), U ∈ SchF , then the gerbe X is said to be banded by
A. Gerbes banded by A over F are classified by the second Galois cohomology set
H2(F,A), see [Gir71]. A typical example for a gerbe banded by A is the quotient
stack [X/G] for some exact sequence of algebraic groups


1 → A → G → H → 1


with A central in G, where X is an H-torsor over F . These gerbes have been used
extensively in the computation of the essential dimension of algebraic groups G like
finite p-groups, algebraic tori, Spin groups etc. when A is diagonalizable (see [Lö12]
for a survey). A key ingredient is the inequality


(1) ed(G) ≥ ed[X/G]− dimH
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from [Me09, Theorem 4.8], which bounds ed(G) from below in terms of the essential
dimension of the gerbe [X/G].


Our aim is to study gerbes whose band comes from a larger class of groups of
multiplicative type and to obtain new applications.


Our main result relates essential dimension and canonical dimension of such
gerbes X . It is well known that


(2) cdim(X ) ≤ ed(X ) ≤ cdim(X ) + ed(A),


for any gerbe X banded by an abelian algebraic group A, see [Me08, Proposition
4.9] (for a more general version see [Lö12, Lemma 3.1]). Here cdim(X ) stands for
the canonical dimension of X , defined as the least integer n such that for every
field extension K/F with X (K) 6= ∅ there exists an intermediate field K0 of K/F
of transcendence degree at most n such that X (K0) 6= ∅ (see section 2 for details).
The canonical dimension of an algebraic stack X is often more accessible than its
essential dimension, since it only depends on the splitting fields of X , i.e., the field
extensions K/F such that X (K) 6= ∅. For instance, if XA is the µn-gerbe associated
with a central simple algebra A of exponent dividing n, then cdim(XA) coincides
with the canonical dimension of the Severi Brauer variety of A. This is equal to
indA− 1 when the index of A is a prime power by a result of N. Karpenko [Ka00,
Theorem 2.1].


The following question was asked by A. Merkurjev [Me08, Question 4.10]:


Question 1. Do we have the equality ed(X ) = cdim(X ) + ed(A) for any gerbe X
banded by an abelian group A?


Question 1 has a partial positive answer in case A = µn (where n > 1) [BRV11,
Theorem 4.1] and A = (µp)


s [KM08, Theorem 3.1]. It clearly also holds when
ed(A) = 0 (equivalently A is special, i.e. all A-torsors over field extensions are
trivial, see [Me09, Proposition 4.4]). Our main theorem gives an affirmative answer
to Question 1 for a larger class of group, which includes all diagonalizable algebraic
groups A as well as many non-diagonalizable algebraic groups like norm 1 tori


A = R
(1)
L/F (Gm) for an étale F -algebra L:


Theorem 1.1. Let f : Q → S be a homomorphism of algebraic tori over a field F
with Q invertible and S split. Let X be a gerbe over F banded by A := ker(f). Then


ed(X ) = cdim(X ) + ed(A).


Moreover if Qd denotes the largest split subtorus of Q we have


ed(A) = ed(A ∩Qd)


and this is equal to the rank (=minimal number of generators) of the torsion of the
character group of the diagonalizable group A ∩Qd.


Note that in order to prove the theorem we may always assume that f is sur-
jective. So f will be assumed to be surjective in sequel. Moreover A lies between
the invertible torus Q and its largest anisotropic subtorus Qan. Conversely every
algebraic group, which lies between Qan and Q for an invertible torus Q can be
written as the kernel of a homomorphism f : Q → S with S split (take S = Q/A,
which is a split torus as a quotient of the split torus Q/Qan).
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The rest of the paper is structured as follows. In section 2 we recall some back-
ground material on essential dimension and canonical dimension and make some
general observations about gerbes banded by groups of multiplicative type. These
will be used in section 3, which contains a proof of Theorem 1.1. Finally section 4
contains applications of this theorem.


