On decomposable biquaternion algebras with involution of orthogonal type

A.-H. Nokhodkar

August 9, 2015

Abstract

We investigate the pfaffians of decomposable biquaternion algebras with involution of orthogonal type. In characteristic two, a classification of these algebras in terms of their pfaffians is studied. Also, in arbitrary characteristic, a criterion for an orthogonal involution on a biquaternion algebra to be metabolic is obtained.

Mathematics Subject Classification: 11E88, 15A63, 16W10.

1 Introduction

A biquaternion algebra is a tensor product of two quaternion algebras. Every biquaternion algebra is a central simple algebra of degree 4 and exponent 2 or 1. A result proved by A. A. Albert shows that the converse is also true (see [9, (16.1)]). An *Albert form* of a biquaternion algebra A is a 6-dimensional quadratic form with trivial discriminant whose Clifford algebra is isomorphic to $M_2(A)$. It is known that two biquaternion algebras over a field F are isomorphic as F-algebras if and only if their Albert forms are similar (see [9, (16.3)]).

The Albert form of a biquaternion algebra with involution arises naturally as the quadratic form induced by a *pfaffian* (see [13, (3.3)]). The classical pfaffian is a polynomial map Pf defined on alternating matrices under the transpose involution, which satisfies $Pf(X)^2 = \det X$ for every alternating matrix X (see [2, (3.27)]). In [10], a pfaffian of certain modules over Azumaya algebras was defined and used to classify 6-dimensional quadratic spaces over commutative rings. This construction was used in [13] to find a criterion for involutions on an Azumaya algebra of rank 16, which contains 2 as a unit, to admit an invariant rank 4 Azumaya subalgebra. A similar decomposition criterion for involutions on a biquaternion algebra in arbitrary characteristic was also obtained in [11].

It is known that involutions of symplectic type on a biquaternion algebra can be classified, up to conjugation, by their *pfaffian norms* (see [9, (16.19)]). For orthogonal involutions the situation is a little more complicated. In characteristic $\neq 2$, [13, (5.3)] yields a classification of decomposable orthogonal involutions on a biquaternion algebra A in terms of the pfaffian and the *pfaffian adjoint* (introduced in [10] and [13]). This classification was originally stated in [13] for the more general case where A is an Azumaya algebra which contains 2 as a unit.

In this work, the pfaffians of decomposable biquaternion algebras with orthogonal involution are investigated. In §3, we recall the notions of pfaffian and pfaffian adjoint of a biquaternion algebra with involution (A, σ) . For a decomposable orthogonal involution σ , let q_{σ} be a pfaffian satisfying $q_{\sigma}(x)^2 = \operatorname{Nrd}_A(x)$ for every alternating element x. Set $\operatorname{Alt}(A, \sigma)^+ = \{x + p_{\sigma}(x) \mid x \in \operatorname{Alt}(A, \sigma)\}$ and $\operatorname{Alt}(A, \sigma)^- = \{x - p_{\sigma}(x) \mid x \in \operatorname{Alt}(A, \sigma)\}$, where p_{σ} is the linear endomorphism of $\operatorname{Alt}(A, \sigma)$ satisfying $xp_{\sigma}(x) = p_{\sigma}(x)x = q_{\sigma}(x)$ and $p_{\sigma}^2(x) = x$ for $x \in \operatorname{Alt}(A, \sigma)$. We shall see in (3.9) that the union of the sets $\operatorname{Alt}(A, \sigma)^+$ and $\operatorname{Alt}(A, \sigma)^-$ coincides with the set of all square-central elements in $\operatorname{Alt}(A, \sigma)$. At the end of §3, we study in more details the classification of orthogonal involutions on biquaternion algebras in characteristic $\neq 2$, obtained in [13]. Although this result is already presented in [13], it is useful to restate it to enable comparison with the corresponding result in characteristic 2 (see (3.17) and (4.12)).

In §4, we study the characterization of decomposable biquaternion algebras with involution in characteristic 2. We also investigate the relation between the restriction of the form q_{σ} to Alt $(A, \sigma)^+$, denoted by q_{σ}^+ and the *Pfister invariant* $\mathfrak{Pf}(A, \sigma)$ introduced in [4]. The key result is (4.11), which states that if σ and σ' are two decomposable orthogonal involutions on A, then $q_{\sigma'}^+ \simeq q_{\sigma'}^+$ if and only if $\mathfrak{Pf}(A, \sigma) \simeq \mathfrak{Pf}(A, \sigma')$. Using this and [15, (6.5)], it can be shown that σ and σ' are conjugate if and only if $q_{\sigma}^+ \simeq q_{\sigma'}^+$ (see (4.12)). Finally, we obtain in (4.16) and (4.19) some criteria for an orthogonal involution on a biquaternion algebra in arbitrary characteristic to be metabolic.

2 Preliminaries

Let V be a finite dimensional vector space over a field F. A quadratic form over F is a map $q: V \to F$ such that (i) $q(av) = a^2q(v)$ for every $a \in F$ and $v \in V$; (ii) the map $\mathfrak{b}_q: V \times V \to F$ defined by $\mathfrak{b}_q(u,v) = q(u+v) - q(u) - q(v)$ is a bilinear form. Note that for every $v \in V$ we have $\mathfrak{b}_q(v,v) = 2q(v)$. In particular, if char F = 2, then $\mathfrak{b}_q(v,v) = 0$ for $v \in V$, i.e., \mathfrak{b}_q is an alternating form. The orthogonal complement of a subspace $W \subseteq V$ is defined as $W^{\perp} = \{x \in V \mid b_q(x,y) = 0 \text{ for all } y \in W\}$. If $V = U \oplus W$ is the direct sum of two subspaces U and W with $W \subseteq U^{\perp}$, we write $(V,q) = (U \perp W, q|_U \perp q|_W)$.

