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ABSTRACT. Let K be a global field which contains a primitive p-th root of unity, where p
is a prime number. M. J. Hopkins and K. G. Wickelgren showed that for p = 2, any triple
Massey product over K with respect to Fp, contains 0 whenever it is defined. We show
that this is true for all primes p.


1. INTRODUCTION


Massey products were introduced by W. S. Massey in [Ma]. (We review the definition
and some basic properties in Section 2.) Massey products were first used in topology
where usual cohomology cup products would not detect some linking properties of
knots but Massey products would. (See for example [Mo, page 98] or [GM, pages 154-
158].) Further interest in Massey products arises as an obstruction to the "formality"
of manifolds over real numbers. In the case of compact Kähler manifolds, formality
formalizes the property that their homotopy type is a formal consequence of their real
cohomology ring. (See [DGMS].) We treat Massey products also as obstructions to
solving certain Galois embedding problems.


Let p be a prime number. Let K be a field which we assume contains a fixed primitive
p-th root of unity ζp. Let GK be the absolute Galois group of K. Let C• = C•(GK, Fp)
denote the differential graded algebra of Fp-inhomogeneous cochains in continuous
group cohomology of GK (see e.g., [NSW, Chapter I, §2]). For any a ∈ K× = K \ {0}, let
χa denote the corresponding character via the Kummer map K× → H1(GK, Fp), i.e., χa


is defined by σ( p
√


a) = ζ
χa(σ)
p


p
√


a, for all σ ∈ GK. In the work of M. J. Hopkins and K. G.
Wickelgren [HW], the following fundamental result was proved. (By a global field we
mean a finite extension of Q, or a function field in one variable over a finite field.)


Theorem 1.1 ([HW, Theorem 1.2]). Let the notation be as above. Assume that p = 2 and K
is a global field of characteristic 6= 2. Let a, b, c ∈ K×. The triple Massey product 〈χa, χb, χc〉
contains 0 whenever it is defined.


In [MT] we extend the result of Hopkins-Wickelgren to an arbitrary field K of charac-
teristic 6= 2, still assuming that p = 2.


The first author is partially supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC) grant R0370A01. The second author is partially supported by the National Foundation
for Science and Technology Development (NAFOSTED).


1
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Theorem 1.2 ([MT, Theorem 1.2]). Let the notation be as above. Assume that p = 2 and K is
an arbitrary field of characteristic 6= 2. Let a, b, c ∈ K×. The triple Massey product 〈χa, χb, χc〉
contains 0 whenever it is defined.


In this paper we extend the result of Hopkins-Wickelgren in Theorem 1.1 in another
direction. We still consider a global field K but we let prime p be arbitrary.


Theorem 1.3 (Theorem 4.3). Let p be an arbitrary prime. Let K be a global field containing
a primitive p-th root of unity and a, b, c ∈ K×. Then the triple Massey product 〈χa, χb, χc〉
contains 0 whenever it is defined.


Let us denote by U4(Fp) the group of all upper-triangular unipotent 4-by-4-matrices
with entries in Fp. For a finite group G, by a G-Galois extension L/K, we mean a Galois
extension with Galois group isomorphic to G. It is a classical problem to describe exten-
sions M/K which can be embedded into a G-Galois extension L/K with a prescribed
Galois group G. From Theorem 1.3 and its local version we can deduce the following
contribution to this problem when G = U4(Fp).


Corollary 1.4. Let p be an arbitrary prime. Let K be a local or global field containing a primitive
p-th root of unity. Let a, b, c ∈ K× and assume that the classes [a], [b], [c] in the Fp-vector


space K×/(K×)p are linearly independent. Assume further that χa ∪ χb = χb ∪ χc = 0 in


H2(GK, Fp). Then the Galois extension K( p
√


a, p
√


b, p
√


c)/K can be embedded in a U4(Fp)-
Galois extension L/K.


