
On decomposable biquaternion algebras with

involution of orthogonal type

A.-H. Nokhodkar

August 9, 2015

Abstract

We investigate the pfaffians of decomposable biquaternion algebras

with involution of orthogonal type. In characteristic two, a classification

of these algebras in terms of their pfaffians is studied. Also, in arbitrary

characteristic, a criterion for an orthogonal involution on a biquaternion

algebra to be metabolic is obtained.
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1 Introduction

A biquaternion algebra is a tensor product of two quaternion algebras. Every
biquaternion algebra is a central simple algebra of degree 4 and exponent 2 or
1. A result proved by A. A. Albert shows that the converse is also true (see
[9, (16.1)]). An Albert form of a biquaternion algebra A is a 6-dimensional
quadratic form with trivial discriminant whose Clifford algebra is isomorphic to
M2(A). It is known that two biquaternion algebras over a field F are isomorphic
as F -algebras if and only if their Albert forms are similar (see [9, (16.3)]).

The Albert form of a biquaternion algebra with involution arises naturally as
the quadratic form induced by a pfaffian (see [13, (3.3)]). The classical pfaffian
is a polynomial map Pf defined on alternating matrices under the transpose
involution, which satisfies Pf(X)2 = detX for every alternating matrix X (see
[2, (3.27)]). In [10], a pfaffian of certain modules over Azumaya algebras was
defined and used to classify 6-dimensional quadratic spaces over commutative
rings. This construction was used in [13] to find a criterion for involutions on an
Azumaya algebra of rank 16, which contains 2 as a unit, to admit an invariant
rank 4 Azumaya subalgebra. A similar decomposition criterion for involutions
on a biquaternion algebra in arbitrary characteristic was also obtained in [11].

It is known that involutions of symplectic type on a biquaternion algebra can
be classified, up to conjugation, by their pfaffian norms (see [9, (16.19)]). For
orthogonal involutions the situation is a little more complicated. In characteris-
tic 6= 2, [13, (5.3)] yields a classification of decomposable orthogonal involutions
on a biquaternion algebra A in terms of the pfaffian and the pfaffian adjoint
(introduced in [10] and [13]). This classification was originally stated in [13] for
the more general case where A is an Azumaya algebra which contains 2 as a
unit.

In this work, the pfaffians of decomposable biquaternion algebras with ortho-
gonal involution are investigated. In §3, we recall the notions of pfaffian and
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pfaffian adjoint of a biquaternion algebra with involution (A, σ). For a decom-
posable orthogonal involution σ, let qσ be a pfaffian satisfying qσ(x)

2 = NrdA(x)
for every alternating element x. Set Alt(A, σ)+ = {x + pσ(x) | x ∈ Alt(A, σ)}
and Alt(A, σ)− = {x − pσ(x) | x ∈ Alt(A, σ)}, where pσ is the linear endo-
morphism of Alt(A, σ) satisfying xpσ(x) = pσ(x)x = qσ(x) and p2σ(x) = x for
x ∈ Alt(A, σ). We shall see in (3.9) that the union of the sets Alt(A, σ)+ and
Alt(A, σ)− coincides with the set of all square-central elements in Alt(A, σ). At
the end of §3, we study in more details the classification of orthogonal involutions
on biquaternion algebras in characteristic 6= 2, obtained in [13]. Although this
result is already presented in [13], it is useful to restate it to enable comparison
with the corresponding result in characteristic 2 (see (3.17) and (4.12)).

In §4, we study the characterization of decomposable biquaternion algebras
with involution in characteristic 2. We also investigate the relation between the
restriction of the form qσ to Alt(A, σ)+, denoted by q+σ and the Pfister invariant
Pf(A, σ) introduced in [4]. The key result is (4.11), which states that if σ and
σ′ are two decomposable orthogonal involutions on A, then q+σ ≃ q+σ′ if and only
if Pf(A, σ) ≃ Pf(A, σ′). Using this and [15, (6.5)], it can be shown that σ and
σ′ are conjugate if and only if q+σ ≃ q+σ′ (see (4.12)). Finally, we obtain in (4.16)
and (4.19) some criteria for an orthogonal involution on a biquaternion algebra
in arbitrary characteristic to be metabolic.

2 Preliminaries

Let V be a finite dimensional vector space over a field F . A quadratic form over
F is a map q : V → F such that (i) q(av) = a2q(v) for every a ∈ F and v ∈ V ;
(ii) the map bq : V × V → F defined by bq(u, v) = q(u + v) − q(u)− q(v) is a
bilinear form. Note that for every v ∈ V we have bq(v, v) = 2q(v). In particular,
if charF = 2, then bq(v, v) = 0 for v ∈ V , i.e., bq is an alternating form. The
orthogonal complement of a subspace W ⊆ V is defined as W⊥ = {x ∈ V |
bq(x, y) = 0 for all y ∈ W}. If V = U ⊕W is the direct sum of two subspaces
U and W with W ⊆ U⊥, we write (V, q) = (U ⊥ W, q|U ⊥ q|W ).

