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1. Introduction


Informally speaking, the essential dimension of an algebraic object
can be thought of as the minimal number of independent parameters
needed to define it. Essential dimension assigns a numerical invariant
(a non-negative integer) to algebraic objects and allows us to compare
their relative complexity. Naturally, the fewer parameters needed for
definition, the simpler the object is.
The notion of essential dimension first appeared in a 1997 paper by


J. Buhler and Z. Reichstein [BuRe] within the context of finite groups.
Later on A. Merkurjev extended this notion to arbitrary functors; see
[BF]. For the definition, properties and results on essential dimension
of algebraic groups and various functors we refer to recent surveys [Me]
and [Re].
In the past 15 years this numerical invariant has been extensively


studied by many people. To the best of our knowledge in all pub-
lications on this topic the only approach for computing the essential
dimension ed(G) of an algebraic group G consisted of finding its upper
and lower bounds. If, by lucky circumstance, both bounds for G are
equal then of course their common value is ed(G). We remark that this
strategy has worked in all cases where ed(G) is known.
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The aim of the current paper is two-fold. We recall that a gen-
eral method for computing lower bounds of the essential dimensions
of simple algebraic groups defined over fields of characteristic 6= 2 via
orthogonal representations was developed in [ChSe]. Our first goal is to
extend this approach to characteristic 2 case. In Section 12 we prove the
incompressibility of the so-called canonical monomial quadratic forms
and this result leads us to Theorem 2.1 below which says that for any
simple split “adjoint group” G defined over a field of characteristic 2
one has ed(G) ≥ r + 1 where r = rank(G). Second, we show that for
an adjoint split group G of type Br one has ed(G) = r + 1. Thus, this
result indicates that the lower bound r + 1 of the essential dimension
in Theorem 2.1 is optimal for groups of adjoint type in the general case
and it seems inevitable that any future progress, if possible, will be
based on case by case consideration.
We now pass to the precise description of the main results of the


paper.


2. The main Theorems


In what follows, we assume that k is an algebraically closed field of
characteristic 2 and all fields and rings under consideration will contain
k.
LetG◦ be a simple algebraic group over k of adjoint type, and let T be


a maximal torus of G◦. Let c ∈ Aut(G◦) be such that c2 = 1 and c(t) =
t−1 for every t ∈ T (it is known that such an automorphism exists, see
e.g. [DG], Exp. XXIV, Prop. 3.16.2, p. 355). This automorphism is
inner (i.e. belongs to G◦) if and only if −1 belongs to the Weyl group
of (G, T ). When this is the case, we put G = G◦. If not, we define G
to be the subgroup of Aut(G◦) generated by G◦ and c. We have


• G = G◦ for types A1, Br, Cr, Dr (r even), G2, F4, E7, E8 ;
• (G : G◦) = 2 and G = Aut(G◦) for types Ar (r ≥ 2), Dr (r
odd), E6.


Let r = dim (T ) be the rank of G.


2.1. Theorem. If G is as above, we have ed (G) ≥ r + 1.


Our second main theorem deals with orthogonal and special orthog-
onal groups.


2.2. Theorem. Let q be a non-degenerate n-dimensional quadratic
form over k. We have:


(a) if n = 2r then ed(O(q)) = r + 1;
(b) if n = 2r and r is even then ed(SO(q)) = r + 1;
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(c) if n = 2r and r is odd then r ≤ ed(SO(q)) ≤ r + 1;
(d) If n = 2r + 1 then ed(O(q)) = ed(SO(q)) = r + 1.


3. Strategy of the proof of main Theorems


For groups of type G2 and F4 in Theorem 2.1 there is an easy reduc-
tion to orthogonal groups (see Section 14 below). For all other adjoint
types, orthogonal and special orthogonal groups we follow the same
approach as in [ChSe]. Namely,


a) we construct a G-torsor θG over a suitable extension K/k with
tr. degk(K) = r + 1, see below;
b) we show that there exists a suitable representation ρ : G → ON


such that the image of θG in H1(K,ON) is incompressible; this implies
that θG itself is incompressible, and Theorems 2.1 and 2.2 follow.


Let us start with part a) for an adjoint group G. Let R be the root
system of G with respect to T , and let Rsh be the (sub) root system
formed by the short roots of R. Let ∆ = {α1, . . . , αr} be a basis of Rsh.
The root lattices of R and Rsh are the same; hence ∆ is a basis of the
character group X(T ). This allows us to identify T with Gm×· · ·×Gm


using the basis ∆.
Call A0 the kernel of “multiplication by 2” on T . Let A = A0×{1, c}


be the subgroup of G generated by A0 and by the element c defined
above. The group A is isomorphic to µ2 × · · · × µ2 × Z/2.
Take K = k(t1, . . . , tr, x) where t1, . . . , tr and x are independent


indeterminates. We have


H1(K,A) = H1(K,µ2)× . . .×H1(K,µ2)×H1(K,Z/2).


Identify H1(K,µ2) with K
×/(K×)2 and H1(K,Z/2) with K/℘(K) as


usual. Here ℘ : K → K is the Artin-Schreier map. given by ℘(a) =
a2 + a. Then x and the ti’s define elements (x) and (ti) of H


1(K,Z/2)
and H1(K,µ2) respectively. Let θA be the element of H1(K,A) with
components ((t1), . . . , (tr), (x)). Let θG be the image of θA inH1(K,G).
We will prove in Section 14 :


3.1. Theorem. (K, θG) is incompressible.


Note that Theorem 3.1 implies Theorem 2.1 since tr. deg. K = r +
1. Its proof relies on studying properties of the so-called monomial
quadratic forms (see Section 10 below) which are also crucial for the
proof of Theorem 2.2.
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4. Review: Quadratic spaces in characteristic 2


The purpose of this section is to review some properties of quadratic
forms in characteristic 2 needed for construction of a representation of
our group G with the required property explained above. To this end
we will introduce the notion of a “normalization” of a quadratic form
which may not be standard.
LetK be an arbitrary field of characteristic 2. Recall that a quadratic


space over K is a pair (V, q) where V is a vector space over K and q is
a quadratic form on V . As usual, for any a, b ∈ K we will denote by
[a, b] a 2-dimensional quadratic form given by [a, b] = ax2 + xy + by2.
The form [0, 0] is called the hyperbolic plane and is denoted by H.
Similarly, for a ∈ K we denote by 〈 a 〉 the quadratic form ax2.
There is a special class of quadratic forms called n-fold Pfister forms


(see [EKM]). Recall that, by definition, a quadratic form [1, a] where
a ∈ K is called a 1-fold Pfister form and denoted 〈〈a]]. A quadratic
form isometric to


〈〈a1, . . . , an]] : = 〈〈a1, . . . , an−1〉〉b ⊗ 〈〈an]]


for some a1, . . . , an ∈ K is called a quadratic n-fold Pfister form. Here
〈〈a1, . . . , an−1〉〉b is a symmetric bilinear form given by


〈〈a1, . . . , an−1〉〉b = 〈1, a1〉b ⊗ · · · ⊗ 〈1, an−1〉b.


Let K/k be a finitely generated field extension of our base field k
and q a quadratic form over K. Then, if there exists another quadratic
form g defined over a field L/k satisfying


• k ⊂ L ⊂ K;
• tr. degk L < tr. degkK; and
• g ⊗L K ≃ q


we say that q is compressible. Otherwise, it is incompressible.
Given a quadratic form q one associates the bilinear form (called the


polar form of q) bq : V × V → K given by


bq(u, v) = q(v + u)− q(u)− q(v).


Its radical is


rad(bq) = {v ∈ V | bq(v, w) = 0 ∀w ∈ V }


and the quadratic radical of q is defined as


rad(q) = {v ∈ rad(bq) | q(v) = 0}.