2. Preliminaries


2.1. Preliminaries on essential dimension and canonical dimension. Let X
be a category fibered in groupoids over F (for instance a gerbe over F ). For every
field extension K/F we have the groupoid X (K) of objects of X over Spec(K). If
L/K is a field extension over F and x ∈ X (K) we have a pullback xL ∈ X (L),
defined uniquely up to isomorphism.


Let K/F be a field extension, x ∈ X (K) and let K0 be an intermediate field of
K/F . We say that x is detected over K0 if X (K0) 6= ∅. We say that x is defined
over K0 if there exists x0 ∈ X (K0) with (x0)K ≃ x. Note that “being detected”
over K0 is weaker than “being defined” over K0 and depends on x only through
the field K (as K0 is required to be a subfield of K).


Definition 2.1. The canonical dimension cdim(x) of x ∈ X (K) (resp. the essential
dimension ed(x) of x) is defined as the least transcendence degree of an intermediate
field K0 of K/F over which x is detected (resp. defined).


If p is a prime integer, the canonical p-dimension cdimp(x) and the essential p-
dimension edp(x) of x are defined as the minimal value of cdimp(xK′) and edp(xK′),
respectively, where K ′/K runs through all extensions of degree prime to p. We will
write cdim0(x) = cdim(x), ed0(x) = ed(x) for notational convenience.


The numbers cdim(X ), ed(X ), cdimp(X ) and edp(X ) are defined as the maximal
values of cdim(x), ed(x), cdimp(x) and edp(x), respectively, where x runs through
all objects x ∈ X (K) over field extensions K/F .


The following inequalities follow immediately from the definitions: cdimp(x) ≤
edp(x), cdimp(X ) ≤ edp(X ), cdimp(x) ≤ cdim(x), edp(x) ≤ ed(x), cdimp(X ) ≤
cdim(X ) and edp(X ) ≤ ed(X ) for any prime p (for p = 0 as well).


When G is an algebraic group (not necessarily smooth) we write edp(G) in place
of edp(BG) for any prime p and for p = 0. Here BG ≃ [SpecF/G] is the classifying
stack of G. The groupoid BG(K) is simply the category of G-torsors over Spec(K).


We will use the following result on essential dimension of diagonalizable groups
(see [Lö10, Corollary 5.8]):


Lemma 2.1. Let D be a diagonalizable algebraic group. Let D∗ denote the character
group of D and D∗


tors its torsion. Then


ed(D) = rk(D∗
tors),


where rk stands for the minimal number of generators.


Moreover we will use the following inequality from [BF03, Theorem 6.19]: If H
is a subgroup of an algebraic group H ′ then


(3) ed(H) + dim(H) ≤ ed(H ′) + dim(H ′).
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2.2. Preliminaries on Gerbes. Every gerbe over F banded by the multiplicative
group Gm is associated to a central simple F -algebra A. The objects XA(K) over
a field extension K/F are given by couples (V, α) of a K-vector space V together


with an isomorphism α : AK := A ⊗F K
≃
→ EndK(V ). Let n = deg(A). The gerbe


XA can be seen as the quotient stack [X/GLn], where X = Isom(A,Mn(F )) is the
PGLn-torsor over F corresponding to A.


Alternatively, if L denotes a maximal étale subalgebra of A, the gerbe XA can be
represented as the quotient [U/RL/F (Gm)] for some RL/F (Gm)/Gm-torsor Y over


F . Explicitly Y is the scheme of isomorphisms β : AK
≃
→ EndK(V ) that are com-


patible with the inclusion of L⊗F K in AK and EndK(V ) (by left multiplications),
respectively.


The following lemma shows that in fact every gerbe banded by a group scheme
of multiplicative type can be realized as the stack quotient of a torsor under a torus
by a quasi-trivial torus.


Lemma 2.2. Let X be a gerbe banded by a group A of multiplicative type over F .
Let L/F be a Galois extension such that X (L) 6= ∅ and AL is diagonalizable.


Then there exists a quasi-split algebraic torus P over F containing A and split
over L and a P/A-torsor U over F such that X ≃ [U/P ].