A quadratic form q (resp. a bilinear form b) on V is called isotropic if there
exists a nonzero vector v ∈ V such that q(v) = 0 (resp. b(v, v) = 0). For α ∈ F ,
we say that q (resp. b) represents α if there exists a nonzero vector v ∈ V such
that q(v) = α (resp. b(v, v) = α). The sets of all elements of F represented by
q and b are denoted by DF (q) and DF (b) respectively. For α ∈ F×, the scaled
quadratic form α · q is defined as α · q(v) = αq(v) for every v ∈ V .

If charF = 2, for a ∈ F , we denote by [a] (the isometry class of) the
quadratic form q(x) = ax2. If charF 6= 2 and a1, · · · , an ∈ F , the quadratic
form q(x1, · · · , xn) =

∑n

i=1
aix

2
i is denoted by 〈a1, · · · , an〉q. Also, in arbi-

trary characteristic, the bilinear form defined by b((x1, · · · , xn), (y1, · · · , yn)) =
∑n

i=1
aixiyi is denoted by 〈a1, · · · , an〉. Finally, the bilinear form 〈1, a1〉⊗ · · ·⊗

〈1, an〉 is called a bilinear n-fold Pfister form and is denoted by 〈〈a1, · · · , an〉〉.
An involution on a central simple F -algebra A is an antiautomorphism σ of

A of order 2. We say that σ is of the first kind if σ|F = id. An involution σ of the
first kind is said to be of symplectic type (or symplectic) if over a splitting field of
A, it becomes adjoint to an alternating bilinear form. Otherwise σ is said to be
of orthogonal type (or orthogonal). The discriminant of an orthogonal involution
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σ is denoted by discσ. The set of alternating elements of A is defined as

Alt(A, σ) = {a− σ(a) | a ∈ A}.

A quaternion algebra over a field F is a central simple algebra Q of degree
2. The canonical involution γ on Q is defined by γ(x) = TrdQ(x) − x for
x ∈ Q, where TrdQ(x) is the reduced trace of x. It is known that the canonical
involution on Q is the unique involution of symplectic type on Q and it satisfies
γ(x)x ∈ F for every x ∈ Q (see [9, Ch. 2]). The map NQ : Q → F defined
by NQ(x) = γ(x)x is called the norm form of Q. An element x ∈ Q is called
a pure quaternion if TrdQ(x) = 0. The set of all pure quaternions of Q is a
3-dimensional subspace of Q denoted by Q0. Note that an element x ∈ Q lies
in Q0 if and only if γ(x) = −x, or equivalently, NQ(x) = −x2.

A central simple algebra with involution (A, σ) over a field F is called totally
decomposable if it decomposes as tensor products of σ-invariant quaternion F -
algebras. If A is a biquaternion algebra, we will use the term decomposable
instead of “totally decomposable”. It is known that a biquaternion algebra
with orthogonal involution (A, σ) is decomposable if and only if discσ is trivial
(see [11, (3.7)]).

Let (A, σ) be an algebra with involution over a field F . An idempotent e ∈ A
is called a metabolic (resp. hyperbolic) idempotent with respect to σ if σ(e)e = 0
and (1−e)(1−σ(e)) = 0 (resp. σ(e) = 1−e). The pair (A, σ) is called metabolic
(resp. hyperbolic) if A contains a metabolic (resp. hyperbolic) idempotent with
respect to σ. Every hyperbolic involution σ is metabolic but the converse is not
always true. If σ is symplectic or charF 6= 2, the involution σ is metabolic if
and only if it is hyperbolic, (see [5, (4.10)] and [3, (A.3)]).

3 The pfaffian and the pfaffian adjoint

We begin our discussion by looking at special cases of [12, (2.1)] and [12, (3.1)]:

Theorem 3.1. ([12]) Let (A, σ) be a biquaternion algebra with orthogonal in-
volution over a field F and let dσ ∈ F× be a representative of the class discσ ∈
F×/F×2, i.e., dσF

×2 = discσ. There exists a map pfσ : Alt(A, σ) → F such
that pfσ(x)

2 = dσNrdA(x) for every x ∈ Alt(A, σ). The map pfσ is uniquely de-
termined up to a sign. Moreover, there exists an F -linear map πσ : Alt(A, σ) →
Alt(A, σ) such that xπσ(x) = πσ(x)x = pfσ(x) and π2

σ(x) = dσx for every
x ∈ Alt(A, σ).

Remark 3.2. The map πσ in (3.1) is uniquely determined by pfσ. In fact
it is easily seen by scalar extension to a splitting field that Alt(A, σ) has a
basis B consisting of invertible elements. For every x ∈ B, we must have πσ(x)
= x−1pfσ(x). As πσ is F -linear, it is uniquely defined on Alt(A, σ).

Definition 3.3. The map pfσ in (3.1) is called a pfaffian of (A, σ). We also
call the map πσ, the pfaffian adjoint of pfσ.