Obviously, both rad(bq) and rad(q) are vector subspaces in V .
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One says that q is regular if rad(q) = 0 and q is non-degenerate if it
is regular over any field extension L/K. Note that non-degeneracy is
equivalent to the property dim(rad(bq)) ≤ 1.
It is well-known (see [EKM]) that any non-degenerate quadratic form


q of even dimension n = 2m is isometric to q ≃ ⊕m
i=1[ai, bi] where


ai, bi ∈ K. In this case the element c =
∑
aibi modulo ℘(K) is called


the Arf invariant of q. If q is non-degenerate and has odd dimension
n = 2m + 1 then q ≃ ⊕m


i=1[ai, bi] + 〈 c 〉 where c ∈ K× is unique up to
squares. This element c (modulo (K×)2) is called the determinant (=
discriminant) of q.
Let q : V → K be a quadratic form. We denote V : = V/rad(q) and


let π : V → V be the canonical map. It is straightforward to check that
the mapping q : V → K given by q(v) = q(v) is well defined. Thus a
quadratic space (V, q) gives rise to a quadratic space (V , q). We will
see in the example below that q is non-degenerate, but first we state
the following definition.


4.1. Definition. We will say that q is the (non-degenerate) normaliza-
tion of q.


Example. Let q be a quadratic form over k. Since k is algebraically
closed it is isometric to a quadratic form


〈0〉 ⊕ · · · ⊕ 〈0〉 ⊕H⊕ · · · ⊕H or


〈0〉 ⊕ · · · ⊕ 〈0〉 ⊕ 〈1〉 ⊕H⊕ · · · ⊕H.


It easily follows from the definition that its normalization is the follow-
ing quadratic form:


H⊕ · · · ⊕H or 〈1〉 ⊕H⊕ · · · ⊕H;


in particular q is non-degenerate.


Lastly, we want to relate the orthogonal group of a quadratic form q
to that of its normalization. Recall that given a quadratic space (V, q)
the orthogonal group of (V, q) is


O(V, q) = {x ∈ GL(V ) | q(x(v)) = q(v) ∀ v ∈ V }.


We define a map


λ : O(V, q) −→ O(V , q).


by x→ x where x(v) = x(v) for all v ∈ V .
Let us first show that x is well defined, i.e. x(rad(q)) ⊂ rad(q) or


equivalently x(v) ∈ rad(bq) for v ∈ rad(q) (because x preserves length
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of vectors). Let w0 ∈ V . Since x is invertible we have x(w) = w0 for
some w ∈ V . Then


bq(x(v), w0) = q(x(v) + w0) + q(x(v)) + q(w0)


= q(x(v) + x(w)) + q(x(v)) + q(x(w))


= q(x(v + w)) + q(x(v)) + q(x(w))


= q(v + w) + q(v) + q(w) = bq(v, w) = 0,


because v ∈ rad(q) ⊂ rad(bq). Thus, x(v) ∈ rad(q) as required.
It remains to see that x ∈ O(V , q). However,


q(x(v)) = q
(
x(v)


)
= q(x(v)) = q(v) = q(v).


Thus we have the following result:


4.2. Lemma. The canonical map V → V induces a natural morphism


λ : O(V, q) −→ O(V , q).


5. Killing forms of simple Lie algebras over Z


Let G be as in Theorem 2.1 and let G̃ be a universal simply connected
covering of its connected component G◦. To construct the required
orthogonal representation ρ of G (see part (b) of our strategy described
in Section 3) we need to know how the “normalized” Killing symmetric


bilinear (resp. quadratic) form Kb (resp. Kq) of the Lie algebra Lie(G̃)
looks like.
Since our main field has characteristic 2, we begin by computing


Kq in a Chevalley basis of the Lie algebra L of a split simple simply
connected algebraic group defined over Z. We then pass to k by first
normalizing Kb, i.e. by dividing all its coefficients by their g.c.d., and
then applying the base change Z → F2 = Z/2Z →֒ k.
Recall that a Chevalley basis is a canonical basis of L which arises


from a decomposition of


L = L0 ⊕ (
∐


α6=0


Lα)


into a direct sum of the weight subspaces Lα with respect to a split
maximal toral subalgebra H = L0 ⊂ L. Note that the set of all non-
trivial weights in the above decomposition forms a simple root system
and that for every root α we have dim(Lα) = 1.
In what follows Φ will denote the set of all roots of L with respect to


H, ∆ ⊂ Φ its basis and Φ+ (resp. Φ−) positive (resp. negative) roots.
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It is known (see [St]) that there exist elements {Hαi
|αi ∈ ∆} in H and


Xα ∈ Lα, α ∈ Φ such that the set


(5.0.1) {Hαi
|αi ∈ ∆ } ∪ {Xα|α ∈ Φ+} ∪ {X−α|α ∈ Φ+}


forms a basis for L, known as a Chevalley basis, and these generators
are subject to the following relations:


• [Hαi
, Hαj


] = 0;
• [Hαi


, Xα] = 〈α, αi〉Xα;
• Hα : = [Xα, X−α] =


∑
αi∈∆


niHαi
where ni ∈ Z;


• [Xα, Xβ] =


{
0 if α+ β /∈ Φ


±(p + 1)Xα+β otherwise
,


where p is the greatest positive integer such that α− pβ ∈ Φ. Here for
two roots α, β ∈ Φ the scalar 〈α, β〉 is given by


〈α, β〉 =
2(α, β)


(β, β)
,


where (−,−) denotes the standard inner product on the root lattice.
It is in this Chevalley basis (5.0.1) that we will compute the Killing
form Kq of L.
Note that many people addressed computation of Killing forms (see,


for example, [GN], [Ma] [Sel], [SpSt]), but we could not find in the
literature explicit formulas valid in characteristic 2. Below we produce
such formulas for the normalized Killing forms for each type with the
use of the following known facts.
Recall that for any X, Y ∈ L one has


Kb(X, Y ) = Tr(ad(X) ◦ ad(Y )), Kq(X) = Kb(X,X)


where ad: L → End(L) is the adjoint representation of L. It is straight-
forward to check that


Kb(Hαi
, Xα) = 0, Kb(Xα, Xβ) = 0


for all i and all roots α, β ∈ Φ such that α + β 6= 0; in particular,
Kq(Xα) = Kb(Xα, Xα) = 0. Thus as a vector space L is decomposed
into an orthogonal sum of its subspaces H and 〈Xα, X−α 〉, α ∈ Φ+.
Another fact which we need is due to Steinberg and Springer [SpSt]:


for any long root α ∈ Φ one has


(5.0.2) Kb(Hα, Hα) = Tr(ad(Hα) ◦ ad(Hα)) = 4ȟ ,


where ȟ is the dual Coxeter number of the given Lie algebra. Also, for
any root α ∈ Φ we have


(5.0.3) Kb(Xα, X−α) =
1


2
Tr(ad(Hα) ◦ ad(Hα)).
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Lastly, we need one more result from [Ma]:


(5.0.4) Kb(Hαi
, Hαj


) = 2ȟ(α̌i, α̌j) ,


where α̌i =
2αi


(αi,αi)
and (α̌, β̌) is the Weyl-invariant inner product such


that (α̌, α̌) = 2 for a long root α. Note that the above formula requires
(α̌, α̌) = 2 for a long root α, so that for groups of type Cn and G2


we will have to multiply the standard inner product by an appropriate
scalar to match this condition.
Combining the above mentioned results we see that for computation


of Kb we need to know only how Kb looks on the Cartan subalgebra H.
Indeed, formula (5.0.3) allows us to compute the restriction of Kb to
each 2-dimensional subspace 〈Xα, X−α 〉. Furthermore, for each long
root α we know by equation (5.0.2) that Kb(Hα, Hα) = 4ȟ. Similarly,
by using (5.0.4) and the fact that the Killing form is W -invariant,
where W is the corresponding Weyl group, we see that Kb(Hβ, Hβ) is
a constant value for all short roots β, but this value will depend on the
type of Φ. Finally we remark that if αi, αj ∈ ∆ ⊂ Φ are non adjacent
roots, then


Kb(Hαi
, Hαj


) = Tr(ad(Hαi
) ◦ ad(Hαj


)) = 0.