The splitting fields of X coincide with the splitting fields of U . In particular
cdimX = cdimU = cdim(x), for any x ∈ X (F (U)) 6= ∅.


Proof. Embed AL in Gn
m for some n ≥ 0. This induces an embedding of RL/F (AL)


in the quasi-split torus P = RL/F (Gm)n split over L. The class of X lies in the


kernel of the map H2(F,A) → H2(F,RL/F (AL)) = H2(L,A) taking X to XL.


Hence it also lies in the kernel of the map H2(F,A) → H2(F, P ) induced by the
composition A → RL/F (AL) → P , which is injective. Therefore the class of X lies


in the image of the connecting map H1(F, P/A) → H2(F,A). In other words, there
exists a P/A-torsor U over F such that X ≃ [U/P ].


Now a field extension K/F is a splitting field of X if and only if U lifts to a
P -torsor over K. This happens if and only if K is a splitting field of U . Hence X
and U have the same splitting fields, whence the same canonical dimension. The
last equality follows from the fact that U has a smooth projective compactification
with the same splitting fields, see [KV84], and the proof of [Me13, Prop. 4.2]. �


Remark 2.1. With notations as in Lemma 2.2 let Ū be a smooth projective com-
pactification of U . Then cdim(X ) = cdim(U) is the least dimension of the image of a
rational map Ū 99K Ū by [KM06, Corollary 4.6]. Hence the computation of cdim(X )
can be approached with geometric methods. We will not use this description within
this paper, however.


We will also be interested in objects of the gerbe X over local F -algebras.


Corollary 2.1. With notations as in Lemma 2.2:


(a) If R is any local F -algebra then X (R) 6= ∅ if and only U(R) 6= ∅.
(b) Let R be a local F -algebra which is a valuation ring whose residue field is


linearly disjoint from L over F . Let M be the field of fractions of R. Then
X (M) 6= ∅ if and only if X (R) 6= ∅.


Proof. (a) This follows like in the proof of Lemma 2.2 and the fact that every
P -torsor over R is trivial when P is quasi-split and R local.
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(b) Clearly X (R) 6= ∅ implies X (M) 6= ∅. Conversely assume X (M) 6= ∅. Let P
and U be as above and let T = P/A. Then U(M) 6= ∅ and so (U/Td)(M) 6=
∅, where Td denotes the largest split subtorus of T over F . LetX be a smooth
projective T/Td-equivariant compactification of U/Td. Then X(M) 6= ∅ and
since X is complete, X(R) 6= ∅.


By assumption R/m is linearly disjoint from L (which is a Galois split-
ting field of T/Td) and therefore T/Td is anisotropic over R/m. By [Gi04,
Proposition 1.1] X(R/m) = (U/Td)(R/m). Therefore the image of X(R)
under the map X(R) → X(R/m) is contained in (U/Td)(R/m). It follows
that (U/Td)(R) = X(R) 6= ∅, i.e. U/Td splits over R. Since R is local U
splits over R as well. It follows that X (R) 6= ∅.


�


Torsors over a local F -algebra under a group of multiplicative type can always be
obtained as fibers between morphisms of algebraic tori, see the following well-known
lemma.


Lemma 2.3. Let A be a subgroup of an invertible torus Q. If R is a local F -algebra,
then every A-torsor over R is the fiber of Q → Q/A over some s ∈ (Q/A)(R).


Proof. The exact sequence 1 → A → Q → Q/A → 1 induces an exact sequence
Q(R) → S(R) → H1(R,A) → H1(R,Q) = 1, where the map S(R) → H1(R,A)
takes s ∈ S(R) to the fiber of Q → S over s. �


3. Proof of Main Theorem


In this section we will prove Theorem 1.1. We start with a lemma, which will be
used in the proof.


Lemma 3.1. Let g : V → W a homomorphism of free abelian groups of finite rank
and U a subgroup of V with rk(U) ≤ rk(W ). Then rk((V/U)tors) ≤ rk(W/g(U)).