In fact for each U4(Fp)-extension L/K, there exist a, b, c ∈ K× ∩ Lp such that that
the classes [a], [b], [c] in the Fp-vector space K×/(K×)p are linearly independent, and
that χa ∪ χb = χb ∪ χc = 0 in H2(GK, Fp). Thus we see that this hypothesis is both
necessary and sufficient for embedding abelian extensions of degree p3 and exponent p
into a U4(Fp)-extension. (See Section 3 for more detail.)


In the case when p = 2, Corollary 1.4 was also proved in [GLMS, Section 4] for all
fields K of characteristic not 2. (See also [MT, Section 6].)


Let us now recall briefly how Theorem 1.1 is established in [HW].
Let p = 2 and K be a field of characteristic not 2. In [HW], the authors construct


for each a, b, c ∈ K×, a K-variety Xa,b,c, which detects when a triple Massey product
〈χa, χb, χc〉 is defined and contains 0. More precisely, the variety Xa,b,c has a K-rational
point if and only if the triple Massey product 〈χa, χb, χc〉 is defined and contains 0 (see
[HW, Theorem 1.1]). The authors then establish a local version of Theorem 1.1 by us-
ing the non-degenerate property of the cup products and the indeterminacy of Massey
products. Now assume that K is a global field and consider a, b, c ∈ K× such that
〈χa, χb, χc〉 is defined. By applying a result of D. B. Leep and A. R. Wadsworth in [LW],
the authors show that the splitting variety Xa.b,c satisfies the Hasse local-global principle
(see [HW, Theorem 3.4]), and then the result follows from the local case.


In our paper we also use the local-global principle but our method is different from
the method used in the paper [HW]. Let p be any prime, and let K be a field containing
a primitive p-th root of unity. Let a, b, c ∈ K× such that the triple Massey product
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〈χa, χb, χc〉 is defined. Now instead of constructing a splitting variety for 〈χa, χb, χc〉,
we use the technique of Galois embedding problems to detect the vanishing property
of triple Massey products. Namely, 〈χa, χb, χc〉 vanishes if certain kinds of embedding
problems are solvable. This is true because of a result of W. G. Dwyer. We then use
Hoechsmann’s lemma to translate the problem of showing the solvability of embedding
problems to the problem of showing some degree 2 cohomological classes vanish. Then
we establish a local-global principle for the vanishing of the cohomogical classes (see
Lemma 4.1). Theorem 1.3 then follows from its local version. This being said, our proof
also provides another proof for Theorem 1.1 in the case p = 2.


The structure of our paper is as follows. In Section 2 we review some basic facts on
Massey products. In Section 3 we discuss embedding problems. In Section 4 we provide
a proof of Theorem 1.3 assuming Lemma 4.1. In Section 5 we use Poitou-Tate duality as
one of the main tools to establish the technical Lemma 4.1.


Acknowledgments: We would like to thank Stefan Gille, Thong Nguyen Quang Do
and Kirsten Wickelgren for their interest and correspondence.


2. REVIEW OF MASSEY PRODUCTS


In this section, we review some basic facts about Massey products, see [MT] and
references therein for more detail.


Let A be a unital commutative ring. Recall that a differential graded algebra (DGA)
over A is a graded associative A-algebra


C• = ⊕k≥0Ck = C0 ⊕ C1 ⊕ C2 ⊕ · · ·
with product ∪ and equipped with a differential δ : C• → C•+1 such that


(1) δ is a derivation, i.e.,


δ(a ∪ b) = δa ∪ b + (−1)ka ∪ δb (a ∈ Ck);


(2) δ2 = 0.
Then as usual the cohomology H• = ker δ/imδ. We shall assume that a1, . . . , an are
elements in H1.


Definition 2.1. A collection M = (aij), 1 ≤ i < j ≤ n + 1, (i, j) 6= (1, n + 1) of ele-
ments of C1 is called a defining system for the nth order Massey product 〈a1, . . . , an〉 if the
following conditions are fulfilled:


(1) ai,i+1 represents ai.
(2) δaij = ∑


j−1
l=i+1 ail ∪ al j for i + 1 < j.