Indeed this is equivalent to saying that (αi, αj) = 0 which is true for
non adjacent roots.
Below we skip straightforward computations of Kb(Hαi


, Hαi
) and


Kb(Hαi
, Hαi+1


) for each type and present the final result only.


5.1. Type An. We have:


Tr(ad(Hαi
) ◦ ad(Hαi


)) = 4ȟ and Tr(ad(Hαi
) ◦ ad(Hαi+1


)) = −2ȟ.


Thus the Killing quadratic form Kq restricted to the Cartan subalgebra
H of the Lie algebra L of type An is of the form


Kq|H = 4ȟ


(
n∑


i=1


x2i


)
− 4ȟ


(
n−1∑


i=1


xixi+1


)
.


and the Killing form on all of L is


Kq = Kq|H + 4ȟ



∑


|Φ+|


yiyi+1



 .


To pass to the main field k we first modify (normalize) Kq by dividing


all coefficients of Kq by 4ȟ. After doing so our modified Killing form
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(still denoted by Kq) becomes


Kq =


n∑


i=1


x2i −


n−1∑


i=1


xixi+1 +
∑


|Φ+|


yiyi+1.


Passing to Z → Z/2Z, which is a field of characteristic 2, we finally
would like to “diagonalize” our form. Simple computations show that
a diagonalization of Kq looks as follows:


Kq ≃


(n−1)/2⊕


i=1


[0, 0]⊕ 〈c〉 ⊕
⊕


|Φ+|


[0, 0], if n is odd; c ∈ {0, 1}


and


Kq ≃


(n−1)/2⊕


i=1


[0, 0]⊕
⊕


|Φ+|


[0, 0], if n is even


5.2.Remark. In the above formula c can be 0 and 1. Its value depends
on the parity of m where n = 2m+ 1.


Similar arguments work for each type. Below we present the final
result only.


5.3. Type Bn.


Kq ≃


(n−2)/2⊕


i=1


[0, 0]⊕
⊕


|Φ+


long
|


[0, 0]⊕ 〈c〉 ⊕m〈0〉, if n is even; c ∈ {0, 1}


and


Kq ≃


(n−1)/2⊕


i=1


[0, 0]⊕
⊕


|Φ+


long
|


[0, 0]⊕m〈0〉, if n is odd,


where m = 2|Φ+
short|+ 1.


5.4. Type Cn.


Kq ≃ 〈1〉 ⊕
⊕


|Φ+


long
|


[0, 0]⊕m〈0〉


where m = (n− 1) + 2|Φ+
short|.
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5.5. Type Dn.


Kq ≃


(n−1)/2⊕


i=1


[0, 0]⊕ 〈0〉 ⊕
⊕


|Φ+|


[0, 0], if n is odd;


and


Kq ≃


(n−2)/2⊕


i=1


[0, 0]⊕ 〈c1〉 ⊕ 〈c2〉 ⊕
⊕


|Φ+|


[0, 0], if n is even; c1, c2 ∈ {0, 1}.


where one of c1 or c2 equals 0.


5.6. Type E6.


Kq ≃ [0, 0]⊕ [0, 0]⊕ [0, 0]⊕
⊕


|Φ+|


[0, 0].


5.7. Type E7.


Kq ≃ [0, 0]⊕ [0, 0]⊕ [0, 0]⊕ 〈1〉 ⊕
⊕


|Φ+|


[0, 0].


5.8. Type E8.


Kq ≃ [0, 0]⊕ [0, 0]⊕ [0, 0]⊕ [0, 0]⊕
⊕


|Φ+|


[0, 0].


5.9. Type F4.


Kq ≃ [0, 0]⊕
⊕


|Φ+


long
|


[0, 0]⊕m〈0〉


where m = 2 + |Φ+
short|.


5.10. Type G2.


Kq ≃ [0, 0] ⊕
⊕


|Φ+|


[0, 0].


6. An orthogonal representation


6.1. Proposition. Let G◦ be a split simple adjoint algebraic group over
k of one of the following types: Ar, Br, Cr, Dr, E6, E7, E8. There exists
a quadratic space (V, q) over k, and an orthogonal linear representation


ρ : G◦ −→ O (V, q)


with the following property :


(∗) q is non-degenerate and the nonzero weights of T on V are the
short roots and they have multiplicity 1.
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Proof. Types An, Dn, E6, E7, E8. Let W = Lie(G̃). The adjoint repre-


sentation G̃ → O(W,Kq) factors through G̃ → G◦. So it induces the
representation µ : G◦ → O(W,Kq). Let ρ be the composition of µ
and the map λ : O(W,Kq) → O(W,Kq) given in Lemma 4.2. Denote
V = W . The inspection of the normalized Killing form Kq presented
in Section 5 shows that ρ has the required property.
Type Br. We take V to be the standard representation of SO2r+1 of


dimension 2r + 1.
Type Cr. The formula for Kq presented in 5.4 shows that the adjoint


representation doesn’t work. So instead of the adjoint representation
of G = PSp2r we consider its representation on the exterior square.


More precisely, let V1 be the standard representation of G̃ = Sp2r


over Z equipped with a standard skew-symmetric bilinear form ω.
Choose a standard basis {e1, . . . , er, e−r, . . . , e−1} of V1. There exists a
natural embedding


∧2(V1) → V1 ⊗ V1 given by v ∧w → v⊗w−w⊗ v.
We extend ω to a symmetric bilinear form on V1 ⊗ V1 by


ω(v1 ⊗ v2, w1 ⊗ w2) = ω(v1, w1)ω(v2, w2)


and take its restriction (still denoted by ω) to V2 =
∧2(V1).


Consider a natural action of G on V2. This action preserves ω and
thus we have a natural representation G → O(V2, ω). Let q2(x) =
ω(x, x) be the quadratic form on V2 corresponding to ω. Denote vi =
ei∧ e−i. Also if i < j let vij = ei ∧ ej , wij = e−i∧ e−j and uij = ei ∧ e−j
for all i 6= j. It is straightforward to check that the subspaces 〈vi〉,
〈vij, wij〉, 〈uij, uji〉 of V2 are orthogonal to each other and that q2 written
in the bases vi, vij, uij, wij of V2 is of the form


q2 = 2 (
∑


x2i )⊕ 4 (
∑


yijzij).


Note that dividing all coefficients of q2 by 2 and passing to Z →
Z/2 we don’t achieve our goal since the resulting quadratic form is
“highly degenerate”. So instead of considering the representation of G
on V2 we do the following. One can easily check that any (hyperplane)
reflection τ : V1 → V1 acts trivially on a 1-dimensional subspace of V2
spanned by v = v1 + · · · + vr. It follows that Sp2r acts trivially on
〈v〉 and hence so does G. This implies that G acts on the orthogonal
complement V = 〈v〉⊥ (with respect to ω). This subspace is spanned
by v1 − v2, v2 − v3, . . . , vr−1 − vr, vij , uij, wij. In this basis of V the
restriction q of q2 to V is of the form


q = 4 (
∑


x2i −
∑


xixi+1)⊕ 4 (
∑


yijzij).
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Dividing all coefficients of q by 4 and taking the base change Z →
Z/2 ⊂ k we obtain an orthogonal representation of G over k with the
required property. �


7. The Witt group in characteristic 2


In this section we summarize Arason’s results [Ar1] on the structure
of the Witt group of quadratic forms over complete fields of character-
istic 2 used in our present work.
Let K be a field of characteristic 2, π an indeterminate over K and


let K((π)) be the field of formal Laurent series over K. If f is a non-
degenerate quadratic form over K((π)), we will denote its image in the
Witt group Wq(K((π))) by fW .