Proof. Let m = rk((V/U)tors) and r = rk(U), r′ = rk(W ), s = rk(V ). By the
elementary divisor theorem, there exist a basis e1, . . . , es of the Z-module V and
integers c1, . . . , cm > 1 with c1|c2| · · · |cm such that the elements


c1e1, . . . , cmem, em+1, . . . , er


form a basis of U . Let p be a prime dividing c1 (hence dividing every ci). Then
W/g(U) surjects onto


W/(g(U) + pW ) ≃ (Z/pZ)r
′


/〈g(em+1), . . . , g(er)〉


which has rank ≥ m. Therefore rk(W/g(U)) ≥ m = rk((V/U)tors). �


Proof of Theorem 1.1. The last assertion of the Theorem follows from Lemma 2.1.
Moreover recall inequality (2) ed(X ) ≤ cdim(X )+ed(A) from the introduction. Let
A′ := Qd ∩ A.


We will prove that ed(X ) ≥ cdim(X ) + ed(A′) and ed(A′) ≥ ed(A). From this
the claims follow readily.


For the assertion ed(A′) ≥ ed(A) consider the following diagram with exact rows:


1 // A′
� _


��


// Qd� _


��


// S // 1


1 // A // Q // S // 1
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Since Q (which is invertible) and Qd (which is a split torus) are special, we get
a surjection in Galois-cohomology H1(−, A′) → H1(−, A) as functors from the
category of field extensions of F to the category of sets. Hence the claim follows
from [BF03, Lemma 1.9].


Now we will prove the assertion ed(X ) ≥ cdim(X )+ed(A′), for which we use the
addition BA×X → X , (t, x) 7→ t+x and subtraction X ×X → BA, (x, x′) 7→ x−x′


as in [Me09]. By Lemma 2.2 we can choose a field extension K/F linearly disjoint
from Falg and x ∈ X (K) such that cdim(x) = cdim(X ).


Let M := K(t1, . . . , ts), where s := dimS. We will identify S with Gs
m. We write


〈t〉 for the A-torsor over M given by f−1(t1, . . . , ts). Let x′ := 〈t〉 + xM ∈ X (M).
We will prove that ed(x′) ≥ cdim(x) + ed(A′).


Let M0 be an intermediate field of M/F and y ∈ X (M0) such that yM ≃ x′ and
tdegF (M0) = ed(x′). Let ν be the canonical Zr-valued valuation of Kalg(t1, . . . , ts),
so that ν(ti) = ei := (0, . . . , 1, . . . , 0) ∈ Z


s (with 1 on place i) and ν|Kalg
is trivial.


Let ν0 = ν|M0
and R0 ⊆ M0 the valuation ring of ν0 and R the valuation ring of


ν|M , whose residue field is K.
Claim: rk(ν0) ≥ ed(A′).


The residue field of R0 embeds in K over F , hence it is linearly disjoint from
the finite extension L/F . Since y ∈ X (M0) we get X (R0) 6= ∅ by Corollary 2.1.
Choose x0 ∈ X (R0). By Lemma 2.3 there exists z = (z1, . . . , zs) ∈ S(M0) = (M×


0 )s


such that y − (x0)M0
≃ 〈z〉 ∈ BA(M0), where 〈z〉 denotes the fiber f−1(z). Since


zi ∈ M×
0 it suffices to show that the subgroup of Zs generated by ν(z1), . . . , ν(zr)


has rank ≥ ed(A′). We have


〈z〉M ≃ yM − (x0)M ≃ x′ − (x0)M = (〈t〉 + xM )− (x0)M ≃ 〈t〉+ (xM − (x0)M ).


Note that xM−(x0)M is defined overR (since R containsK and R0). By Lemma 2.3
there exists r = (r1, . . . , rs) ∈ S(R) = (R×)s ⊆ (M×)s with xM − (x0)M ≃ 〈r〉M .
Therefore


〈z〉M ≃ 〈t〉+ 〈r〉M ≃ 〈tr〉.