A quadratic form q (resp. a bilinear form \mathfrak{b}) on V is called *isotropic* if there exists a nonzero vector $v \in V$ such that q(v) = 0 (resp. $\mathfrak{b}(v, v) = 0$). For $\alpha \in F$, we say that q (resp. \mathfrak{b}) represents α if there exists a nonzero vector $v \in V$ such that $q(v) = \alpha$ (resp. $\mathfrak{b}(v, v) = \alpha$). The sets of all elements of F represented by q and \mathfrak{b} are denoted by $D_F(q)$ and $D_F(\mathfrak{b})$ respectively. For $\alpha \in F^{\times}$, the scaled quadratic form $\alpha \cdot q$ is defined as $\alpha \cdot q(v) = \alpha q(v)$ for every $v \in V$.

If char F = 2, for $a \in F$, we denote by [a] (the isometry class of) the quadratic form $q(x) = ax^2$. If char $F \neq 2$ and $a_1, \dots, a_n \in F$, the quadratic form $q(x_1, \dots, x_n) = \sum_{i=1}^n a_i x_i^2$ is denoted by $\langle a_1, \dots, a_n \rangle_q$. Also, in arbitrary characteristic, the bilinear form defined by $\mathfrak{b}((x_1, \dots, x_n), (y_1, \dots, y_n)) = \sum_{i=1}^n a_i x_i y_i$ is denoted by $\langle a_1, \dots, a_n \rangle$. Finally, the bilinear form $\langle 1, a_1 \rangle \otimes \cdots \otimes \langle 1, a_n \rangle$ is called a *bilinear n-fold Pfister form* and is denoted by $\langle a_1, \dots, a_n \rangle$.

An involution on a central simple F-algebra A is an antiautomorphism σ of A of order 2. We say that σ is of the first kind if $\sigma|_F = \text{id.}$ An involution σ of the first kind is said to be of symplectic type (or symplectic) if over a splitting field of A, it becomes adjoint to an alternating bilinear form. Otherwise σ is said to be of orthogonal type (or orthogonal). The discriminant of an orthogonal involution

 σ is denoted by disc σ . The set of *alternating elements* of A is defined as

$$Alt(A, \sigma) = \{a - \sigma(a) \mid a \in A\}.$$

A quaternion algebra over a field F is a central simple algebra Q of degree 2. The canonical involution γ on Q is defined by $\gamma(x) = \operatorname{Trd}_Q(x) - x$ for $x \in Q$, where $\operatorname{Trd}_Q(x)$ is the reduced trace of x. It is known that the canonical involution on Q is the unique involution of symplectic type on Q and it satisfies $\gamma(x)x \in F$ for every $x \in Q$ (see [9, Ch. 2]). The map $N_Q : Q \to F$ defined by $N_Q(x) = \gamma(x)x$ is called the norm form of Q. An element $x \in Q$ is called a pure quaternion if $\operatorname{Trd}_Q(x) = 0$. The set of all pure quaternions of Q is a 3-dimensional subspace of Q denoted by Q_0 . Note that an element $x \in Q$ lies in Q_0 if and only if $\gamma(x) = -x$, or equivalently, $N_Q(x) = -x^2$.

A central simple algebra with involution (A, σ) over a field F is called *totally* decomposable if it decomposes as tensor products of σ -invariant quaternion Falgebras. If A is a biquaternion algebra, we will use the term decomposable instead of "totally decomposable". It is known that a biquaternion algebra with orthogonal involution (A, σ) is decomposable if and only if disc σ is trivial (see [11, (3.7)]).

Let (A, σ) be an algebra with involution over a field F. An idempotent $e \in A$ is called a *metabolic* (resp. *hyperbolic*) idempotent with respect to σ if $\sigma(e)e = 0$ and $(1-e)(1-\sigma(e)) = 0$ (resp. $\sigma(e) = 1-e$). The pair (A, σ) is called *metabolic* (resp. *hyperbolic*) if A contains a metabolic (resp. hyperbolic) idempotent with respect to σ . Every hyperbolic involution σ is metabolic but the converse is not always true. If σ is symplectic or char $F \neq 2$, the involution σ is metabolic if and only if it is hyperbolic, (see [5, (4.10)] and [3, (A.3)]).

3 The pfaffian and the pfaffian adjoint

We begin our discussion by looking at special cases of [12, (2.1)] and [12, (3.1)]:

Theorem 3.1. ([12]) Let (A, σ) be a biquaternion algebra with orthogonal involution over a field F and let $d_{\sigma} \in F^{\times}$ be a representative of the class disc $\sigma \in F^{\times}/F^{\times 2}$, i.e., $d_{\sigma}F^{\times 2} = \text{disc } \sigma$. There exists a map pf_{σ} : Alt $(A, \sigma) \to F$ such that $pf_{\sigma}(x)^2 = d_{\sigma}\text{Nrd}_A(x)$ for every $x \in \text{Alt}(A, \sigma)$. The map pf_{σ} is uniquely determined up to a sign. Moreover, there exists an F-linear map π_{σ} : Alt $(A, \sigma) \to$ Alt (A, σ) such that $x\pi_{\sigma}(x) = \pi_{\sigma}(x)x = pf_{\sigma}(x)$ and $\pi^2_{\sigma}(x) = d_{\sigma}x$ for every $x \in \text{Alt}(A, \sigma)$.