Then ∑
n
k=2 a1k ∪ ak,n+1 is a 2-cocycle. Its cohomology class in H2 is called the value of the


product relative to the defining system M, and is denoted by 〈a1, . . . , an〉M.
The product 〈a1, . . . , an〉 itself is the subset of H2 consisting of all elements which can


be written in the form 〈a1, . . . , an〉M for some defining system M.
When n = 3 we will speak about a triple Massey product.
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For n ≥ 2 we say that C• has the vanishing n-fold Massey product property if every
defined Massey product 〈a1, . . . , an〉, where a1, . . . , an ∈ C1, necessarily contains 0.


Now let G be a profinite group and let A be a finite commutative ring considered as
a trivial discrete G-module. Let C• = C•(G, A) be the DGA of inhomogeneous contin-
uous cochains of G with coefficients in A [NSW, Ch. I, §2]. We write Hi(G, A) for the
corresponding cohomology groups.


Definition 2.2. We say that G has the vanishing n-fold Massey product property (with respect
to A) if the DGA C•(G, A) has the vanishing n-fold Massey product property.


Let K be a field. We say that K has the vanishing n-fold Massey product property (with
respect to A) if its absolute Galois group GK has the vanishing n-fold Massey product
property (with respect to A).


As observed by Dwyer [Dwy] in the discrete context (see also [Ef, §8] in the profinite
case), defining systems for the DGA C•(G, A) can be interpreted in terms of upper-
triangular unipotent representations of G, as follows.


Let Un+1(A) be the group of all upper-triangular unipotent (n+ 1)× (n+ 1)-matrices
with entries in A. Let Zn+1(A) be the subgroup of all such matrices with all off-diagonal
entries being 0 except at position (1, n + 1). We may identify Un+1(A)/Zn+1(A) with
the group Ūn+1(A) of all upper-triangular unipotent (n + 1) × (n + 1)-matrices with
entries over A with the (1, n + 1)-entry omitted.


For a representation ρ : G → Un+1(A) and 1 ≤ i < j ≤ n + 1, let ρij : G → A be
the composition of ρ with the projection from Un+1(A) to its (i, j)-coordinate. We use
similar notation for representations ρ̄ : G → Ūn+1(A). Note that ρi,i+1 (resp., ρ̄i,i+1) is a
group homomorphism.


Theorem 2.3 ([Dwy, Theorem 2.4]). Let α1, . . . , αn be elements of H1(G, A). There is a
one-one correspondence M ↔ ρ̄M between defining systems M for 〈α1, . . . , αn〉 and group
homomorphisms ρ̄M : G → Ūn+1(A) with (ρ̄M)i,i+1 = −αi, for 1 ≤ i ≤ n.


Moreover 〈α1, . . . , αn〉M = 0 in H2(G, A) if and only if the dotted arrow exists in the follow-
ing commutative diagram


G


ρ̄M
��ww♣


♣


♣


♣


♣


♣


0 // A // Un+1(A) // Ūn+1(A) // 1.


Explicitly, the one-one correspondence in Theorem 2.3 is given by: For a defining
system M = (aij) for 〈α1, . . . , αn〉, ρ̄M : G → Ūn+1(A) is given by letting (ρ̄M)ij = −aij.


Corollary 2.4. The following conditions are equivalent.


(i) G has the vanishing n-fold Massey product property.
(ii) For every representation ρ̄ : G → Ūn+1(A), there is a representation ρ : G → Un+1(A)


such that ρi,i+1 = ρ̄i,i+1, for i = 1, 2, . . . , n.
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3. EMBEDDING PROBLEMS


A weak embedding problem E for a profinite group G is a diagram


E := G


α
��


U
f


// Ū


which consists of profinite groups U and Ū and homomorphisms α : G → Ū, f : U → Ū
with f being surjective. (All homomorphisms of profinite groups considered in this
paper are assumed to be continuous.) If in addition α is also surjective, we call E an
embedding problem.