7.1. Theorem. Wq(K((π))) is the additive group generated by the el-
ements [α, βπ−k]W and [απ−1, βπ−k+1]W where k ∈ Z, k ≥ 0 and
α, β ∈ K, with the condition that [α, βπ−k]W and [απ−1, βπ−k+1]W are
biadditive as functions of α, β and satisfy the following sets of relations:


(7.1.1a) [α, βρ2π−k]W + [β, αρ2π−k]W = 0 if k is even


(7.1.1b) [απ−1, βρ2π−k+1]W + [βπ−1, αρ2π−k+1]W = 0 if k is even


(7.1.1c) [α, βρ2π−k]W + [βπ−1, αρ2π−k+1]W = 0 if k is odd


(7.1.2a) [α, αρ2π−2k]W + [α, ρπ−k]W = 0


(7.1.2b) [απ−1, αρ2π−2k+1]W + [απ−1, ρπ−k+1]W = 0


Here k runs through the non-negative integers and α, β and ρ run
through K.


7.2. Theorem. Let m ≥ 0 and let Wq(K((π)))m be the subgroup of
Wq(K((π))) generated by the [α, βπ−k]W and [απ−1, βπ−k+1]W where
k ∈ Z, 0 ≤ k ≤ m and α, β ∈ K. Then:


(1)Wq(K((π)))0 is isomorphic toWq(K)⊕Wq(K). A generator [α, β]W
of Wq(K((π)))0 is sent to [α, β]W in the first summand Wq(K), but a
generator [απ−1, βs]W corresponds to [α, β]W in the second summand.


(2) If n > 0 then Wq(K((π)))2n/Wq(K((π)))2n−1 is isomorphic to
K ∧K2 K ⊕ K ∧K2 K. The class of a generator [α, βπ−2n]W corre-
sponds to α ∧ β in the first summand, but the class of a generator
[απ−1, βπ−2n+1]W corresponds to α ∧ β in the second summand.


(3) If n ≥ 0 then Wq(K((π)))2n+1/Wq(K((π)))2n is isomorphic to
K⊗K2K. The class of a generator [α, βπ−2n+1]W corresponds to α⊗β,
but the class of a generator [απ−1, βπ−2n]W corresponds to β ⊗ α.
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By the above theorem one has


Wq(K((π)))0 ≃Wq(K)⊕Wq(K),


so that we have two natural projections


∂1 : Wq(K((π)))0 →Wq(K) and ∂2 : Wq(K((π))) →Wq(K)


which we will call the first and second residues (of the zero term of
Arason’s filtration).
Using the fact that [f, g] ≃ H for all f, g ∈ K((π)) such that fg ∈


πK[[π]], it is straightforward to show that the the zero term of the
Witt group of Arason’s filtration and the first residue don’t depend on
presentation L = K((π))). In other words, they don’t depend on a


choice of a coefficient field K̃ ⊂ L (for the notion of coefficient fields
we refer to Section 9 below) nor of a choice of a uniformizer of L and
that the second residue is defined up to similarity only. We leave the
details of the verification to the reader.


8. Presentation of quadratic forms inside the Witt group


In this section we will work with the Witt group of quadratic forms
over a field of Laurent series K((π)) where the coefficient field K is of
characteristic 2 and is finitely generated over k. By Theorems 7.1 and
7.2, given a non-degenerate quadratic form f defined over K((π)), we
may decompose its image fW in the Witt group as


(8.0.1) fW = f ′
m,W + f ′


m−1,W + ... + f ′
0,W


where f ′
i,W ∈ Wq(K((π)))i is homogeneous of degree i, i.e. a sum of


elements of the form [α, βπ−i] and [απ−1, βπ−i+1] with α, β ∈ K. Such
decomposition is not unique. The following lemma allows us to choose
the homogeneous components of fW in a canonical way.


8.1. Lemma. Let {αi}
N
i=1 be a basis for K as a K2-vector space and let


f be a non-degenerate quadratic form over K((π)). Then fW admits
a decomposition fW = fm,W + fm−1,W + ...+ f0,W such that it satisfies
the following:
if n is even then


fn,W =
∑


i<j


[αi, u
2
jαjπ


−n]W +
∑


i<j


[αiπ
−1, v2jαjπ


−n+1]W ,


where ui, vj ∈ K;
if n is odd then


fn,W =


N∑


i,j=1


[αi, u
2
jαjπ


−n]W ,
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where uj ∈ K.


Proof. Take decomposition (8.0.1). Suppose first that n = 2s is even.
Write f ′


2s,W in the form


f ′
2s,W =


∑
[pi, qiπ


−2s]W +
∑


[p′iπ
−1, q′iπ


−2s+1]W


where pi, qi, p
′
i, q


′
i ∈ K. Since {αi}


N
i=1 is a basis for K/K2 one has pi =∑N


i,j=1 e
2
ijαj where ei,j ∈ K and similarly for the qi, p


′
i, q


′
i. Replacing the


pi, qi, p
′
i, q


′
i with these expressions and using the biadditivity of [ , ]W


and the fact [uv2, w] = [u, v2w] for all u, v, w ∈ K((π)) we get that
f ′
2s,W can be written in the form


f ′
2s,W =


N∑


i,j=1


[u2iαi, v
2
jαjπ


−2s]W +
N∑


i,j=1


[u′2i αiπ
−1, v′2j αjπ


−2s+1]W


=


N∑


i,j=1


[αi, w
2
ijαjπ


−2s]W +


N∑


i,j=1


[αiπ
−1, w′2


ijαjπ
−2s+1]W


where ui, vj, u
′
i, v


′
j ∈ K and wij = uivj , w


′
ij = u′iv


′
j. If i = j we have


[αi, w
2
iiαiπ


−2s]W
7.1.2a
= [αi, wiiπ


−s]W


and


[αiπ
−1, w′2


iiαiπ
−2s+1]W


7.1.2b
= [αiπ


−1, w′
iiπ


−s+1]W .


If i > j we get


[αi, w
2
ijαjπ


−2s]W
7.1.1a
= [αj , w


2
ijαiπ


−2s]W


and


[αiπ
−1, w′2


ijαjπ
−2s+1]W


7.1.1b
= [αjπ


−1, w′2
ijαiπ


−2s+1]W .


If n = 2s − 1 is odd similar arguments shows that f ′
2s−1,W can be


written as a sum of symbols of the form [αi, u
2αjπ


−2s+1]W where u ∈ K.
Collecting all summands in the above decompositions of all f ′


2s,W and
f ′
2s−1,W of the same degree together we obtain the required decompo-
sition of fW . �


The following proposition provides us with the uniqueness of the
above decomposition.


8.2. Proposition. Given a quadratic form f , its image in the Witt
group can be decomposed uniquely as fW = fm,W + fm−1,W + ...+ f0,W ,
where fm,W , ..., f0,W are as in Lemma 8.1.
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Proof. We already know that a decomposition exists, so we only need
to prove uniqueness. Suppose


fW = fm,W + fm−1,W + ...+ f0,W = gn,W + gn−1,W + ...+ g0,W


are 2 different decompositions of fW . We first claim that n = m.
Suppose not. Then without loss of generality we may assume m > n.
Let us compare the images of these decompositions in the quotient
group Wq(K((s)))m/Wq(K((s)))m−1. Since n < m the image of gn,W +
gn−1,W + ...+ g0,W equals 0 whereas the other decomposition has image
the class of fm,W . We consider separately the cases m is even and odd.
m is even: write


fm,W
8.1
=
∑


i<j


[αi, u
2
jαjs


−m]W +
∑


i<j


[αis
−1, v2jαjs


−m+1]W


and let


φ : Wq(K((s)))m/Wq(K((s)))m−1
7.2
≃ K ∧K2 K ⊕K ∧K2 K


be the canonical isomorphism. Then


φ(fm,W ) =


(
∑


i<j


u2j(αi ∧ αj),
∑


i<j


v2j (αi ∧ αj)


)
.


Since {αi ∧ αj}i<j is a basis for K ∧K2 K,


φ(fm,W ) = 0 ⇔ u2j = v2j = 0 ∀ j.