Remark 3.2. The map π_{σ} in (3.1) is uniquely determined by pf_{σ} . In fact it is easily seen by scalar extension to a splitting field that $\operatorname{Alt}(A, \sigma)$ has a basis \mathcal{B} consisting of invertible elements. For every $x \in \mathcal{B}$, we must have $\pi_{\sigma}(x)$ $= x^{-1}pf_{\sigma}(x)$. As π_{σ} is *F*-linear, it is uniquely defined on $\operatorname{Alt}(A, \sigma)$.

Definition 3.3. The map pf_{σ} in (3.1) is called a *pfaffian of* (A, σ) . We also call the map π_{σ} , the *pfaffian adjoint* of pf_{σ} .

Note that by [13, (3.3)], every pfaffian of (A, σ) is an Albert form of A.

Definition 3.4. Let F be a field. The *pfaffian* of an alternating matrix $X = (x_{ij}) \in M_4(F)$ (under transpose involution) is defined as

$$Pf(X) = x_{12}x_{34} - x_{13}x_{24} + x_{14}x_{23}.$$

Notations 3.5. Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F. Since disc σ is trivial, using (3.1) one can find a pfaffian pf_{σ} of $Alt(A, \sigma)$ satisfying $pf_{\sigma}(x)^2 = Nrd_A(x)$ for every $x \in Alt(A, \sigma)$. If pf'_{σ} is another pfaffian with this property, then $pf'_{\sigma} = \pm pf_{\sigma}$. After scalar extension to an algebraic closure of F, exactly one of these pfaffians corresponds to the pfaffian Pf. We denote this pfaffian by q_{σ} . Moreover, we denote by p_{σ} the pfaffian adjoint of q_{σ} , hence

$$q_{\sigma}(x)^2 = \operatorname{Nrd}_A(x), \quad xp_{\sigma}(x) = p_{\sigma}(x)x = q_{\sigma}(x) \quad \text{and} \quad p_{\sigma}^2(x) = x,$$

for every $x \in Alt(A, \sigma)$. We also use the following notations:

$$\operatorname{Alt}(A,\sigma)^+ := \{x + p_{\sigma}(x) \mid x \in \operatorname{Alt}(A,\sigma)\},\$$

$$\operatorname{Alt}(A,\sigma)^- := \{x - p_{\sigma}(x) \mid x \in \operatorname{Alt}(A,\sigma)\}.$$

Note that if char F = 2, then $\operatorname{Alt}(A, \sigma)^+ = \operatorname{Alt}(A, \sigma)^-$. As proved in [13, p. 597] and [11, (3.5)], $\operatorname{Alt}(A, \sigma)^+$ and $\operatorname{Alt}(A, \sigma)^-$ are 3-dimensional subspaces of $\operatorname{Alt}(A, \sigma)$. Since $p_{\sigma}^2 = \operatorname{id}$, we have $p_{\sigma}(x) = x$ for every $x \in \operatorname{Alt}(A, \sigma)^+$ and $p_{\sigma}(x) = -x$ for every $x \in \operatorname{Alt}(A, \sigma)^-$. The converse is also true, i.e.,

$$\operatorname{Alt}(A,\sigma)^{+} = \{ x \in \operatorname{Alt}(A,\sigma) \mid p_{\sigma}(x) = x \},$$
(1)

$$\operatorname{Alt}(A,\sigma)^{-} = \{ x \in \operatorname{Alt}(A,\sigma) \mid p_{\sigma}(x) = -x \}.$$

$$(2)$$

In fact if char $F \neq 2$, then for every $x \in \text{Alt}(A, \sigma)$ with $p_{\sigma}(x) = x$ we have $x = \frac{1}{2}(x+p_{\sigma}(x)) \in \text{Alt}(A, \sigma)^+$. Similarly if $p_{\sigma}(x) = -x$, then $x = \frac{1}{2}(x-p_{\sigma}(x)) \in \text{Alt}(A, \sigma)^-$. If char F = 2, then the relation (1) follows from the dimension formula for the image and the kernel of the linear map $p_{\sigma} + \text{id}$.

The following result is implicitly contained in [9, pp. 249-250] over a field of characteristic different form 2:

Lemma 3.6. ([9]) Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F. Then p_{σ} is an isometry of $(Alt(A, \sigma), q_{\sigma})$. Furthermore $\mathfrak{b}_{q_{\sigma}}(x, y) = xp_{\sigma}(y) + yp_{\sigma}(x)$, for $x, y \in Alt(A, \sigma)$.

Proof. For every $x \in Alt(A, \sigma)$ we have $q_{\sigma}(p_{\sigma}(x)) = p_{\sigma}(p_{\sigma}(x))p_{\sigma}(x) = xp_{\sigma}(x) = q_{\sigma}(x)$. Thus, p_{σ} is an isometry. The second assertion is easily obtained from the relations $q_{\sigma}(x) = xp_{\sigma}(x)$ and $\mathfrak{b}_{q_{\sigma}}(x, y) = q_{\sigma}(x + y) - q_{\sigma}(x) - q_{\sigma}(y)$.