It follows that the classes of z and tr are equal in (M×)s/fM (Q(M)). Hence there
exists w ∈ Q(M) such that z = trfM (w). That yields the relations


ν(zj) = ν(tj) + ν(rj) + ν(fM (w)j) = ej + ν(fM (w)j)


for j = 1, . . . , s. Hence it suffices to show that


rk(Zs/〈ν(fM (w)1), . . . , ν(fM (w)s)〉) ≥ ed(A′).


We first reduce to the case when Q is quasi-split. Let Q′ be an F -torus such
that Q̃ := Q × Q′ is quasi-split and let Ã = A × Q′ and Ã′ = Ã ∩ Q̃d = A′ × Q′


d.


Then ed(A′) = ed(Ã′), since Q′
d is special. We may replace A by Ã and Q by Q̃


and hence assume that Q is quasi-split, Q =
∏m


i=1 RLi/F (Gm) for some separable
field extensions L1/F, . . . , Lm/F .


Let C ∈ Mm,s(Z) be the matrix corresponding to the homomorphism f |Qd
: Qd →


S. on character groups. Let U denote the span of the rows of C. Then A′ has char-
acter lattice Z


m/U . Hence as observed above


ed(A′) = rk(Zm/U)tors.
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There exists B ∈ Ms,m(Z) such that for every field extension F ′/F the group
homomorphism fF ′ :


∏m
i=1(Li ⊗F F ′)× → (F ′×)s is given by


fF ′(x1, . . . , xm) =


(


m
∏


i=1


NLi⊗FF ′/F ′(xi)
bij


)


1≤j≤s


.


Then cij = bij [Li : F ] for all i and j.
Since Fsep and M = K(t1, · · · , ts) are linearly disjoint over F we may view


Fsep ⊗F M as a subfield of Kalg(t1, · · · , ts).
Write w = (w1, . . . , wm) ∈ Q(M) =


∏m
i=1(Li ⊗F M)×. Note that the value


ν((σ ⊗ idM )(wi)) ∈ Z
s for a F -homomorphism σ : Li → Fsep is independent of


the particular choice of σ. The product
∏


(σ ⊗ idM )(wi) taken over all [Li : F ]
homomorphisms σ is equal to NLi⊗FM/M (wi). Writing νi := ν((σ ⊗ idM )(wi)) we
get


ν(fM (w)j) =


m
∑


i=1


bijν(NLi⊗FM/M (wi)) =


m
∑


i=1


bij [Li : F ]νi =


m
∑


i=1


cijνi.


Let g : Zm → Z
s the group homomorphism, which takes the i-th standard basis


vector of Zm to νi for all i. Then 〈ν(fM (w)1), . . . , ν(fM (w)m)〉 = g(U). Note that
rk(U) = s, since f |Qd


is surjective. Hence Lemma 3.1 yields:


rk(Zs/〈ν(fM (w)1), . . . , ν(fM (w)m)〉) = rk(Zs/g(U)) ≥ rk((Zm/U)tors) = ed(A′).


Therefore rk(ν0) ≥ ed(A′), proving the claim.


Let M0 denote the residue field of ν0. Note that M0 can be considered as a
subfield of the residue field of ν|M , which is F -isomorphic to K. Since X (R0) 6= ∅
we have X (M0) 6= ∅, hence


ed(x′) = tdegF M0 ≥ tdegF M0 + rk(ν0) ≥ tdegF M0 + ed(A′)


≥ cdim(x) + ed(A′).


Therefore ed(X ) ≥ cdim(x) + ed(A′) = cdim(X ) + ed(A′). This concludes the
proof. �


4. Applications


We will discuss three kinds of applications in the following subsections. The first
two concern extensions of algebraic groups by abelian algebraic groups. In other
words we have a short exact sequence


1 → A → G → H → 1


with A abelian (not necessarily central). We want to use such a sequence to get
a lower bound on ed(G), using the inequality (1) for an H-torsor X over a field
extension K of F . Note that in general [X/G] is a gerbe banded by the twisted
group XA, but (1) holds regardless of whether A is central in G or not. The twist is
isomorphic to AK if A is central in G. When A is not central it may easily happen
that A is split and the twist is not split.