A weak solution of E is a homomorphism β : G → U such that f β = α.
We call E a finite weak embedding problem if group U is finite. The kernel of E is


defined to be M := ker( f ).
Let φ1 : G1 → G be a homomorphism of profinite groups. Then φ1 induces the follow-


ing weak embedding problem


E1 := G


α◦φ1
��


U
f


// Ū.


If β is a weak solution of E then β ◦ φ1 is a weak solution of E1.


Lemma 3.1. Let G be a profinite group, and p a prime number. Then the following statements
are equivalent:


(1) G has the vanishing triple Massey product property with respect to Fp.
(2) For every homomorphism ρ̄ : G → Ū4(Fp), the finite weak embedding problem


G


(ρ̄12,ρ̄23,ρ̄34)
��yyt


t


t


t


t


t


0 // M // U4(Fp) // (Fp)
3 // 1,


has a weak solution, i.e., (ρ̄12, ρ̄23, ρ̄34) can be lifted to a homomorphism ρ : G → U4(Fp).


Proof. This follows from Corollary 2.4. �


For 1 ≤ i, j ≤ 4, let Eij denote the 4-by-4 matrix with the 1 of Fp in the position (i, j)
and 0 elsewhere. It is well-known that 1 + E12, 1 + E23 and 1 + E34 generate U4(Fp).


Corollary 3.2. Let p be an arbitrary prime. Let K be a field containing a primitive p-th root
of unity. Assume that K has the vanishing triple Massey product property with respect to Fp.


Let a, b, c ∈ K× and assume that the classes [a], [b], [c] in the Fp-vector space K×/(K×)p are


linearly independent. Assume further that χa ∪ χb = χb ∪ χc = 0 in H2(GK, Fp). Then the


Galois extension K( p
√


a, p
√


b, p
√


c)/K can be embedded in a U4(Fp)-Galois extension L/K.
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Proof. Since χa ∪ χb = χb ∪ χc = 0, the triple Massey product 〈−χa,−χb,−χc〉 is de-
fined. By Theorem 2.3 there is a group homomorphism ρ̄ : GK → Ū4(Fp) such that
ρ̄12 = χa, ρ̄23 = χb and ρ̄34 = χc. By Lemma 3.1, (ρ̄12, ρ̄23, ρ̄34) can be lifted to a homo-
morphism ρ : GK → U4(Fp). Let F = K( p


√
a, p
√


b, p
√


c). Then F/K is a Galois extension,
and its Galois group is generated by σa, σb, σc. Here σa is defined by


σa(
p
√


a) = ζp
p
√


a, σa(
p
√


b) =
p
√


b, σa(
p
√


c) = p
√


c.


The automorphisms σb and σc are defined similarly by


σb(
p
√


a) = p
√


a, σa(
p
√


b) = ξp
p
√


b, σa(
p
√


c) = ξp
p
√


c,


σc(
p
√


a) = p
√


a, σa(
p
√


b) =
p
√


b, σa(
p
√


c) = ξp
p
√


c.


We extend σa, σb, σc to automorphisms of Ksep over K, still denoted by σa, σb, σc. Then
ρ(σa) ≡ 1 + E12 mod M, where M is as in Lemma 3.1. In fact it follows from


ρ12(σa) = χa(σa) = 1, and


ρ23(σa) = χb(σa) = 0, and


ρ34(σa) = χc(σa) = 0.