Lemma 3.7. Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F. Then $\operatorname{Alt}(A, \sigma)^+ = (\operatorname{Alt}(A, \sigma)^-)^{\perp} \subseteq C_A(\operatorname{Alt}(A, \sigma)^-)$.

Proof. Let $\mathfrak{b} = \mathfrak{b}_{q_{\sigma}}$ and let $x \in \operatorname{Alt}(A, \sigma)^+$. Since $p_{\sigma} \in O(\operatorname{Alt}(A, \sigma), q_{\sigma})$, we have $\mathfrak{b}(x, y) = \mathfrak{b}(p_{\sigma}(x), p_{\sigma}(y)) = \mathfrak{b}(x, p_{\sigma}(y))$ for every $y \in \operatorname{Alt}(A, \sigma)$. Thus, $\mathfrak{b}(x, y - p_{\sigma}(y)) = 0$, i.e., $\operatorname{Alt}(A, \sigma)^+ \subseteq (\operatorname{Alt}(A, \sigma)^-)^{\perp}$. By dimension count we obtain $\operatorname{Alt}(A, \sigma)^+ = (\operatorname{Alt}(A, \sigma)^-)^{\perp}$. Now let $z \in \operatorname{Alt}(A, \sigma)^-$. By (3.6) we have $0 = \mathfrak{b}(x, z) = -xz + zx$. Thus, xz = zx, which implies that $\operatorname{Alt}(A, \sigma)^+$ commutes with $\operatorname{Alt}(A, \sigma)^-$, i.e., $\operatorname{Alt}(A, \sigma)^+ \subseteq C_A(\operatorname{Alt}(A, \sigma)^-)$.

Lemma 3.8. Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F and let $x \in Alt(A, \sigma)$. If $x^2 \in F$, then $p_{\sigma}(x) = \pm x$.

Proof. Set $\alpha = x^2 \in F$ and $\beta = q_{\sigma}(x) \in F$. Then $\beta^2 = q_{\sigma}(x)^2 = \operatorname{Nrd}_A(x) = \pm \alpha^2$. Thus, $\beta = \lambda \alpha$ for some $\lambda \in F$ with $\lambda^4 = 1$, i.e., $q_{\sigma}(x) = \lambda x^2$. If $\alpha \neq 0$, then multiplying $xp_{\sigma}(x) = q_{\sigma}(x) = \lambda x^2$ on the left by x^{-1} we obtain $p_{\sigma}(x) = \lambda x$. The relation $p_{\sigma}^2 = \operatorname{id}$ then implies that $\lambda = \pm 1$ and we are done. So suppose that $\alpha = 0$, i.e., $x^2 = 0$. By (3.6) we have $\mathfrak{b}_{q_{\sigma}}(p_{\sigma}(x), x) = p_{\sigma}(x)^2 + x^2 = p_{\sigma}(x)^2$, hence $p_{\sigma}(x)^2 \in F$. On the other hand, the relations $xp_{\sigma}(x) = q_{\sigma}(x) = \lambda x^2 = 0$ show that $p_{\sigma}(x)$ is not invertible. Thus,

$$p_{\sigma}(x)^2 = 0. \tag{3}$$

Suppose that $p_{\sigma}(x) \neq x$, hence $x \notin \text{Alt}(A, \sigma)^+$. In view of (3.7) one can find $w \in \text{Alt}(A, \sigma)^-$ such that $\mathfrak{b}_{q_{\sigma}}(x, w) = 1$. By (3.6) we have

$$-xw + wp_{\sigma}(x) = 1. \tag{4}$$

Multiplying (4) on the left by x we get $xwp_{\sigma}(x) = x$. Using (4), it follows that $(wp_{\sigma}(x) - 1)p_{\sigma}(x) = x$, which yields $p_{\sigma}(x) = -x$ by (3). This completes the proof (note that if char F = 2, this argument shows that the assumption $p_{\sigma}(x) \neq x$ leads to the contradiction $p_{\sigma}(x) = -x$, hence $p_{\sigma}(x) = x$).

Proposition 3.9. Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F and let $\operatorname{Alt}(A, \sigma)^0 = \operatorname{Alt}(A, \sigma)^+ \cup \operatorname{Alt}(A, \sigma)^-$. Then $\operatorname{Alt}(A, \sigma)^0 = \{x \in \operatorname{Alt}(A, \sigma) \mid p_{\sigma}(x) = \pm x\} = \{x \in \operatorname{Alt}(A, \sigma) \mid x^2 \in F\}.$

Proof. The relations (1) and (2) below (3.5) yield the first equality. The second equality follows from (3.8).

Notation 3.10. For a decomposable biquaternion algebra with involution of orthogonal type (A, σ) over a field F, we use the notations $Q(A, \sigma)^+ = F + \text{Alt}(A, \sigma)^+$ and $Q(A, \sigma)^- = F + \text{Alt}(A, \sigma)^-$. We will simply denote $Q(A, \sigma)^+$ by Q^+ and $Q(A, \sigma)^-$ by Q^- , if the pair (A, σ) is clear from the context.

Lemma 3.11. ([11]) Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F.

- (1) If char $F \neq 2$, then Q^+ and Q^- are two σ -invariant quaternion subalgebras of A with $Q_0^+ = \operatorname{Alt}(A, \sigma)^+$ and $Q_0^- = \operatorname{Alt}(A, \sigma)^-$. Furthermore we have $(A, \sigma) \simeq (Q^+, \sigma|_{Q^+}) \otimes (Q^-, \sigma|_{Q^-})$, where $\sigma|_{Q^+}$ and $\sigma|_{Q^-}$ are the canonical involutions of Q^+ and Q^- respectively.
- (2) If char F = 2, then $Q^+ = Q^-$ is a maximal commutative subalgebra of F satisfying $x^2 \in F$ for every $x \in Q^+$.