Note that by [13, (3.3)], every pfaffian of (A, σ) is an Albert form of A.

Definition 3.4. Let F be a field. The pfaffian of an alternating matrix X =
(xij) ∈ M4(F ) (under transpose involution) is defined as

Pf(X) = x12x34 − x13x24 + x14x23.
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Notations 3.5. Let (A, σ) be a decomposable biquaternion algebra with ortho-
gonal involution over a field F . Since discσ is trivial, using (3.1) one can find a
pfaffian pfσ of Alt(A, σ) satisfying pfσ(x)

2 = NrdA(x) for every x ∈ Alt(A, σ).
If pf ′

σ is another pfaffian with this property, then pf ′
σ = ±pfσ. After scalar

extension to an algebraic closure of F , exactly one of these pfaffians corresponds
to the pfaffian Pf. We denote this pfaffian by qσ. Moreover, we denote by pσ
the pfaffian adjoint of qσ, hence

qσ(x)
2 = NrdA(x), xpσ(x) = pσ(x)x = qσ(x) and p2σ(x) = x,

for every x ∈ Alt(A, σ). We also use the following notations:

Alt(A, σ)+ := {x+ pσ(x) | x ∈ Alt(A, σ)},

Alt(A, σ)− := {x− pσ(x) | x ∈ Alt(A, σ)}.

Note that if charF = 2, then Alt(A, σ)+ = Alt(A, σ)−. As proved in [13,
p. 597] and [11, (3.5)], Alt(A, σ)+ and Alt(A, σ)− are 3-dimensional subspaces
of Alt(A, σ). Since p2σ = id, we have pσ(x) = x for every x ∈ Alt(A, σ)+ and
pσ(x) = −x for every x ∈ Alt(A, σ)−. The converse is also true, i.e.,

Alt(A, σ)+ = {x ∈ Alt(A, σ) | pσ(x) = x}, (1)

Alt(A, σ)− = {x ∈ Alt(A, σ) | pσ(x) = −x}. (2)

In fact if charF 6= 2, then for every x ∈ Alt(A, σ) with pσ(x) = x we have
x = 1

2
(x+pσ(x)) ∈ Alt(A, σ)+. Similarly if pσ(x) = −x, then x = 1

2
(x−pσ(x)) ∈

Alt(A, σ)−. If charF = 2, then the relation (1) follows from the dimension
formula for the image and the kernel of the linear map pσ + id.

The following result is implicitly contained in [9, pp. 249-250] over a field of
characteristic different form 2:

Lemma 3.6. ([9]) Let (A, σ) be a decomposable biquaternion algebra with ortho-
gonal involution over a field F . Then pσ is an isometry of (Alt(A, σ), qσ).
Furthermore bqσ(x, y) = xpσ(y) + ypσ(x), for x, y ∈ Alt(A, σ).

Proof. For every x ∈ Alt(A, σ) we have qσ(pσ(x)) = pσ(pσ(x))pσ(x) = xpσ(x) =
qσ(x). Thus, pσ is an isometry. The second assertion is easily obtained from
the relations qσ(x) = xpσ(x) and bqσ (x, y) = qσ(x+ y)− qσ(x) − qσ(y).

Lemma 3.7. Let (A, σ) be a decomposable biquaternion algebra with orthogonal
involution over a field F . Then Alt(A, σ)+ = (Alt(A, σ)−)⊥ ⊆ CA(Alt(A, σ)

−).

Proof. Let b = bqσ and let x ∈ Alt(A, σ)+. Since pσ ∈ O(Alt(A, σ), qσ), we
have b(x, y) = b(pσ(x), pσ(y)) = b(x, pσ(y)) for every y ∈ Alt(A, σ). Thus,
b(x, y − pσ(y)) = 0, i.e., Alt(A, σ)+ ⊆ (Alt(A, σ)−)⊥. By dimension count
we obtain Alt(A, σ)+ = (Alt(A, σ)−)⊥. Now let z ∈ Alt(A, σ)−. By (3.6) we
have 0 = b(x, z) = −xz + zx. Thus, xz = zx, which implies that Alt(A, σ)+

commutes with Alt(A, σ)−, i.e., Alt(A, σ)+ ⊆ CA(Alt(A, σ)
−).

Lemma 3.8. Let (A, σ) be a decomposable biquaternion algebra with orthogonal
involution over a field F and let x ∈ Alt(A, σ). If x2 ∈ F , then pσ(x) = ±x.
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Proof. Set α = x2 ∈ F and β = qσ(x) ∈ F . Then β2 = qσ(x)
2 = NrdA(x) =

±α2. Thus, β = λα for some λ ∈ F with λ4 = 1, i.e., qσ(x) = λx2. If α 6= 0,
then multiplying xpσ(x) = qσ(x) = λx2 on the left by x−1 we obtain pσ(x) = λx.
The relation p2σ = id then implies that λ = ±1 and we are done. So suppose
that α = 0, i.e., x2 = 0. By (3.6) we have bqσ(pσ(x), x) = pσ(x)