This would imply that fm,W = 0, a contradiction.
m is odd: let


fm,W
8.1
=


N∑


i,j=1


[αi, u
2
jαjs


−m]W


and


φ : Wq(K((s)))n/Wq(K((s)))n−1
7.2
≃ K ⊗K2 K .


Then we have


φ(fm,W ) =
N∑


i,j=1


u2j(αi ⊗ αj) .


Since {αi ⊗ αj}
N
i,j=1 is a basis for K ⊗K2 K,


φ(fm,W ) = 0 ⇔ u2j = 0 ∀ j,


a contradiction.
Thus m = n. If m is even, from φ(fm,W ) = φ(gm,W ) we conclude


that ∑
u2j(αi ∧ αj) =


∑
u′2j (αi ∧ αj),
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where u′2j are the corresponding coefficients of gm,W , and similarly
∑


v2j (αi ∧ αj) =
∑


v′2j (αi ∧ αj).


This implies u2j = u′2j and v2j = v′2j , hence fm,W = gm,W . Similarly we
can see that fm,W = gm,W if m is odd. Then from the equality


(f0,W + ... + fm−1,W ) + fm,W = (g0,W + ...+ gm−1,W ) + gm,W


it follows that


f0,W + ... + fm−1,W = f ′
0,W + ... + f ′


m−1,W .


By induction, the proof is completed. �


9. Differential bases, 2-bases, Cohen Structure Theorem


and coefficient fields


Let K/k be a finitely generated field extension. Recall that ΩK/k
denotes the K-vector space of Kähler differentials. A differential basis
for K/k is a set of elements {αi }i∈I of K such that { dαi } ⊂ ΩK/k is
a vector space basis. Recall also that a set of elements { xλ }λ∈Λ of K
is a 2-basis for K over k if the set W of monomials in the xλ having
degree < 2 in each xλ separately forms a vector space basis for K over
its subfield k ·K2 = K2 ⊂ K. The following facts are well-known.


9.1. Theorem. Let B = {x1, . . . , xn} ⊂ K be a subset. The following
are equivalent:


(1) B is a separating transcendence basis for K over k;
(2) B is a 2-basis for K over k:
(3) B is a differential basis for K/k.


Proof. See [Ei, 16.14]. �


Assume now that K is equipped with a discrete valuation trivial on
k. We denote its valuation ring by R and residue field by K. Since
our valuation is trivial on k residue field K contains a copy of k. Let
π be a uniformizer. Choose a1, . . . , an ∈ R such that their images
a1, . . . , an under the canonical map R → K form a differential basis
for K/k. Note that, by Theorem 9.1, we have tr. degk(K) = n, hence
tr. degk(K) = n+ 1. Then we claim that


(9.1.1) B = {a1, . . . , an, π}


is a differential basis for K/k. Indeed, it is straightforward to check
that all monomials aǫ11 . . . a


ǫn
n π


ǫn+1 with ǫ1, . . . , ǫn+1 = 0, 1 are linearly
independent over kK2 = K2. This implies that B is a 2-basis for K
over k. Hence the claim follows from Theorem 9.1.
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Conversely, if (9.1.1) is a differential basis for ΩK/k such that all ai
are units in R then da1, . . . , dan viewed as elements of ΩR/k are linearly
independent over R. Then from the conormal sequence


(π)/(π)2 −→ K ⊗R ΩR/k −→ ΩK/k −→ 0,


(see [Ei, page 387]) we conclude that their images d a1, . . . , d an are
linearly independent over K. By dimension count {a1, . . . , an} is a
differential basis for K/k.
We will say that a differential basis {a1, a2, . . . , an+1} for K/k comes


from K if ai is a uniformizer in K and a1, . . . , ai−1, ai+1, . . . , an+1 are
units in R for some index i.
Now let R be a complete discrete valuation ring containing a field k.


Denote its quotient field by L and residue field by L. We will assume
throughout that the field extension L/k is finitely generated. It follows
from the Cohen Structure Theorem [Ei, Theorem 7.7] that R ≃ L[[π]]
and L ≃ L((π)) where π is a uniformizer. Such decompositions are not
unique. They depend on a choice of π and a choice of a coefficient field
in L, i.e. a subfield of L contained in R that maps isomorphically onto
L under the canonical map R → L. Such coefficient fields do exist
because the field extension L/k is separable. The following theorem
describe all coefficient fields.


9.2. Theorem. Let R be as above. If B is a differential basis for
L over k then there is one-to-one correspondence between coefficient


fields Ẽ ⊂ R containing k and the set B̃ ⊂ R of representatives for


B obtained by associating to each Ẽ the set B̃ of representatives for B
that it contains.


Proof. See [Ei, Theorem 7.8]. �


10. Monomial quadratic forms


Let K = k(t1, t2, ..., tn, x) be a pure transcendental extension of k of
transcendence degree n + 1. We say that a non-degenerate quadratic
form f over K is monomial if it is of the form


f = ⊕µ∈Fn
2
mf(µ) t


µ [1, x] ⊕H⊕ ...⊕H


where µ = (µ1, ..., µn) ∈ F
n
2 , t


µ = tµ11 t
µ2
2 . . . tµnn are monomials in


t1, . . . , tn and mf(µ) the number of times a given summand appears.
Note that the multiplicity mf (µ) may be 0. Since tµ[1, x] ⊕ tµ[1, x] ≃
H⊕H we may assume without loss of generality that mf (µ) = 0 or 1.
Let V be the vector subspace of Fn2 generated by all µ such that


mf(µ) = 1. Choose a basis of V , say µ1, µ2, ...µs. Then define ui =
tµi for i = 1, ..., s. It is easy to see that u1, . . . , us are algebraically
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independent over k. Furthermore, any µ ∈ V can be written as µ =∑s
i=1 αiui where αi = 0 or 1 so that tµ = uα1


1 ...u
αs
s .


Thus f has descent to the subfield K ′ = k(u1, ..., us, x) ⊂ K and
viewed over K ′ it is of the form


f = u1[1, x]⊕ u2[1, x]⊕ · · · ⊕ us[1, x]⊕ (⊕µ∈V u
µ[1, x])⊕H⊕ · · · ⊕H


where uµ are monomials in u1, . . . , us of length at least 2. When a
monomial quadratic form f is written in such a way and is viewed over
K ′ we say that it is a canonical monomial form. We also say that f
has rank s.
For later use we need the following easy observation.


10.1. Proposition. Let f be a canonical monomial form without sum-
mands isometric to the hyperbolic plane H. Then f is anisotropic.


Proof. The argument is similar to that in [ChSe, Proposition 5] and we
leave the details to the reader. �


The main result related to canonical monomial quadratic forms is
the following theorem.


10.2. Theorem. Let f be a canonical monomial form over K. Then f
is incompressible.


11. Incompressibility of monomial forms in codimension 2


In this section we establish an auxiliary result, Theorem 11.3 below,
needed later on to prove Theorem 10.2. Let K = k(x, t1, . . . , tn) be a
pure transcendental extension of k of degree n+ 1 and v the valuation
on K associated to t1. It is characterized by:


v(t1) = 1 and v(h) = 0 ∀ h ∈ k(x, t2, ..., tn)
× .


Let R ⊂ K be the corresponding valuation ring. Note that K2 ⊂ K is
a finite field extension of degree 2n+1. As usual, K2(ai1 , . . . , ail) ⊂ K
denotes the subfield generated by K2 and elements ai1 , . . . , ail ∈ K.


11.1. Proposition. Let F ⊂ K be a subfield containing k such that
tr. degk(F ) < n+1. Then there exists a differential basis {a1, . . . , an+1}
for K/k coming from K such that F ⊂ K2(a1, , . . . , al) with l ≤
tr. degk(F) < n + 1.


Proof. Choose any 2-basis {b1, . . . , bs} for F/k. Since s = tr. degk(F )
we get s < n + 1. Let L = K2(b1, . . . , bs). Clearly, L contains F and
for any α1, . . . , αs ∈ K one has


L = K2(b1, . . . , bs) = K2(α2
1b1, . . . , α


2
sbs).