Proof. As observed in [11, (3.5)], Q^+ is a σ -invariant quaternion subalgebra of A and $\sigma|_{Q^+}$ is of symplectic type. By dimension count and (3.7) we obtain $Q^- = C_A(Q^+)$, hence $A \simeq Q^+ \otimes_F Q^-$. By [9, (2.23 (1))], $\sigma|_{Q^-}$ is of symplectic type. Finally, since $\operatorname{Trd}_{Q^+}(x) = 0$ for every $x \in \operatorname{Alt}(A, \sigma)^+$, we have $Q_0^+ = \operatorname{Alt}(A, \sigma)^+$. Similarly $Q_0^- = \operatorname{Alt}(A, \sigma)^-$. This proves the first part. The second part follows from [11, (3.6)].

Notation 3.12. Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F. We denote by q_{σ}^+ and q_{σ}^- the restrictions of q_{σ} to $\operatorname{Alt}(A, \sigma)^+$ and $\operatorname{Alt}(A, \sigma)^-$ respectively.

Lemma 3.13. Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F.

- (1) Every unit $u \in Alt(A, \sigma)^+$ (resp. $u \in Alt(A, \sigma)^-$) can be extended to a basis $\{u, v, w\}$ of $Alt(A, \sigma)^+$ (resp. $Alt(A, \sigma)^-$) such that w = uv.
- (2) Every basis $\{u, v, w\}$ of $Alt(A, \sigma)^+$ (resp. $Alt(A, \sigma)^-$) with w = uv is orthogonal with respect to q^+_{σ} (resp. q^-_{σ}).
- (3) If char $F \neq 2$, then $N_{Q^+} \simeq \langle 1 \rangle_q \perp (-1) \cdot q_{\sigma}^+$ and $N_{Q^-} \simeq \langle 1 \rangle_q \perp q_{\sigma}^-$.
- (4) If char F = 2 and $(A, \sigma) \simeq (Q_1, \sigma_1) \otimes (Q_2, \sigma_2)$ is a decomposition of (A, σ) , then $q_{\sigma}^+ \simeq [\alpha] \perp [\beta] \perp [\alpha\beta]$, where $\alpha \in F^{\times}$ and $\beta \in F^{\times}$ are representatives of the classes disc $\sigma_1 \in F^{\times}/F^{\times 2}$ and disc $\sigma_2 \in F^{\times}/F^{\times 2}$ respectively.

Proof. We just prove the result for q_{σ}^+ . The proof for q_{σ}^- is similar.

(1) Choose an element $u' \in \operatorname{Alt}(A, \sigma)^+ \setminus Fu$ and set $\alpha = u^2 \in F^{\times}$. By (3.11), $uu' \in Q^+ = F + \operatorname{Alt}(A, \sigma)^+$. Thus, there exist $\lambda \in F$ and $w \in \operatorname{Alt}(A, \sigma)^+$ such that $uu' = \lambda + w$. Set $v = u' - \lambda \alpha^{-1}u \in \operatorname{Alt}(A, \sigma)^+$. Then $uv = w \in \operatorname{Alt}(A, \sigma)^+$. Thus, $\{u, v, w\}$ is the desired basis.

(2) Let $\mathcal{B} = \{u, v, w\}$ be a basis of $Alt(A, \sigma)^+$ with w = uv. Then $vu = \sigma(uv) = -uv$. Using (3.6) we obtain $\mathfrak{b}(u, v) = uv + vu = 0$. Similarly, $\mathfrak{b}(u, w) = \mathfrak{b}(v, w) = 0$.

(3) Let $\{u, v, w\}$ be a basis of $Alt(A, \sigma)^+$ with w = uv. By (2), $q_{\sigma}^+ \simeq \langle \alpha, \beta, -\alpha\beta \rangle_q$, where $\alpha = u^2 \in F$ and $\beta = v^2 \in F$. On the other hand since vu = -uv, $\{1, u, v, w\}$ is a quaternion basis of Q^+ . Thus, $N_{Q^+} \simeq \langle 1, -\alpha, -\beta, \alpha\beta \rangle_q$ by [6, (9.6)].

(4) Let $u \in \operatorname{Alt}(Q_1, \sigma_1)$ and $v \in \operatorname{Alt}(Q_2, \sigma_2)$ be two units and set $\alpha = u^2$, $\beta = v^2$ and w = uv. Then disc $\sigma_1 = \alpha F^{\times 2} \in F^{\times}/F^{\times 2}$ and disc $\sigma_2 = \beta F^{\times 2} \in F^{\times}/F^{\times 2}$. Also, since $w \in \operatorname{Alt}(A, \sigma)$ and $w^2 \in F$, by (3.9) we obtain $w \in \operatorname{Alt}(A, \sigma)^+$. So $\{u, v, w\}$ is a basis of $\operatorname{Alt}(A, \sigma)^+$ and $q_{\sigma}^+ \simeq [\alpha] \perp [\beta] \perp [\alpha\beta]$.