Similarly, one can check that ρ(σb) ≡ 1+ E23 mod M and ρ(σc) ≡ 1+ E34 mod M. Since
M is the Frattini subgroup of U4(Fp), we obtain that ρ : GK → U4(Fp) is surjective, and
the result follows. �


Remark 3.3. Let p be an arbitrary prime. Let K be a field containing a primitive p-th root
of unity. Let L/K be a U4(Fp)-extension. Then there exist a, b, c ∈ K× ∩ Lp such that the
classes [a], [b], [c] in the Fp-vector space K×/(K×)p are linearly independent and that
χa ∪ χb = χb ∪ χc = 0 in H2(GK, Fp). In fact let ρ : GK ։ Gal(L/K) ≃ U4(Fp) be the
corresponding homomorphism. Then by Kummer theory there exist a, b, c in K× ∩ Lp


such that ρ12 = χa, ρ23 = χb and ρ34 = χc. Since (ρ12, ρ23, ρ34) : GK → Fp × Fp × Fp is
surjective, we see that the classes [a], [b], [c] in K×/(K×)p are Fp-linearly independent.
By Theorem 2.3 (or by using directly the hypothesis that ρ is a group homomorphism),
we see that


χa ∪ χb = ρ12 ∪ ρ23 = 0,


and that
χb ∪ χc = ρ23 ∪ ρ34 = 0.


Remark 3.4. Corollary 1.4 will follow immediately from Corollary 3.2 once we succeed
in establishing Theorem 1.3 and its local version.


Lemma 3.5 (Hoechsmann). Let E be a finite weak embedding problem for G with finite abelian
kernel M. Let ǫ ∈ H2(Ū, M) be the cohomology class corresponding to the group extension of
E . Then E has a weak solution if and only if α∗(ǫ) = 0 ∈ H2(G, M).
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Proof. See [NSW, Chapter 3, §5, Proposition 3.5.9]. Note that the statement in loc. cit.
requires that E is an embedding problem, but its proof goes well with weak embedding
problems. �


Corollary 3.6. Let E(G) = (α : G → Ū, f : U → Ū) be a finite weak embedding problem for
G with abelian kernel M. Let φi : Gi → G, i ∈ I, be a family of homomorphisms of profinite
groups. Assume that the natural homomorphism


H2(G, M) → ∏
i


H2(Gi, M),


is injective. Then the weak embedding problem E(G) has a weak solution if and only if for every
i ∈ I the induced weak embedding problem E(Gi) has a weak solution.


Proof. The following diagram


H2(Ū, M)


α∗
��


// ∏i∈I H2(Gi, M)


H2(G, M) // ∏i∈I H2(Gi, M),


is commutative. Now the statement follows from Lemma 3.5. �


4. MAIN THEOREM


Consider the following exact sequence of finite groups


1 −→ M −→ U4(Fp)
(a12,a23,a34)−−−−−−→ (Fp)


3 −→ 1,


here aij : U4(Fp) → Fp is the map sending a matrix to its (i, j)-coefficient. Since M is
abelian, the conjugate action of U4(Fp) on M induces an action of B := (Fp)


3 on M, i.e.,
we get a homomorphism ψ : B → Aut(M).


Let K be a global field containing a primitive p-th root of unity. Let ρ̄ : GK → (Fp)3 =
B be any (continuous) homomorphism, we consider M as a GK-module via


ψ ◦ ρ̄ : GalK
ρ̄→ B


ψ→ Aut(M).


For each prime v of K, let Kv denote the completion of K at v. We will fix an embedding
ιv : GKv →֒ GK which is induced by choosing an embedding of Ksep in K


sep
v . Then for


each i, ιv’s induce a homomorphism


Hi(GK, M) → ∏
v


Hi(GKv , M).


(Here the product is taken over the set of all primes of K.) This homomorphism does
not depend on the choice of embeddings Ksep →֒ K


sep
v , and it is called the localization


map.
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Lemma 4.1. The localization map


H2(GK, M) → ∏
v


H2(GKv , M),


is injective.


We will prove Lemma 4.1 in the next section.


Theorem 4.2. Let K be a local field containing a primitive p-th root of unity. Then the triple
Massey product 〈χa, χb, χc〉 contains 0 whenever it is defined.