2+x2 = pσ(x)
2,

hence pσ(x)
2 ∈ F . On the other hand, the relations xpσ(x) = qσ(x) = λx2 = 0

show that pσ(x) is not invertible. Thus,

pσ(x)
2 = 0. (3)

Suppose that pσ(x) 6= x, hence x /∈ Alt(A, σ)+. In view of (3.7) one can find
w ∈ Alt(A, σ)− such that bqσ(x,w) = 1. By (3.6) we have

−xw + wpσ(x) = 1. (4)

Multiplying (4) on the left by x we get xwpσ(x) = x. Using (4), it follows
that (wpσ(x) − 1)pσ(x) = x, which yields pσ(x) = −x by (3). This completes
the proof (note that if charF = 2, this argument shows that the assumption
pσ(x) 6= x leads to the contradiction pσ(x) = −x, hence pσ(x) = x).

Proposition 3.9. Let (A, σ) be a decomposable biquaternion algebra with ortho-
gonal involution over a field F and let Alt(A, σ)0 = Alt(A, σ)+ ∪ Alt(A, σ)−.
Then Alt(A, σ)0 = {x ∈ Alt(A, σ) | pσ(x) = ±x} = {x ∈ Alt(A, σ) | x2 ∈ F}.

Proof. The relations (1) and (2) below (3.5) yield the first equality. The second
equality follows from (3.8).

Notation 3.10. For a decomposable biquaternion algebra with involution of
orthogonal type (A, σ) over a field F , we use the notations Q(A, σ)+ = F +
Alt(A, σ)+ and Q(A, σ)− = F + Alt(A, σ)−. We will simply denote Q(A, σ)+

by Q+ and Q(A, σ)− by Q−, if the pair (A, σ) is clear from the context.

Lemma 3.11. ([11]) Let (A, σ) be a decomposable biquaternion algebra with
orthogonal involution over a field F .

(1) If charF 6= 2, then Q+ and Q− are two σ-invariant quaternion subalgebras
of A with Q+

0 = Alt(A, σ)+ and Q−

0 = Alt(A, σ)−. Furthermore we have
(A, σ) ≃ (Q+, σ|Q+)⊗(Q−, σ|Q−), where σ|Q+ and σ|Q− are the canonical
involutions of Q+ and Q− respectively.

(2) If charF = 2, then Q+ = Q− is a maximal commutative subalgebra of F
satisfying x2 ∈ F for every x ∈ Q+.

Proof. As observed in [11, (3.5)], Q+ is a σ-invariant quaternion subalgebra of
A and σ|Q+ is of symplectic type. By dimension count and (3.7) we obtain
Q− = CA(Q

+), hence A ≃ Q+ ⊗F Q−. By [9, (2.23 (1))], σ|Q− is of symplectic
type. Finally, since TrdQ+(x) = 0 for every x ∈ Alt(A, σ)+, we have Q+

0 =
Alt(A, σ)+. Similarly Q−

0 = Alt(A, σ)−. This proves the first part. The second
part follows from [11, (3.6)].

Notation 3.12. Let (A, σ) be a decomposable biquaternion algebra with ortho-
gonal involution over a field F . We denote by q+σ and q−σ the restrictions of qσ
to Alt(A, σ)+ and Alt(A, σ)− respectively.
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Lemma 3.13. Let (A, σ) be a decomposable biquaternion algebra with orthogo-
nal involution over a field F .

(1) Every unit u ∈ Alt(A, σ)+ (resp. u ∈ Alt(A, σ)−) can be extended to a
basis {u, v, w} of Alt(A, σ)+ (resp. Alt(A, σ)−) such that w = uv.

(2) Every basis {u, v, w} of Alt(A, σ)+ (resp. Alt(A, σ)−) with w = uv is
orthogonal with respect to q+σ (resp. q−σ ).

(3) If charF 6= 2, then NQ+ ≃ 〈1〉q ⊥ (−1) · q+σ and NQ− ≃ 〈1〉q ⊥ q−σ .

(4) If charF = 2 and (A, σ) ≃ (Q1, σ1)⊗(Q2, σ2) is a decomposition of (A, σ),
then q+σ ≃ [α] ⊥ [β] ⊥ [αβ], where α ∈ F× and β ∈ F× are representatives
of the classes discσ1 ∈ F×/F×2 and discσ2 ∈ F×/F×2 respectively.

Proof. We just prove the result for q+σ . The proof for q−σ is similar.
(1) Choose an element u′ ∈ Alt(A, σ)+\Fu and set α = u2 ∈ F×. By (3.11),

uu′ ∈ Q+ = F +Alt(A, σ)+. Thus, there exist λ ∈ F and w ∈ Alt(A, σ)+ such
that uu′ = λ+w. Set v = u′−λα−1u ∈ Alt(A, σ)+. Then uv = w ∈ Alt(A, σ)+.
Thus, {u, v, w} is the desired basis.