Proposition 3.14. ([13, (5.3)]) Let (A, σ) and (A', σ') be two decomposable biquaternion algebras with orthogonal involution over a field F. If $(A, \sigma) \simeq (A', \sigma')$, then there exists an isometry $f : (\operatorname{Alt}(A, \sigma), q_{\sigma}) \to (\operatorname{Alt}(A', \sigma'), q_{\sigma'})$ such that $f(\operatorname{Alt}(A, \sigma)^+) = \operatorname{Alt}(A', \sigma')^+$.

Proof. See the implication $(1) \Rightarrow (2)$ in [13, (5.3)] (note that the proof given there also works in characteristic 2).

Lemma 3.15. ([13]) Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F of characteristic different from 2. Then $(\operatorname{Alt}(A, \sigma), q_{\sigma}) \simeq (\operatorname{Alt}(A, \sigma)^+, q_{\sigma}^+) \perp (\operatorname{Alt}(A, \sigma)^-, q_{\sigma}^-).$

Proof. See [13, p. 597].

Remark 3.16. Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F of characteristic different from 2. By (3.15) every $x \in \text{Alt}(A, \sigma)$ can be written uniquely as $x = x^+ + x^-$, where $x^+ \in$ $\text{Alt}(A, \sigma)^+ = Q_0^+$ and $x^- \in \text{Alt}(A, \sigma)^- = Q_0^-$. In view of [9, (16.24)] and (3.11 (1)), the maps p_{σ} and q_{σ} can be defined explicitly as $p_{\sigma}(x^+ + x^-) = x^+ - x^$ and $q_{\sigma}(x^+ + x^-) = (x^+)^2 - (x^-)^2$. Using this fact, one can find a shorter proof of (3.8) in characteristic different from 2 (see also the decomposition of q_{σ}^+ and q_{σ}^- in the proof of (3.13 (3))). The next result complements [13, (5.3)] for biquaternion algebras:

Theorem 3.17. ([13]) Let (A, σ) and (A', σ') be two decomposable biquaternion algebras with orthogonal involution over a field F of characteristic different from 2. Let $Q^+ = Q(A, \sigma)^+$, $Q^- = Q(A, \sigma)^-$, $Q'^+ = Q(A', \sigma')^+$ and $Q'^- = Q(A', \sigma')^-$. The following statements are equivalent:

- (1) $(A, \sigma) \simeq (A', \sigma').$
- (2) $q_{\sigma} \simeq q_{\sigma'}$ and $q_{\sigma}^+ \simeq q_{\sigma'}^+$.
- (3) $A \simeq A'$ and $q_{\sigma}^+ \simeq q_{\sigma'}^+$.
- (4) $A \simeq A'$ and $Q^+ \simeq {Q'}^+$.

Furthermore, the above statements are equivalent to those obtained by changing "+" to "-".

Proof. The implication $(1) \Rightarrow (2)$ follows from (3.14). Since q_{σ} and $q_{\sigma'}$ are Albert forms of (A, σ) and (A', σ') respectively, $q_{\sigma} \simeq q_{\sigma'}$ implies that $A \simeq A'$ by [9, (16.3)]. This proves $(2) \Rightarrow (3)$. The implication $(3) \Rightarrow (4)$ follows from (3.13 (3)) and [14, Ch. III, (2.5)]. To prove $(4) \Rightarrow (1)$ observe that by (3.11 (1)) we have $C_A(Q^+) = Q^-$ and $C_{A'}(Q'^+) = Q'^-$. Thus, the isomorphisms $Q^+ \simeq_F Q'^+$ and $A \simeq_F A'$ imply that $Q^- \simeq_F Q'^-$. Since the restrictions of σ to Q^+ and $Q^$ and the restrictions of σ' to Q'^+ and Q'^- are all symplectic, we obtain

$$(A,\sigma) \simeq_F (Q^+,\sigma|_{Q^+}) \otimes_F (Q^-,\sigma|_{Q^-})$$
$$\simeq_F (Q'^+,\sigma'|_{Q'^+}) \otimes_F (Q'^-,\sigma'|_{Q'^-}) \simeq_F (A',\sigma').$$

To prove the last statement of the result, observe that by (3.14), (3.15) and the Witt's cancellation theorem [14, Ch. I, (4.2)], the statement (1) implies that $q_{\sigma} \simeq q_{\sigma'}$ and $q_{\sigma} \simeq q_{\sigma'}$. Thus, the implication (1) \Rightarrow (2) again follows from (3.14). The rest implications can be verified easily.

4 Relation with the Pfister invariant in characteristic two

Throughout this section, unless stated otherwise, F is a field of characteristic 2.

Definition 4.1. Let A be a finite-dimensional associative F-algebra. The minimum number r such that A can be generated as an F-algebra by r elements is called the *minimum rank* of A and is denoted by $r_F(A)$.

Theorem 4.2. ([15]) Let (A, σ) be a totally decomposable algebra with involution of orthogonal type over F. There exists a symmetric and self-centralizing subalgebra $S \subseteq A$ such that $x^2 \in F$ for every $x \in S$ and $\dim_F S = 2^n$, where $n = r_F(S)$. Furthermore, for every subalgebra S with these properties, we have $S = F + S_0$, where $S_0 = S \cap \text{Alt}(A, \sigma)$. In particular, $S \subseteq F + \text{Alt}(A, \sigma)$. Finally, the subalgebra S is uniquely determined up to isomorphism.

Proof. See [15, pp. 10-11].

Notation 4.3. The isomorphism class of S in (4.2) is denoted by $\Phi(A, \sigma)$.