The restriction w = v|F is either nontrivial or trivial.
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Case 1: w is nontrivial and the ramification index e(v/w) is even.
Multiplying bi by an appropriate scalar α2


i we may assume that c1 =
α2
1b1, . . . , cs = α2


sbs are units in R and F ⊂ L = K2(c1, . . . , cs). With-
out loss of generality we may also assume that {c1, . . . , cl} where l ≤ s
is a minimal set of generators of L over K2 so that L = K2(c1, . . . , cl).
The set of all monomials cǫ11 · · · cǫll with ǫi = 0, 1 is linearly independent
over K2. Put a1 = c1, . . . , al = cl and choose units al+1, . . . , an in R
such that B = {a1, . . . , an, an+1} where an+1 = t1 is a 2-basis for K
over k. By Theorem 9.1, B is a differential basis for K over k coming
from K and by construction it has the required property.


Case 2: w is trivial. Take αi = 1 and ci = bi for all i and apply the
same argument as above .


Case 3: w is nontrivial and the ramification index e(v/w) is odd. With-
out loss of generality we may assume that b1, . . . , bs−1 are units and
bs is a uniformizer for w. Choose scalars α1, . . . , αs ∈ K such that
c1 = α2


1b1, . . . , cs−1 = α2
s−1bs−1 are units in R, cs = α2


sbs is a uni-
formizer for v and F ⊂ L = K2(c1, . . . , cs). Then the same argument
as above completes the proof. �


Let f be a canonical monomial quadratic form over K given by


(11.1.1) f = ⊕µ∈Fn
2
mf (µ) t


µ [1, x]⊕H⊕ ...⊕H ,


where all multiplicitiesmf (µ) are 1 or 0. Since f is canonical it contains
summands ti[1, x], i = 1, . . . , n.


Below we will be considering two Witt groups: Wq(K) and Wq(K̂).


Here K̂ ≃ k(x, t2, . . . , tn)((t1)). There exists the natural mapWq(K) →


Wq(K̂) and if there is no risk of confusion we will denote the image of
f in both groups by fW .


11.2. Lemma. (fK̂)W lives in Wq(K̂)0. Its first residue is a canonical
monomial form of rank n− 1 and its second residue up to similarity is
a nontrivial monomial form of rank ≤ n− 1.


Proof. This follows from the definitions of monomial forms and the first
and second residues. �


11.3. Theorem. There exist no differential basis B = {a1, . . . , an+1}
for K/k coming from K and a non-degenerate quadratic form g defined
over L = K2(a1, . . . , an−1) such that gK,W = fW .


Proof. Assume the contrary. Let B and g be the corresponding differ-
ential basis and quadratic form. The differential basis B gives rise to


the coefficient field E ⊂ K̂ containing all units from B and presentation


K̂ ≃ E((t1)).
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We argue by induction on n. If n = 1 then L = K2. Hence g can
be written as a direct sum of 2-dimensional quadratic forms [ui, vi] =


[1, w2
i ] where ui, vi ∈ K2 and uivi = w2


i . We now pass to K̂ = E((t1))


and view g over K̂. Writing wi in the form wi = t−si1 (
∑


j≥0 eijt
j
1) with


eij ∈ E and using the property [u(t1), v(t1)]W = 0 if v(u(t1)v(t1) > 0
we conclude that [1, w2


i ]K̂,W can be written as a sum of symbols of


the form [1, e2kjt
−2k
1 ]W with ekj ∈ E. Thus, gK̂,W can be written as


gK̂,W = gn,W + · · ·+ g0,W where gi,W is of the form


gi,W =
∑


j


[1, e2ijt
−2i
1 ]W = [1, (


∑


j


eij)
2t−2i


1 ]W


with eij ∈ E. Since gK̂,W = fW , it lives in the zero term of Arason’s
filtration. Then, by Proposition 8.2, we conclude gn = . . . = g1 = 0.
Therefore fW = gK̂,W = [1, α2]W for some α ∈ E. But this implies that
the second residue of fW is 0 which contradicts the second assertion in
Lemma 11.2.
Now let n be arbitrary and suppose that the statement is true for all


canonical monomial forms of rank < n. Assume first that a1, . . . , an−1


are units in R. Let g = ⊕i [ui, vi] with ui, vi ∈ L. Writing


ui =
∑


ǫ


u2ǫa
ǫ1
1 . . . a


ǫn−1


n−1 , vi =
∑


ǫ


v2ǫa
ǫ1
1 . . . a


ǫn−1


n−1


where we use multi-index notation ǫ = (ǫ1, . . . , ǫn−1) and uǫ, vǫ ∈ K
and arguing as above we conclude that gK̂,W can be written as a sum
gK̂,W = gn,W + · · ·+ g0,W where the homogeneous component gi,W is of
the form


gi,W =
∑


j,ǫ,ǫ′


[aǫ11 . . . a
ǫn−1


n−1 , α
2
ija


ǫ′1
1 . . . a


ǫ′n−1


n−1 t
−i
1 ]W


with αij ∈ E. Since gK̂,W lives in the zero term of Arason’s filtration,
application of Proposition 8.2 yields gn = . . . = g1 = 0. Then as above
we conclude that the second residue of gK̂,W is zero, a contradiction.
Finally, assume that up to numbering an−1 is a uniformizer of v. The


same argument as above shows that gK̂,W = g0,W is homogeneous of
degree 0 where the component g0,W is a sum of symbols of the form


[aǫ11 . . . a
ǫn−2


n−2 t1, α
2
ia
ǫ′1
1 . . . a


ǫ′n−2


n−2 t
−1
1 ]W and [aǫ11 . . . a


ǫn−2


n−2 , β
2
i a


ǫ′1
1 . . . a


ǫ′n−2


n−2 ]W


with αi, βi ∈ E. Then the first residue of gK̂,W (and hence of fW ) is a
sum of symbols


[aǫ11 . . . a
ǫn−2


n−2 , β
2
i a


ǫ′1
1 . . . a


ǫ′n−2


n−2 ]W
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where βi ∈ E ≃ K. But B = {a1, . . . , an−2, an, an+1} is a differential
basis for E ≃ K over k and the first residue of fK̂,W is a canonical
monomial form of rank n− 1. This contradicts the induction assump-
tion. �


11.4. Corollary. There exists no subfield k ⊂ F ⊂ K of transcendence
degree ≤ n− 1 and a quadratic form g over F such that gK ≃ f .


Proof. This follows from Proposition 11.1 and Theorem 11.3. �


12. Incompressibility of canonical monomial quadratic


forms


Proof of Theorem 10.2. We keep the above notation. In partic-
ular, K = k(x, t1, t2, ..., tn) is a pure transcendental extension of k of
transcendence degree n + 1 equipped with a discrete valuation v as-
sociated to t1 and R the corresponding discrete valuation ring. As a
matter of notation we denote π = t1 and K1 = k(t2, . . . , tn, x). Thus


K̂ ≃ K1((π)) and K ≃ K1.
Consider a canonical monomial quadratic form f over K given by


(11.1.1). The proof of incompressibility of f will be carried out by
induction on rank n. More precisely, we will prove by induction on n
that the image fW of f in Wq(K) is incompressible. Of course, this
would imply incompressibility of f itself.
The base of induction n = 0 is obvious.


12.1. Lemma. Let K = k(x) and let f = [1, x] ⊕ H ⊕ · · · ⊕ H. Then
fW is incompressible.


Proof. Any subfield of K of transcendence degree 0 over k coincides
with k. Hence, if fW were compressible then it would be represented by
a non-degenerate quadratic form defined over k, which is automatically
hyperbolic. On the other hand, by Proposition 10.1, fW is represented
by an anisotropic form [1, x], a contradiction. �


Now let n > 0 and suppose that for all canonical monomial quadratic
forms of rank < n their Witt-equivalence classes are incompressible.
Suppose that fW is compressible. Then there exists a subfield F ⊂
K containing k which may be assumed to have transcendence degree
n over k, and a non-degenerate quadratic form g over F such that
(gK)W = fW .
For the restriction w = v|F of v to F there are three possibilities.