Our results on essential dimension of gerbes yield new applications in the follow-
ing cases


(a) A itself is a (non-split) group of multiplicative type that lies between an
invertible torus and its anisotropic part and A is central in G
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(b) A is (possibly split, but) non-central and the twist XA lies between an
invertible torus and its anisotropic part.


The third application concerns an example of splitting a global problem (i.e. de-
pending on several primes) into two local problems (depending on a single prime).


4.1. Central extensions by non-split groups. A simple example of a torus
T for which we can apply Theorem 1.1 is a non-split one-dimensional torus, i.e.


T = R
(1)
L/F (Gm), where L/F is a quadratic separable field extension. This group is


the center of the unitary group U(B, τ) where B is a central simple L-algebra with
F -linear unitary involution τ .


Proposition 4.1. If B is a division algebra and n := deg(B) = 2r for some r ≥ 0
then


ed(U(B, τ)) = n2.


Proof. The inequality ed(U(B, τ)) ≤ n2 follows from the fact that U(B, τ) is con-
tained in the special algebraic group RL/F (GL1(B)) with codimension n2.


For the reverse inequality we consider the following commutative diagram with
exact rows:


1 // R
(1)
L/F (Gm) //


��


U(B, τ) //


��


PGU(B, τ) // 1


1 // RL/F (Gm) // GU(B, τ) // PGU(B, τ) // 1


By [Lö11, Theorem 3.2] (and its proof) there exists a field extension K/F linearly
disjoint from L/F and a PGU(B, τ)-torsor X over K whose image under the
connecting map


H1(K,PGU(B, τ)) → H2(K,RL/F (Gm)) = Br(L⊗F K)


is the Brauer class of a central simple L ⊗F K-algebra A of index n2 whose norm


NL⊗FK/K(A) is split. The gerbe [X/U(B, τ)] banded by R
(1)
L/F (Gm) has the same


splitting fields as the K-variety RL⊗FK/K(SB(A)). Therefore by (1) and Theorem
1.1,


ed(U(B, τ)) ≥ ed([X/U(B, τ)])− dimPGU(B, τ)


= cdim(RL⊗FK/K(SB(A))) + ed
(


R
(1)
L/F (Gm)


)


− dimPGU(B, τ)


= cdim(RL⊗FK/K(SB(A))) + 1− (n2 − 1).


By [Ka12, Theorem 1.1]


cdim(RL⊗FK/K(SB(A))) = dim(RL⊗FK/K(SB(A))) = 2(n2 − 1),


hence the inequality ed(U(B, τ)) ≥ n2 follows. �


4.2. Non-central extensions by abelian groups. Let A be a central simple
F -algebra of degree d and let n ≥ 1. A simple example of a non-central extension
by an abelian group is given by the exact sequence


1 → Gn
m → GL1(A)


n
⋊ Sn → PGL1(A)


n
⋊ Sn → 1,


where the semidirect products are understood with respect to the natural per-
mutation action. The group PGL1(A)


n
⋊ Sn can be considered as automorphism
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group scheme of the F -algebra An. From this observation we get a natural bijec-
tion between isomorphism classes of PGL1(A)


n
⋊ Sn-torsors over a field extension


K/F and isomorphism classes of Azumaya algebras of (constant) degree d over
n-dimensional étale extensions E/K.


Similarly isomorphism classes of GL1(A)
n
⋊Sn-torsors over K can be identified


with isomorphism classes of pairs (E,M) consisting of an n-dimensional étale K-
algebra E and an AE := A ⊗F E-module M of reduced dimension d, where a
morphism between two pairs (E,M) and (E′,M ′) is a pair (ι, ϕ) consisting of a
K-algebra isomorphism ι : E → E′ and an A-linear isomorphism ϕ : M → M ′


satisfying ϕ(em) = ι(e)ϕ(m) for all e ∈ E,m ∈ M . In these terms the map


H1(K,GL1(A)
n
⋊ Sn) → H1(K,PGL1(A)


n
⋊ Sn)


takes the isomorphism class of (E,M) to the isomorphism class of EndAE
(M).