The next result shows that for biquaternion algebras with orthogonal involution, the subalgebra $\Phi(A, \sigma)$ is unique as a set:

Corollary 4.4. Let (A, σ) be a decomposable biquaternion algebra with involution of orthogonal type over F. Then $\Phi(A, \sigma) = Q^+$.

Proof. Write $\Phi(A, \sigma) = F + S_0$, where $S_0 = \Phi(A, \sigma) \cap \operatorname{Alt}(A, \sigma)$. Since every element of $\Phi(A, \sigma)$ is square-central, using (3.9) we have $S_0 \subseteq \operatorname{Alt}(A, \sigma)^+$. Then $S_0 = \operatorname{Alt}(A, \sigma)^+$ by dimension count, hence $\Phi(A, \sigma) = F + \operatorname{Alt}(A, \sigma)^+ = Q^+$.

The following result is implicitly contained in [15]:

Lemma 4.5. Let (A, σ) be a totally decomposable algebra of degree 2^n with involution of orthogonal type over F. Suppose that there exists a set $\{u_1, \dots, u_n\} \subseteq \operatorname{Alt}(A, \sigma) \cap A^*$ consisting of pairwise commutative square-central elements such that $u_{i_1} \cdots u_{i_l} \in \operatorname{Alt}(A, \sigma)$ for every $1 \leq l \leq n$ and $1 \leq i_1 < \dots < i_l \leq n$. Then $\Phi(A, \sigma) \simeq F[u_1, \dots, u_n]$.

Proof. By [8, (2.2.3)], $S := F[u_1, \cdots, u_n]$ is self-centralizing. The other required properties of S, stated in (4.2), are easily verified.

Definition 4.6. The set $\{u_1, \dots, u_n\} \subseteq \text{Alt}(A, \sigma) \cap A^*$ in (4.5) is called a set of alternating generators of $\Phi(A, \sigma)$.

We recall the following definition from [4]:

Definition 4.7. Let $(A, \sigma) = (Q_1, \sigma_1) \otimes \cdots \otimes (Q_n, \sigma_n)$ be a totally decomposable algebra with orthogonal involution over F. Let $\alpha_i \in F^{\times}$, $i = 1, \cdots, n$, be a representative of the class disc $\sigma_i \in F^{\times}/F^{\times 2}$. The bilinear *n*-fold Pfister form $\langle\!\langle \alpha_1, \cdots, \alpha_n \rangle\!\rangle$ is called the *Pfister invariant* of (A, σ) and is denoted by $\mathfrak{Pf}(A, \sigma)$.

Note that by [4, (7.5)], $\mathfrak{Pf}(A, \sigma)$ is independent of the decomposition of (A, σ) .

Theorem 4.8. ([15]) Let (A, σ) be a totally decomposable algebra of degree 2^n with involution of orthogonal type over F. Then $\Phi(A, \sigma)$ can be considered as an underlying vector space of the bilinear form $\mathfrak{Pf}(A, \sigma)$ in such a way that $\mathfrak{Pf}(A, \sigma)(x, x) = x^2$ for every $x \in \Phi(A, \sigma)$. Also, $\mathfrak{Pf}(A, \sigma) \simeq \langle\!\langle \alpha_1, \cdots, \alpha_n \rangle\!\rangle$ if and only if there exists a set of alternating generators $\{u_1, \cdots, u_n\}$ of $\Phi(A, \sigma)$ such that $u_i^2 = \alpha_i \in F^{\times}$, $i = 1, \cdots, n$.

Proof. See [15, pp. 11-12].

Lemma 4.9. Let $\langle\!\langle \alpha, \beta \rangle\!\rangle$ be an isotropic bilinear Pfister form over F. If $\alpha\beta \neq 0$, then $\langle\!\langle \alpha, \beta \rangle\!\rangle \simeq \langle\!\langle \alpha, \beta + \alpha^{-1}\lambda^2 \rangle\!\rangle$ for every $\lambda \in F$.

Proof. Since $\langle\!\langle \alpha, \beta \rangle\!\rangle$ is isotropic, by [6, (4.14)] either $\alpha \in F^{\times 2}$ or $\beta \in D_F \langle 1, \alpha \rangle$. If $\alpha \in F^{\times 2}$, using [6, (4.15 (2))] and [6, (4.15 (1))] we obtain

$$\begin{split} \langle\!\langle \alpha, \beta \rangle\!\rangle &\simeq \langle\!\langle \beta + \alpha^{-1} \lambda^2, \alpha \beta \rangle\!\rangle \simeq \langle\!\langle \beta + \alpha^{-1} \lambda^2, \alpha \beta (\alpha^{-1} \lambda^2 - (\beta + \alpha^{-1} \lambda^2)) \rangle\!\rangle \\ &\simeq \langle\!\langle \beta + \alpha^{-1} \lambda^2, \alpha \beta^2 \rangle\!\rangle \simeq \langle\!\langle \alpha, \beta + \alpha^{-1} \lambda^2 \rangle\!\rangle. \end{split}$$