Proof. Let G = GK(p) be the maximal pro-p quotient of the absolute Galois group of K.
Then G is a Demushkin group. Hence, by [MT, Theorem 4.2] G has the vanishing triple
Massey product property. �


Theorem 4.3. Let K be a global field containing a primitive p-th root of unity. Then the triple
Massey product 〈χa, χb, χc〉 contains 0 whenever it is defined.


Proof. We shall prove the condition (ii) in Lemma 3.1.
Let ρ̄ : GK → Ū4(Fp) be any homomorphism. We consider the weak embedding


problem
(E) GK


(ρ̄12,ρ̄23,ρ̄34)
��


0 // A // U4(Fp) // (Fp)
3 // 1.


Then by Theorem 4.2 and by Lemma 3.1, we deduce that for every prime v of K, the
(local) weak embedding problem (Ev)


(Ev) GKv


(ρ̄12,ρ̄23,ρ̄34)
��zz✉


✉


✉


✉


✉


0 // A // U4(Fp) // (Fp)
3 // 1,


which is induced from (E), has a weak solution. By Lemma 4.1 and Corollary 3.6, (E)
has a weak solution also, and we are done. �


5. PROOF OF LEMMA 4.1


Let G be a profinite group, and let M be a discrete G-module. We define


H1
∗(G, M) = ker(H1(G, M) → ∏


C


H1(C, M)),


where the product is over all closed cyclic subgroups (in the profinite sense) of G.
(The definition of H1


∗(G, M) is due to Tate (see [Se, §2]). This definition also appeared
in [DZ, §2], in which the authors used the notation H1


loc instead of using H1
∗.)


Now let K be a global field. Let GK be the absolute Galois group of K. For any GK-
module M with the structure map ρ : GK → Aut(M) we denote K(M) the smallest
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splitting field of M, explicitly K(M) is the fixed field of the separable closure Ksep under
ker(ρ : GK → Aut(M)). In the next lemma for each prime v of K, we choose an extension
w of v to Ksep.


Lemma 5.1. Let F be a finite Galois extension of K containing K(M). Let S be a set of primes
of K with Dirichlet density 1. Let


β1
S(F/K, M) : H1(Gal(F/K), M) → ∏


v∈S


H1(Gal(Fw/Kv), M),


be the map induced by the restriction maps. Then we have the following commutative diagram


ker β1
S(F/K, M)


≃
//


� _


��


ker β1
S(K


sep/K, M)
� _


��


H1
∗(Gal(F/K), M)


≃
// H1


∗(GalK, M).


Proof. See [Mi, Chapter I, Lemma 9.3] and/or [Ja, Lemma 1]. See also [Se, Proposition
8] for the case that S is the complement of a finite set of primes. �


We shall apply Lemma 5.1 to S consisting of all primes of K.
Now we recall that we have the following exact sequence of finite groups


1 −→ M −→ U4(Fp)
(a12,a23,a34)−−−−−−→ (Fp)


3 −→ 1,


here aij : U4(Fp) → Fp is the map sending a matrix to its (i, j)-coefficient. This exact
sequence induces a B := (Fp)3-module structure on M.


Lemma 5.2. Let M′ = Hom(M, Fp) be the dual B-module of the B-module M. Then there
exists an Fp-basis of M′ such that with respect to this basis the structure map α : B → Aut(M′)


becomes the map α : B → GL3(Fp), which sends (x, y, z) ∈ B to








1 0 x
0 1 −z
0 0 1





 .


Proof. We first describe the action of B := (Fp)3 on M, i.e., we describe the map ψ : B →
Aut(M), as follows. Explicitly,


M = {














1 0 a b
0 1 0 c
0 0 1 0
0 0 0 1














: a, b, c ∈ Fp}.