(2) Let B = {u, v, w} be a basis of Alt(A, σ)+ with w = uv. Then vu =
σ(uv) = −uv. Using (3.6) we obtain b(u, v) = uv+ vu = 0. Similarly, b(u,w) =
b(v, w) = 0.

(3) Let {u, v, w} be a basis of Alt(A, σ)+ with w = uv. By (2), q+σ ≃
〈α, β,−αβ〉q , where α = u2 ∈ F and β = v2 ∈ F . On the other hand since vu =
−uv, {1, u, v, w} is a quaternion basis of Q+. Thus, NQ+ ≃ 〈1,−α,−β, αβ〉q by
[6, (9.6)].

(4) Let u ∈ Alt(Q1, σ1) and v ∈ Alt(Q2, σ2) be two units and set α = u2,
β = v2 and w = uv. Then discσ1 = αF×2 ∈ F×/F×2 and discσ2 = βF×2 ∈
F×/F×2. Also, since w ∈ Alt(A, σ) and w2 ∈ F , by (3.9) we obtain w ∈
Alt(A, σ)+. So {u, v, w} is a basis of Alt(A, σ)+ and q+σ ≃ [α] ⊥ [β] ⊥ [αβ].

Proposition 3.14. ([13, (5.3)]) Let (A, σ) and (A′, σ′) be two decomposable
biquaternion algebras with orthogonal involution over a field F . If (A, σ) ≃
(A′, σ′), then there exists an isometry f : (Alt(A, σ), qσ) → (Alt(A′, σ′), qσ′)
such that f(Alt(A, σ)+) = Alt(A′, σ′)+.

Proof. See the implication (1) ⇒ (2) in [13, (5.3)] (note that the proof given
there also works in characteristic 2).

Lemma 3.15. ([13]) Let (A, σ) be a decomposable biquaternion algebra with
orthogonal involution over a field F of characteristic different from 2. Then
(Alt(A, σ), qσ) ≃ (Alt(A, σ)+, q+σ ) ⊥ (Alt(A, σ)−, q−σ ).

Proof. See [13, p. 597].

Remark 3.16. Let (A, σ) be a decomposable biquaternion algebra with ortho-
gonal involution over a field F of characteristic different from 2. By (3.15)
every x ∈ Alt(A, σ) can be written uniquely as x = x+ + x−, where x+ ∈
Alt(A, σ)+ = Q+

0 and x− ∈ Alt(A, σ)− = Q−

0 . In view of [9, (16.24)] and (3.11
(1)), the maps pσ and qσ can be defined explicitly as pσ(x

+ + x−) = x+ − x−

and qσ(x
+ + x−) = (x+)2 − (x−)2. Using this fact, one can find a shorter proof

of (3.8) in characteristic different from 2 (see also the decomposition of q+σ and
q−σ in the proof of (3.13 (3))).
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The next result complements [13, (5.3)] for biquaternion algebras:

Theorem 3.17. ([13]) Let (A, σ) and (A′, σ′) be two decomposable biquater-
nion algebras with orthogonal involution over a field F of characteristic dif-
ferent from 2. Let Q+ = Q(A, σ)+, Q− = Q(A, σ)−, Q′+ = Q(A′, σ′)+ and
Q′− = Q(A′, σ′)−. The following statements are equivalent:

(1) (A, σ) ≃ (A′, σ′).

(2) qσ ≃ qσ′ and q+σ ≃ q+σ′ .

(3) A ≃ A′ and q+σ ≃ q+σ′ .

(4) A ≃ A′ and Q+ ≃ Q′+.

Furthermore, the above statements are equivalent to those obtained by changing
“+” to “−”.

Proof. The implication (1) ⇒ (2) follows from (3.14). Since qσ and qσ′ are
Albert forms of (A, σ) and (A′, σ′) respectively, qσ ≃ qσ′ implies that A ≃ A′ by
[9, (16.3)]. This proves (2) ⇒ (3). The implication (3) ⇒ (4) follows from (3.13
(3)) and [14, Ch. III, (2.5)]. To prove (4) ⇒ (1) observe that by (3.11 (1)) we
have CA(Q

+) = Q− and CA′(Q′+) = Q′−. Thus, the isomorphisms Q+ ≃F Q′+

and A ≃F A′ imply that Q− ≃F Q′−. Since the restrictions of σ to Q+ and Q−

and the restrictions of σ′ to Q′+ and Q′− are all symplectic, we obtain

(A, σ) ≃F (Q+, σ|Q+)⊗F (Q−, σ|Q−)

≃F (Q′+, σ′|Q′+)⊗F (Q′−, σ′|Q′−) ≃F (A′, σ′).

To prove the last statement of the result, observe that by (3.14), (3.15) and the
Witt’s cancellation theorem [14, Ch. I, (4.2)], the statement (1) implies that
qσ ≃ qσ′ and q−σ ≃ q−σ′ . Thus, the implication (1) ⇒ (2) again follows from
(3.14). The rest implications can be verified easily.