Case 1: w is trivial. Write g as a direct sum of 2-dimensional forms


[bi, ci] with bi, ci ∈ F ⊂ R. Consider Arason’s filtration of Wq(K̂) with


respect to the presentation K̂ = K1((π)). Since bi, ci are units, gW lives
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in the zero term of Arason’s filtration and moreover its second residue
is trivial. On the other hand, since gK̂,W = fK̂,W it has nontrivial
second residue by Lemma 11.2, a contradiction.


Case 2: w is nontrivial and the ramification index e(v/w) is even.
Arguing as in Proposition 11.1 we can choose a differential basis B =
{a1, . . . , an, π} for K/k coming from K such that


(12.1.1) F ⊂ K2(a1, . . . , an).


By Theorem 9.2, B gives rise to the coefficient field E ⊂ K̂ containing


a1, . . . , an and presentation K̂ ≃ E((π)). Clearly, {a1, . . . , an} is a 2-


basis for E/k. We fix the presentation K̂ ≃ E((π)) and we will apply
Arason’s results [Ar1] for this presentation only.
By construction fK̂,W = gK̂,W , hence the first residue of gK̂,W is a


canonical monomial form of rank n − 1 and the second residue of gK̂
is nontrivial. We now pass to computing the residues of gK̂ using our


presentation K̂ = E((π)) and inclusion (12.1.1).
Since g is non-degenerate it can be written as a direct sum of 2-


dimensional forms [bi, ci] with bi, ci ∈ F . In turn, in view of (12.1.1)
bi, ci can be written as sums of elements of the form α2


i1...is
ai1ai2 · · · ais


with αi1...is ∈ K. Then arguing as in Theorem 11.3 we conclude that


the image of gK̂ in Wq(K̂) can be written as a sum of symbols


[ai1ai2 · · · ais,
α2
j1...jp


π2l
aj1aj2 · · · ajp]W


where αj1...jp ∈ E. Thus, we can write gK̂,W as the sum


gW = g2n + g2(n−1) + . . .+ g0


where all homogeneous components g2i have even degree and are sums
of symbols


[ai1ai2 · · · ais,
α2
j1...jp


π2i
aj1aj2 · · · ajp]W


with αj1...jp ∈ E. Obviously g0 has trivial second residue (because
a1, . . . , an are units). So to get a contradiction it remains to show that


g2n + · · ·+ g2 = 0 in Wq(K̂).
Let us start from the highest component g2n. Recall that according


to Arason’s Theorem we have


Wq(E((π)))2n/Wq(E((π)))2n−1 ≃ E ∧E2 E ⊕E ∧E2 E.


The class of a generator [α, βπ−2n]W corresponds to α ∧ β in the first
summand, but the class of a generator [απ−1, βπ−2n+1]W corresponds
to α ∧ β in the second summand. To simplify writing we introduce
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multi-indices aIj where Ij is a set of some indices i1, . . . , is and aIj is
the product of the corresponding aip .
Let aI1 , . . . , aI2n be a E2-basis of E. By construction, g2n is a sum


of elements of the form


[aIj ,
α2
Is


π2n
aIs]W


with αIs ∈ E. Recall that if Ij = Is then


[aIj ,
α2
Ij


π2n
aIj ]W = [aIj ,


αIj
πn


]W


by (7.1.2a)). It follows that g2n can be written as g2n = g′2n+ g
′′


n where


g′2n =
∑


s<j


[aIj , aIs
α2
Is


π2n
]W


with αs ∈ E and g
′′


n lives in Wq(E((π)))n. But g lives in Wq(E((π)))0,


hence the image of g′2n in Wq(K̂)2n/Wq(K̂)2n−1 is trivial and this of
course implies g′2n = 0, by Theorem 7.2.
Note that arguing in such a way we have eliminated the highest


homogeneous component g2n of g living in Wq(E((π)))2n, but we pos-
sibly acquire the component g


′′


n with n > 0 in even or odd degree
Wq(E((π)))n (if n is odd).
We can continue to do the same with the next highest homogeneous


component of g. If it has even degree the same argument as above
reduces it to a smaller component. If it has odd degree 2m+ 1 then it
can be written in the form


∑


j,s


[aIj ,
aIs


π2m+1
α2
Is]W


with αIs ∈ E. Then applying Arason’s Theorem 7.2, part (3), and
arguing similarly we conclude that this component is automatically 0.
This completes the proof of the fact that g2n + · · ·+ g2 = 0 and hence
the proof of incompressibility of fW in the case e(v/w) is even.


Case 3: e = e(v/w) is odd. Let π′ ∈ F be a uniformizer for w. Write
π′ = uπe where u ∈ R×. Our argument below doesn’t depend on a
choice of a uniformizer π for v. So replacing π with uπ if necessary we
may assume without loss of generality that u = v2 for some v ∈ R×.
Choose a differential basis B′ = {a1, . . . , an−1, π


′} for F/k coming
from residue field F . Clearly, F ⊂ K2(a1, . . . , an−1, π


′). We claim
that all monomials aǫ11 . . . a


ǫn−1


n−1 with ǫi = 0, 1 are linearly independent
modulo K2. Indeed, assume the contrary. Then up to numbering
we may assume that a1, . . . , al with l < n − 1 is a minimal system
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of generators of K2(a1, . . . , an−1) over K2. Then there exists units
a′l+1, . . . , a


′
n in R such that {a1, . . . , al, a


′
l+1, . . . , a


′
n, π


′} is a 2-basis of
K over k. Since


F ⊂ K2(a1, . . . , an−1, π
′) = K2(a1, . . . , al, π


′)


and l < n− 1 this contradicts Theorem 11.3.
Now choose an ∈ R× such that B = {a1, . . . , an−1, an, π} is a 2-


basis for K over k and hence a differential basis for K/k coming from


K. It follows that two completions F̂ ⊂ K̂ with respect to w and v


respectively admit compatible coefficient fields, i.e. if E ′ ⊂ F̂ (resp.


E ⊂ K̂) is a coefficient field corresponding to B′ (resp. B) then E ′ =


E ∩ F̂ and so we may choose compatible presentations


F̂ = E ′((π′)) ⊂ K̂ = E((π))


where E ′ ⊂ E.
The set of all monomials aǫ11 . . . a


ǫn−1


n−1 where ǫi = 0, 1 form a basis
of E ′ over (E ′)2. Like before, let us number them in any order using
multi-indices aI1 , . . . , aI2n−1


. Lemma 8.1 and Proposition 8.2 show that


gW viewed over F̂ can be written uniquely in the form gW = gn+· · ·+g0
where gl is of the form:


if l is even then


gl,W =
∑


i<j


[aIi, aIj
u2j
(π′)l


]W +
∑


i<j


[aIi
1


π′
, aIj


v2j
(π′)l−1


]W ,


where ui, vj ∈ E ′;
if l is odd then


gl,W =
2n−1∑


i,j=1


[aIi, aIj
u2j
(π′)l


]W


where uj ∈ E ′.
We claim that n = 0. Indeed, if n 6= 0 then substituting π′ = v2πe


in the above expressions for gi and writing v−2n in the form


v−2n = w2
0 + w2


1π
2 + w2


2π
4 + · · ·


where wi ∈ E, we easily obtain that the highest term in the decomposi-
tion of gK̂,W as a sum of its homogeneous components (with respect to


presentation K̂ = E((π))) has degree ne which is impossible because
gK̂,W = fK̂,W .
Thus n = 0 and hence gW is of the form


gW =
∑


i<j


[aIi, u
2
jaIj ]W +


∑


i<j


[aIi(π
′)−1, v2jaIjπ


′]W ,
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where ui, vj ∈ E ′. It follows that the first residue of gW (and hence of
fW ) lives in a subfield E ′ ⊂ K = E of transcendence degree n−1 over k
which contradicts the induction assumption. This completes the proof
of incompressibility of f .