For a PGL1(A)
n
⋊Sn-torsor X over K corresponding to an Azumaya algebra B


over the n-dimensional étaleK-algebra E the gerbe [X/GL1(A)
n
⋊Sn] is banded by


RE/K(Gm) and its class in H2(K,RE/K(Gm)) = Br(E) is the class of [B]− [AE ].


Now let n = 2 and suppose that A carries an involution σ of the first kind. Let


G := GL1(A)⋊ S2,


where the non-trivial element of S2 acts via a 7→ σ(a−1). We have a commutative
diagram with exact rows


1 // R
(1)
F 2/F (Gm)


� _


��


// G //


��


PGL1(A)⋊ S2
//


��


1


1 // RF 2/F (Gm) // GL1(A)
2
⋊ S2


// PGL1(A)
2
⋊ S2


// 1


,


where the second and third vertical arrows are induced by the inclusion


GL1(A) → GL1(A)
2, a 7→ (a, σ(a−1)).


A PGL1(A)⋊S2-torsor X over a field extension K/F corresponds to a pair (B, τ)
of a central simple K-algebra of degree d with unitary involution, where the trivial
torsor corresponds to the pair (A × A, ε) with ε(a, b) = (σ(b), σ(a)). The induced
PGL1(A)


2
⋊ S2-torsor corresponds to the algebra B. The gerbe [X/G] is then


banded by R
(1)
E/K(Gm), where E := Z(B), and its class in


H2(K,R
(1)
E/K(Gm)) = ker(corE/K : Br(E) → Br(K)) ⊆ Br(E)


is again the class of [B]− [AE ].


Proposition 4.2. With notations as above:


(a) For any field extension K/F and any pair (B, τ) of a central simple K-
algebra B of degree d with unitary involution τ we have


ed(G) ≥ cdim(RE/K(SB(B ⊗F Aop))) + δE − (d2 − 1),


where δE := ed(R
(1)
E/K(Gm)) ∈ {0, 1} is 0 if E is split (i.e., E ≃ K × K)


and 1 otherwise (i.e., if E is a field).
(b) Suppose d > 1. Then we have ed(G) ≤ d2.
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(c) Suppose that A is a division algebra of index d = 2m with m ≥ 1. Then


ed(G) = d2.


Proof. (a) Let X be the PGL1(A) ⋊ S2-torsor corresponding to (B, τ). Then
the gerbe [X/G] has the same splitting fields as RE/K(SB(B⊗FA


op)), hence
the desired inequality follows from inequality (1) and Theorem 1.1.


(b) Define a representation of G on the F -vector space V = A ⊕ A by letting
GL1(A) act on V through a · (a1, a2) = (aa1, σ(a


−1)a2) and S2 through
permuting coordinates. Clearly dimV = 2d2, hence dim V − dimG = d2.
In view of [BF03, Proposition 4.11] it suffices to prove that V is generically
free in case d > 1. Let U denote the open subset of the affine space A(V )
consisting of those pairs (a1, a2) where a1 and a2 are invertible and a1a


−1
2


is not symmetric with respect to σ. It is easy to check that U is G-stable
and G acts freely on U . Moreover the symmetric elements Sym(A, σ) form
a proper subspace of A in case d > 1, hence U is non-empty. This proves
the claim.