4 Relation with the Pfister invariant in charac-

teristic two

Throughout this section, unless stated otherwise, F is a field of characteristic 2.

Definition 4.1. Let A be a finite-dimensional associative F -algebra. The min-
imum number r such that A can be generated as an F -algebra by r elements is
called the minimum rank of A and is denoted by rF (A).

Theorem 4.2. ([15]) Let (A, σ) be a totally decomposable algebra with invo-
lution of orthogonal type over F . There exists a symmetric and self-centralizing
subalgebra S ⊆ A such that x2 ∈ F for every x ∈ S and dimF S = 2n, where
n = rF (S). Furthermore, for every subalgebra S with these properties, we have
S = F + S0, where S0 = S ∩ Alt(A, σ). In particular, S ⊆ F + Alt(A, σ).
Finally, the subalgebra S is uniquely determined up to isomorphism.

Proof. See [15, pp. 10-11].

Notation 4.3. The isomorphism class of S in (4.2) is denoted by Φ(A, σ).
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The next result shows that for biquaternion algebras with orthogonal invo-
lution, the subalgebra Φ(A, σ) is unique as a set:

Corollary 4.4. Let (A, σ) be a decomposable biquaternion algebra with involu-
tion of orthogonal type over F . Then Φ(A, σ) = Q+.

Proof. Write Φ(A, σ) = F + S0, where S0 = Φ(A, σ) ∩ Alt(A, σ). Since every
element of Φ(A, σ) is square-central, using (3.9) we have S0 ⊆ Alt(A, σ)+. Then
S0 = Alt(A, σ)+ by dimension count, hence Φ(A, σ) = F+Alt(A, σ)+ = Q+.

The following result is implicitly contained in [15]:

Lemma 4.5. Let (A, σ) be a totally decomposable algebra of degree 2n with invo-
lution of orthogonal type over F . Suppose that there exists a set {u1, · · · , un} ⊆
Alt(A, σ) ∩A∗ consisting of pairwise commutative square-central elements such
that ui1 · · ·uil ∈ Alt(A, σ) for every 1 ≤ l ≤ n and 1 ≤ i1 < · · · < il ≤ n. Then
Φ(A, σ) ≃ F [u1, · · · , un].

Proof. By [8, (2.2.3)], S := F [u1, · · · , un] is self-centralizing. The other required
properties of S, stated in (4.2), are easily verified.

Definition 4.6. The set {u1, · · · , un} ⊆ Alt(A, σ) ∩ A∗ in (4.5) is called a set
of alternating generators of Φ(A, σ).

We recall the following definition from [4]:

Definition 4.7. Let (A, σ) = (Q1, σ1)⊗· · ·⊗(Qn, σn) be a totally decomposable
algebra with orthogonal involution over F . Let αi ∈ F×, i = 1, · · · , n, be a
representative of the class discσi ∈ F×/F×2. The bilinear n-fold Pfister form
〈〈α1, · · · , αn〉〉 is called the Pfister invariant of (A, σ) and is denoted byPf(A, σ).

Note that by [4, (7.5)], Pf(A, σ) is independent of the decomposition of
(A, σ).

Theorem 4.8. ([15]) Let (A, σ) be a totally decomposable algebra of degree 2n

with involution of orthogonal type over F . Then Φ(A, σ) can be considered as
an underlying vector space of the bilinear form Pf(A, σ) in such a way that
Pf(A, σ)(x, x) = x2 for every x ∈ Φ(A, σ). Also, Pf(A, σ) ≃ 〈〈α1, · · · , αn〉〉 if
and only if there exists a set of alternating generators {u1, · · · , un} of Φ(A, σ)
such that u2

i = αi ∈ F×, i = 1, · · · , n.

Proof. See [15, pp. 11-12].

Lemma 4.9. Let 〈〈α, β〉〉 be an isotropic bilinear Pfister form over F . If αβ 6= 0,
then 〈〈α, β〉〉 ≃ 〈〈α, β + α−1λ2〉〉 for every λ ∈ F .

Proof. Since 〈〈α, β〉〉 is isotropic, by [6, (4.14)] either α ∈ F×2 or β ∈ DF 〈1, α〉.
If α ∈ F×2, using [6, (4.15 (2))] and [6, (4.15 (1))] we obtain

〈〈α, β〉〉 ≃ 〈〈β + α−1λ2, αβ〉〉 ≃ 〈〈β + α−1λ2, αβ(α−1λ2 − (β + α−1λ2))〉〉

≃ 〈〈β + α−1λ2, αβ2〉〉 ≃ 〈〈α, β + α−1λ2〉〉.