13. Orthogonal and special orthogonal groups


Let g be a non-degenerate n-dimensional quadratic form on a vector
space V over k and F be any extension of k.
Orthogonal groups. It is well known (see [KMRT, §29.E]) that if n =
2r is even then there exists a natural bijection between H1(F,O(V, g))
and the set of isometry classes of n-dimensional non-degenerate qua-
dratic spaces (V ′, g′). Similarly, if n = 2r+1 is odd then H1(F,O(V, g))
is in one-to-one correspondence with the set of isometry classes of
(2r + 1)-dimensional non-degenerate quadratic spaces (V ′, q′) over F
such that disc(q′) = 1. Note that any such q′ is isometric to a quadratic
form of the shape ([a1, b1] ⊕ · · · ⊕ [ar, br]) ⊕ 〈1〉. Then in both cases
the incompressibility of canonical monomial quadratic forms provides
us with the required lower bound ed(O(V, g)) ≥ r + 1. What is left
to finish the proof of Theorem 2.2 for orthogonal groups is to find a
“good” upper bound.


13.1. Proposition. In the above notation one has ed(O(V, g)) ≤ r+1.


Proof. It suffices to show that any 2r-dimensional non-degenerate qua-
dratic form depends on at most 2r parameters. Let h be such form
over F . Write h = a1[1, b1]⊕· · ·⊕ar[1, br]. Each summand [1, bi] corre-
sponds to a unique element ξi ∈ H1(F,Z/2). Let H = Z/2⊕ · · ·⊕Z/2
be the direct sum of r copies of the constant group scheme Z/2 and
let ξ = (ξ1, . . . , ξr). Choose any embedding H →֒ Ga,k, which exists
because k is infinite. The exact sequence


0 −→ H −→ Ga,k
φ


−→ Ga,k −→ 0


gives rise to


F
φ


−→ F
ψ


−→ H1(F,H) −→ 1.


Let a ∈ F be such that ψ(a) = ξ. It follows that ξ has descent
to the subfield k(a) of F . This amounts to the fact that there exist
b′1, . . . , b


′
r ∈ k(a) such that the quadratic form [1, b′i] viewed over F


is isometric to [1, bi]. Therefore h is isometric to the quadratic form
h′ = a1[1, b


′
1] ⊕ · · · ⊕ ar[1, b


′
r] defined over the subfield k(a, a1, . . . , ar)


of F of transcendence degree (over k) at most r + 1. �
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13.2. Remark. Note that if h has trivial Arf invariant then taking a
suitable quadratic subextension of k(a, a1, . . . , ar) in F , if necessary, we
may also assume that h′ has trivial Arf invariant. Thus, our argument
for finding a lower bound of the essential dimension of can be applied
to special orthogonal groups as well.


Special orthogonal groups. By [KMRT, §29.E]), if n = 2r is even
then there exists a natural bijection between H1(F,SO(V, g)) and the
set of isometry classes of (2r)-dimensional non-degenerate quadratic
spaces (V ′, g′) over F such that the Arf invariant of g′ is trivial. Taking
into consideration Remark 13.2 it follows that the proof of Theorem 2.2
for special orthogonal groups in even dimensional case is similar to that
of for orthogonal groups.
Let n = 2r+1 be odd. Then there exists a natural bijection between


H1(F,SO(V, g)) and the set of isometry classes of (2r+1)-dimensional
non-degenerate quadratic spaces (V ′, g′) over F such that disc(g′) = 1.
As we mentioned above any such g′ is isometric to a quadratic form of
the shape ([a1, b1] ⊕ · · · ⊕ [ar, br]) ⊕ 〈1〉 for some ai, bi ∈ F . It follows
that ed(SO(V, g)) ≤ r + 1.
To find a “good” lower bound we recall that SO2r+1(g) = O2r+1(g)red,


the reduced subscheme of O2r+1(g). Thus we have a natural closed em-
bedding SO2r+1(g) →֒ O2r+1(g). Fix a decomposition g ≃ h ⊕ 〈1〉
where h = H ⊕ · · · ⊕ H. It induces a natural closed embedding
φ1 : O2r(h) →֒ SO2r+1(g) (because O2r(h) is smooth). Furthermore,
we can view 〈1〉 as a subform of [1, 0] ≃ H. This allows us to view g as
a subform of a (2r+2)-dimensional split quadratic form q = H⊕· · ·⊕H


and this induces a natural map


φ2 : SO2r+1(g) →֒ O2r+1(g) →֒ O2r+2(q).


The maps φ1 and φ2, in turn, induce the natural maps


ψ1 : H
1(F,O2r(h)) → H1(F,SO2r+1(g))


and


ψ2 : H
1(F,SO2r+1(g)) → H1(F,O2r+2(q)).


It easily follows from the above discussions that ψ1 is surjective.
Also, identifying elements in H1(F,O2r(h)) and H


1(F,O2r+2(q)) with
the isometry classes of the corresponding quadratic spaces we obtain
that the isometry class of a quadratic form ⊕r


i=1[ai, bi] goes to the
isometry class of ⊕r


i=1[ai, bi]⊕H under the composition ψ2 ◦ ψ1.


13.3.Theorem. Let g be a non-degenerate quadratic form of dimension
2r + 1 over k. Then ed (SO2r+1)(g) ≥ r + 1.
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Proof. Take a pure transcendental extension K = k(x, t1, . . . , tr) of k of
degree r+1 and a canonical monomial form f = t1[1, x]⊕ · · ·⊕ tr[1, x]
of dimension 2r. We claim that its image ξ under ψ1 is incompressible.
Indeed, if ξ is compressible so is ψ2(ξ). However, ψ2(ξ) is represented
by a canonical monomial form t1[1, x]⊕· · ·⊕tr[1, x]⊕H which is incom-
pressible by Theorem 10.2, a contradiction. Thus ξ is incompressible
itself implying ed (SO2r+1(g)) ≥ r + 1. �


14. Proof of Theorem 3.1


Types Ar, Br, Cr, Dr, E6, E7, E8. Let ρ : G
◦ → O (V, q) be as in Propo-


sition 6.1. As in [ChSe], we can extend it to ρG : G → O (V, q) .
Let θO = ρG(θG) be the image of θG in H1(K,O (V, q)). Consider the
quadratic form qO on V corresponding to θO. If dim(q) is even then
arguing as in [ChSe] we conclude that qO is a canonical monomial form
of rank r. By Theorem 10.2, qO is incompressible and hence so is θG.
If dim(q) is odd then we can write it as q = 〈1〉 ⊕ q′ where q′ is a


non-degenerate quadratic form of even dimension. The twist qO of q by
θO is of the form qO = 〈1〉⊕ g where g is a canonical monomial form of
rank r. Then the proof of Theorem 13.3 shows that qO is incompressible
as well.


Type G2. Let F be a field of an arbitrary characteristic. By [Se,
Théorème 11], there is a canonical one-to-one correspondence between
H1(F,G2) and the set of isometry classes of 3-fold Pfister forms defined
over F whereG2 denotes a split group of typeG2 over F . Clearly, any 3-
fold Pfister form depends on at most 3 parameters implying ed(G2) ≤ 3.
Conversely, a generic 3-fold Pfister form is a canonical monomial form
of rank 2, hence incompressible. It follows ed(G2) ≥ 3.


Type F4. Let F be a field of an arbitrary characteristic. It is known that
there is a canonical one-two-one correspondence between H1(F, F4) and
the set of isomorphism classes of 27-dimensional exceptional Jordan
algebras over F where F4 denotes a split group of type F4 over F .
To each such reduced Jordan algebra J one associates a unique (up
to isometry) 5-fold Pfister form f5(J) [Pe, 4.1]. Moreover, it is known
that any 5-fold Pfister form over F corresponds to some Jordan algebra
J over F . Since a generic 5-Pfister form is incompressible we conclude
that ed(F4) ≥ 5.
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