(c) By part (b) ed(G) ≤ d2. We will prove ed(G) ≥ d2 using part (a). Since
dim(RE/K(SB(B ⊗F Aop))) = 2(d2 − 1) it suffices to construct a field ex-
tension K/F and a pair (B, τ) of a central simple K-algebra with unitary
involution such that E is a field (so δE = 1) and


Y := RE/K(SB(B ⊗F Aop))


is incompressible, i.e., cdim(Y ) = dim(Y ). For this by N. Karpenko’s in-
compressibility result [Ka12, Theorem 1.1] it suffices that B ⊗F Aop is a
division algebra (note that B and AE both carry unitary involutions, hence
NE/K(B ⊗F Aop) is split as required). The existence of such a pair (B, τ)
was proven in [Lö11, Lemma 2.3].


�


Remark 4.1. (a) In order to prove the correct lower bound on ed(G) in Propo-
sition 4.2 using part (a) we really must choose the pair (B, τ) over a field
K such that the center E = Z(B) is non-split. Otherwise B ≃ B0 ×
Bop


0 for some central simple K-algebra B0 of degree d and the variety
RE/K(SB(B⊗F Aop)) has the same splitting fields as SB(B0⊗F Aop), which
has strictly smaller dimension. Moreover δE would be 0 instead of 1.


(b) For m = 0, d = 2m = 1, it is not true that ed(G) = d2 = 1, since then
G ≃ O2 and this group has ed(G) = 2 by [Re99, Theorem 10.3].


4.3. Splitting a global problem into two local problems. In almost all situ-
ations, when the (absolute) essential dimension of an algebraic group or algebraic
stack is known, it is equal to its essential p-dimension for some prime p. This is
a limitation of most methods we have in Galois cohomology and related algebraic
areas. For a broad discussion of this phenomenon, see [Re10, §5]. As an example it is
well known that edp(PGLp) = 2 for all primes p, but the question if ed(PGLp) = 2
for all primes p is widely open and a negative answer to this question would disprove
the cyclicity conjecture of Albert for central simple algebras of degree p.


When the absolute essential dimension differs from essential p-dimension for all
primes p (or is not known to coincide with essential p-dimension for some prime
p) it often becomes significantly more difficult to compute it. This usually happens
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when several primes are immediately tied to the problem. We call such a problem
a global problem. A local problem is one, which depends only on one prime.


Theorem 1.1 allows us to attack some of these global problems by decomposing
a global problem into two local problems.


We construct the following example: Let K/F be a quadratic separable extension
and L/F a qubic separable extension. Let B be a central simple K-algebra of degree
3. Assume that NK/F (B) and B ⊗K (K ⊗F L) ≃ B ⊗F L are split, but B is non-


split. Let XB be the R
(1)
K/F (Gm)-gerbe over F corresponding to the class of B in


H2(F,R
(1)
K/F (Gm)) = ker(Br(K)


cor
→ Br(F )).


Proposition 4.3. ed(XB) = 3, ed2(XB) = 1, ed3(XB) = 2 and edp(XB) = 0 for
every prime p 6= 2, 3.


Proof. By Theorem 1.1


ed(XB) = cdim(X ) + ed(R
(1)
K/F (Gm)) = cdim(XB) + 1.


Since XB splits over L, which is of degree 3 over F , we have cdimp(XB) = 0 for


every prime p 6= 3, hence for these primes edp(XB) = edp(R
(1)
K/F (Gm)), which is 1


if p = 2 and 0 if p 6= 2, 3.
Moreover ed3(XB) ≤ cdim3(XB) + ed3(XB) = cdim3(XB). Since cdim3(XB) ≤


cdim(XB) it remains to show that cdim(XB) ≤ 2 and cdim3(XB) ≥ 2. Note that
XB becomes a Gm-gerbe over K corresponding to the class of B in Br(K). Since
B is non-split of degree 3 we have cdim3(XB) = cdim3((XB)K) = 2. To show
cdim(XB) ≤ 2 first note that a field extension M/F is a splitting field of XB if and
only if B⊗F M is split. Hence it follows from [Bl10, Corollary 3.6] that XB has the
same splitting fields as a Del Pezzo surface S of degree 6 (the one associated to the
triple (B,M2(L),KL)). Therefore cdim(XB) ≤ dimS = 2. �
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