If β ∈ DF 〈1, α〉, then there exist b, c ∈ F such that β = b2 + c2α. Let s =
α−1β−1λ ∈ F . Using [6, (14.15 (1))] we obtain

〈〈α, β〉〉 ≃ 〈〈α, β((1 + csα)2 − (bs)2α)〉〉 ≃ 〈〈α, β(1 + c2s2α2 + b2s2α)〉〉

≃ 〈〈α, β + s2αβ(c2α+ b2)〉〉 ≃ 〈〈α, β + s2αβ2〉〉 ≃ 〈〈α, β + α−1λ2〉〉.
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Lemma 4.10. Let (A, σ) be a decomposable biquaternion algebra with involution
of orthogonal type over F and let α, β ∈ F×. Then Pf(A, σ) ≃ 〈〈α, β〉〉 if and
only if q+σ ≃ [α] ⊥ [β] ⊥ [αβ].

Proof. If Pf(A, σ) ≃ 〈〈α, β〉〉, by (4.8) there exists a set of alternating generators
{u, v} of Φ(A, σ) such that u2 = α and v2 = β. By (4.4) and (3.13 (2)), {u, v, uv}
is an orthogonal basis of Alt(A, σ)+, hence q+σ ≃ [α] ⊥ [β] ⊥ [αβ].

To prove the converse, choose a basis {x, y, z} of Alt(A, σ)+ with x2 = α,
y2 = β and z2 = αβ. Consider the element xy ∈ Φ(A, σ). By (4.4), Φ(A, σ) =
F +Alt(A, σ)+. Thus, there exists a, b, c, d ∈ F such that

xy = a+ bx+ cy + dz. (5)

If a = 0 then xy = bx + cy + dz ∈ Alt(A, σ)+, which implies that {x, y} is
a set of alternating generators of Φ(A, σ). As x2 = α and y2 = β we obtain
Pf(A, σ) ≃ 〈〈α, β〉〉 by (4.8).

So suppose that a 6= 0. By squaring both sides of (5), we obtain αβ =
a2 + b2α+ c2β + d2αβ, which yields

1 + (ba−1)2α+ (ca−1)2β + ((d + 1)a−1)2αβ = 0.

Therefore, the form 〈〈α, β〉〉 is isotropic. Set y′ = y + α−1ax ∈ Alt(A, σ)+. By
(5) we have xy′ = xy + a = bx+ cy + dz ∈ Alt(A, σ)+, hence {x, y′} is a set of

alternating generators of Φ(A, σ). As x2 = α and y′
2
= β + α−1a2, using (4.8)

we obtain Pf(A, σ) ≃ 〈〈α, β + α−1a2〉〉. Thus, Pf(A, σ) ≃ 〈〈α, β〉〉 by (4.9).

Using (4.10) and (3.13 (4)), we obtain the following relation between the
Pfister invariant and the quadratic form q+σ :

Proposition 4.11. Let (A, σ) and (A′, σ′) be two decomposable biquaternion
algebras with orthogonal involution over F . Then q+σ ≃ q+σ′ if and only if
Pf(A, σ) ≃ Pf(A′, σ′).

The following result is analogous to (3.17):

Theorem 4.12. Let (A, σ) and (A′, σ′) be two decomposable biquaternion al-
gebras with involution of orthogonal type over F . The following statements are
equivalent:

(1) (A, σ) ≃ (A′, σ′).

(2) qσ ≃ qσ′ and q+σ ≃ q+σ′ .

(3) A ≃ A′ and q+σ ≃ q+σ′ .

(4) A ≃ A′ and Pf(A, σ) ≃ Pf(A′, σ′).

Proof. The implication (1) ⇒ (2) follows from (3.14).
(2) ⇒ (3): Since qσ and qσ′ are Albert forms of (A, σ) and (A′, σ′) respec-

tively, qσ ≃ qσ′ implies that A ≃ A′ by [9, (16.3)].
The implications (3) ⇒ (4) and (4) ⇒ (1) follow from (4.11) and [15, (6.5)]

respectively.

Lemma 4.13. If 〈〈α, β〉〉 be an anisotropic bilinear Pfister form over F , then
〈〈α, β〉〉 6≃ 〈〈α+ 1, β〉〉.
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Proof. As proved in [1, p. 16], two bilinear Pfister forms are isometric if and
only if their pure subforms are isometric. Thus, it is enough to show that the
pure subform of 〈〈α, β〉〉 does not represents α + 1. If α + 1 ∈ DF (〈α, β, αβ〉),
then there exists a, b, c ∈ F such that a2α + b2β + c2αβ = α + 1. Thus,
1 + (a + 1)2α + b2β + c2αβ = 0, i.e., 〈〈α, β〉〉 is isotropic which contradicts the
assumption.

Definition 4.14. For α ∈ F×, define an involution Tα : M2(F ) → M2(F ) via

Tα

(

a b
c d

)

=

(

a cα−1

bα d

)

.

Note that Tα is an involution of orthogonal type on M2(F ) and discTα =
αF×2 ∈ F×/F×2.