Let e1 = I + E14, e2 = I + E13, e3 = I + E24. With respect to the Fp-basis (e1, e2, e3) of M,


(x, y, z) ∈ (Fp) is sent to the matrix








1 z −x
0 1 0
0 0 1





 .
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Now we consider the B-module M′. With respect to the dual basis of (e1, e2, e3), the
structure map α : B → Aut(M′) describing the action of B on M′ is given by:


(x, y, z) 7→








1 0 0
−z 1 0
x 0 1





 .


Then the statement follows by noting that the matrix








1 0 0
−z 1 0
x 0 1





 is conjugate to the


matrix








1 0 x
0 1 −z
0 0 1





 via the element








0 0 1
0 1 0
1 0 0





. �


The following lemma is a special case of [DZ, Lemma 3.3]. It is a simple lemma and
therefore we also omit a proof.


Lemma 5.3. Let V be a vector space of finite dimension over a field k. Let ϕ1, ϕ2 be elements in
the dual k-vector space V∗ := Hom(V, k). If ker ϕ1 ⊆ ker ϕ2 then there exists λ ∈ k such that
ϕ2 = λϕ1.


Lemma 5.4. Let


G = {








1 0 a
0 1 b
0 0 1





 : a, b ∈ Fp},


and let (Fp)3 be the natural Fp[G]-module where G acts on (Fp)3 by matrix multiplication.


Then H1
∗(G, (Fp)3) = 0.


Proof. Let (Zσ) be a cocycle representing an element in H1
∗(G, (Fp)3). Then for each


σ ∈ G, there exists Wσ ∈ (Fp)
3 such that


Zσ = (σ − 1)Wσ.


Writing Zσ =








xσ


yσ


zσ





, Wσ =








uσ


vσ


tσ





 and σ =








1 0 aσ


0 1 bσ


0 0 1





 , we have








xσ


yσ


zσ





 =








0 0 aσ


0 0 bσ


0 0 0














uσ


vσ


tσ





 =








tσaσ


tσbσ


0





 .


Hence


(1) xσ = tσaσ, yσ = tσbσ, zσ = 0.


By the cocycle condition, σ 7→ xσ and σ 7→ yσ are homomorphisms. Also, σ 7→ aσ and
σ 7→ bσ are homomorphisms. From (1), one has ker aσ ⊆ ker xσ and ker bσ ⊆ ker yσ.
Hence by Lemma 5.3, there exist λ, µ ∈ Fp such that


(2) xσ = λaσ ; yσ = µbσ.
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We consider the matrix σ0 =








1 0 1
0 1 1
0 0 1





 , i.e., aσ0 = bσ0 = 1. Then (1) and (2) imply that


xσ0 = tσ0 = λ, and yσ0 = tσ0 = µ.


Thus λ = µ. Hence Zσ = (σ − 1)W, with W = (0, 0, λ)t. Therefore (Zσ) is cohomolo-
gous to 0, as desired. �


We are now ready to prove Lemma 4.1, and the proof of Theorem 4.3 will then be
complete.


Proof of Lemma 4.1. First note that if we consider M′ = Hom(M, Fp) as a GK-module via
the map β : GalK → B


α→ Aut(M′), then M′ is the dual GK-module of the GK-module
M. Now by Poitou-Tate duality ([NSW, Theorem 8.6.7]), it is enough to show that


(3) ker(H1(GK, M′) → ∏
v


H1(GKv , M′)) = 0.


Let F = (Ksep)ker β be the splitting field of M′. Then Gal(F/K) ≃ imβ ⊆ imα = G,
where G is the group defined in Lemma 5.4.


If Gal(F/K) ≃ imβ = G, then by Lemma 5.4, H1
∗(Gal(F/K), M′) = 0. If Gal(F/K) ≃


imβ 6= G, then Gal(F/K) is of order dividing p, and hence it is cyclic. In this case, it is
clear that H1


∗(Gal(F/K), M′) = 0. Thus in all cases we have H1
∗(Gal(F/K), (Fp)


3) = 0.
Therefore by Lemma 5.1, it implies that (3) is true, as desired. �
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