The following example shows that if charF = 2, the conditions A ≃F A′ and
Q+ ≃F Q′+ don’t necessarily imply that (A, σ) ≃ (A′, σ′) (compare (3.17)):

Example 4.15. Let 〈〈α, β〉〉 be an anisotropic Pfister form over a field F of
characteristic 2 and let A = M4(F ). Consider the involutions σ = Tα ⊗ Tβ and
σ′ = Tα+1 ⊗ Tβ on A. Then Pf(A, σ) ≃ 〈〈α, β〉〉 and Pf(A, σ′) ≃ 〈〈α + 1, β〉〉,
hence Pf(A, σ) 6≃ Pf(A, σ′) by (4.13). Using (4.12), we obtain (A, σ) 6≃ (A, σ′).

On the other hand by (4.8) there exists a set of alternating generators {u, v}
(resp. {u′, v′}) of Φ(A, σ) (resp. Φ(A, σ′)) such that u2 = α and v2 = β (resp.

u′2 = α+1 and v′
2
= β). Then Φ(A, σ) ≃ F [u, v] and Φ(A, σ′) ≃ F [u′, v′]. The

linear map f : F [u, v] → F [u′, v′] induced by f(1) = 1, f(u) = u′ + 1, f(v) = v′

and f(uv) = (u′ +1)v′ is an F -algebra isomorphism. Thus, Φ(A, σ) ≃ Φ(A, σ′),
which implies that Q(A, σ)+ ≃ Q(A, σ′)+ by (4.4).

We conclude with some results on metabolic involutions. We recall that if
charF 6= 2, then an involution on a central simple F -algebra is metabolic if and
only if it is hyperbolic (see [5, (4.10)]).

Proposition 4.16. Let (A, σ) be a decomposable biquaternion algebra with
orthogonal involution over a field F of arbitrary characteristic. The following
statements are equivalent:

(1) (A, σ) is metabolic.

(2) Q+ or Q− is not a division ring.

(3) 1 ∈ DF (q
+
σ ) or −1 ∈ DF (q

−
σ ).

(4) q+σ or q−σ is isotropic.

Proof. If charF 6= 2, by (3.11 (1)) we have (A, σ) ≃ (Q+, σ|Q+) ⊗ (Q−, σ|Q−),
where σ|Q+ and σ|Q− are the canonical involutions of Q+ and Q− respectively.
Thus, the equivalence (1) ⇔ (2) follows from [7, (3.1)]. The equivalences (2) ⇔
(3) and (2) ⇔ (4) both follow from (3.13 (3)) and [14, Ch. III, (2.7)].

Now, suppose that charF = 2. Then the equivalence (1) ⇔ (2) follows from
[15, (6.6)].

(1) ⇒ (3): Let e be a metabolic idempotent with respect to σ and let
x = e+σ(e). By (4.17), we have x2 = 1. Since x ∈ Alt(A, σ), (3.9) implies that
x ∈ Alt(A, σ)+, hence q+σ (x) = 1.
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(3) ⇒ (4): Suppose that q+σ (u) = 1 for some u ∈ Alt(A, σ)+. By (3.13 (1))
and (3.13 (2)), {u} extends to an orthogonal basis {u, v, w} of Alt(A, σ)+ with
w = uv. Since Q+ is commutative (3.11 (2)), we obtain q+σ (v+w) = (v+w)2 =
v2 + (uv)2 = 0, i.e., q+σ is isotropic.

(4) ⇒ (2): If q+σ is isotropic, then there exists a nonzero x ∈ Alt(A, σ)+ ⊆
Q+ such that x2 = 0. Thus, Q+ is not a division ring.

Lemma 4.17. Let (A, σ) be a central simple algebra with orthogonal involution
over F and let e ∈ A be a metabolic idempotent. Then (e+ σ(e))2 = 1.

Proof. As (1−e)(1−σ(e)) = 0, we obtain 1−σ(e)−e+eσ(e) = 0, which implies
that e+ σ(e) = 1 + eσ(e). Thus,

(e+ σ(e))2 = (1 + eσ(e))2 = 1 + eσ(e)eσ(e) = 1.

Corollary 4.18. Let (A, σ) be a central simple algebra with involution over a
field F of arbitrary characteristic. If σ is metabolic, then discσ is trivial.

Proof. The result follows from (4.17) and [3, (2.3)].

Proposition 4.19. Let (A, σ) be a biquaternion algebra with involution of
orthogonal type over a field F of arbitrary characteristic. Then σ is metabolic
if and only if there exists u ∈ Alt(A, σ) such that u2 = 1.

Proof. If σ is metabolic, then by (4.18), discσ is trivial. Thus, σ is decomposable
and the result follows from (4.16). Conversely, suppose that there exists u ∈
Alt(A, σ) such that u2 = 1. Then discσ = NrdA(u)F

×2 is trivial, so (A, σ) is
decomposable by [11, (3.7)]. Since u2 = 1 ∈ F and u ∈ Alt(A, σ), by (3.9)
we have u ∈ Alt(A, σ)+ ∪ Alt(A, σ)−. Therefore, either u ∈ Alt(A, σ)+ (i.e.,
q+σ (u) = 1) or u ∈ Alt(A, σ)− (i.e., q−σ (u) = −1). By (4.16), σ is metabolic.
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