If $\beta \in D_F \langle 1, \alpha \rangle$, then there exist $b, c \in F$ such that $\beta = b^2 + c^2 \alpha$. Let $s = \alpha^{-1} \beta^{-1} \lambda \in F$. Using [6, (14.15 (1))] we obtain

$$\begin{split} \langle\!\langle \alpha, \beta \rangle\!\rangle &\simeq \langle\!\langle \alpha, \beta((1+cs\alpha)^2 - (bs)^2 \alpha) \rangle\!\rangle \simeq \langle\!\langle \alpha, \beta(1+c^2s^2\alpha^2 + b^2s^2\alpha) \rangle\!\rangle \\ &\simeq \langle\!\langle \alpha, \beta + s^2\alpha\beta(c^2\alpha + b^2) \rangle\!\rangle \simeq \langle\!\langle \alpha, \beta + s^2\alpha\beta^2 \rangle\!\rangle \simeq \langle\!\langle \alpha, \beta + \alpha^{-1}\lambda^2 \rangle\!\rangle. \quad \Box \end{split}$$

Lemma 4.10. Let (A, σ) be a decomposable biquaternion algebra with involution of orthogonal type over F and let $\alpha, \beta \in F^{\times}$. Then $\mathfrak{Pf}(A, \sigma) \simeq \langle\!\langle \alpha, \beta \rangle\!\rangle$ if and only if $q_{\sigma}^+ \simeq [\alpha] \perp [\beta] \perp [\alpha\beta]$.

Proof. If $\mathfrak{Pf}(A, \sigma) \simeq \langle\!\langle \alpha, \beta \rangle\!\rangle$, by (4.8) there exists a set of alternating generators $\{u, v\}$ of $\Phi(A, \sigma)$ such that $u^2 = \alpha$ and $v^2 = \beta$. By (4.4) and (3.13 (2)), $\{u, v, uv\}$ is an orthogonal basis of $\mathrm{Alt}(A, \sigma)^+$, hence $q_{\sigma}^+ \simeq [\alpha] \perp [\beta] \perp [\alpha\beta]$.

To prove the converse, choose a basis $\{x, y, z\}$ of $Alt(A, \sigma)^+$ with $x^2 = \alpha$, $y^2 = \beta$ and $z^2 = \alpha\beta$. Consider the element $xy \in \Phi(A, \sigma)$. By (4.4), $\Phi(A, \sigma) = F + Alt(A, \sigma)^+$. Thus, there exists $a, b, c, d \in F$ such that

$$xy = a + bx + cy + dz. \tag{5}$$

If a = 0 then $xy = bx + cy + dz \in Alt(A, \sigma)^+$, which implies that $\{x, y\}$ is a set of alternating generators of $\Phi(A, \sigma)$. As $x^2 = \alpha$ and $y^2 = \beta$ we obtain $\mathfrak{Pf}(A, \sigma) \simeq \langle\!\langle \alpha, \beta \rangle\!\rangle$ by (4.8).

So suppose that $a \neq 0$. By squaring both sides of (5), we obtain $\alpha\beta = a^2 + b^2\alpha + c^2\beta + d^2\alpha\beta$, which yields

$$1 + (ba^{-1})^2 \alpha + (ca^{-1})^2 \beta + ((d+1)a^{-1})^2 \alpha \beta = 0.$$

Therefore, the form $\langle\!\langle \alpha, \beta \rangle\!\rangle$ is isotropic. Set $y' = y + \alpha^{-1}ax \in \operatorname{Alt}(A, \sigma)^+$. By (5) we have $xy' = xy + a = bx + cy + dz \in \operatorname{Alt}(A, \sigma)^+$, hence $\{x, y'\}$ is a set of alternating generators of $\Phi(A, \sigma)$. As $x^2 = \alpha$ and ${y'}^2 = \beta + \alpha^{-1}a^2$, using (4.8) we obtain $\mathfrak{Pf}(A, \sigma) \simeq \langle\!\langle \alpha, \beta + \alpha^{-1}a^2 \rangle\!\rangle$. Thus, $\mathfrak{Pf}(A, \sigma) \simeq \langle\!\langle \alpha, \beta \rangle\!\rangle$ by (4.9). \Box

Using (4.10) and (3.13 (4)), we obtain the following relation between the Pfister invariant and the quadratic form q_{σ}^+ :

Proposition 4.11. Let (A, σ) and (A', σ') be two decomposable biquaternion algebras with orthogonal involution over F. Then $q_{\sigma}^+ \simeq q_{\sigma'}^+$ if and only if $\mathfrak{Pf}(A, \sigma) \simeq \mathfrak{Pf}(A', \sigma')$.

The following result is analogous to (3.17):

Theorem 4.12. Let (A, σ) and (A', σ') be two decomposable biquaternion algebras with involution of orthogonal type over F. The following statements are equivalent:

- (1) $(A, \sigma) \simeq (A', \sigma').$
- (2) $q_{\sigma} \simeq q_{\sigma'}$ and $q_{\sigma}^+ \simeq q_{\sigma'}^+$.
- (3) $A \simeq A'$ and $q_{\sigma}^+ \simeq q_{\sigma'}^+$.
- (4) $A \simeq A'$ and $\mathfrak{Pf}(A, \sigma) \simeq \mathfrak{Pf}(A', \sigma')$.

Proof. The implication $(1) \Rightarrow (2)$ follows from (3.14).

(2) \Rightarrow (3): Since q_{σ} and $q_{\sigma'}$ are Albert forms of (A, σ) and (A', σ') respectively, $q_{\sigma} \simeq q_{\sigma'}$ implies that $A \simeq A'$ by [9, (16.3)].

The implications $(3) \Rightarrow (4)$ and $(4) \Rightarrow (1)$ follow from (4.11) and [15, (6.5)] respectively.

Lemma 4.13. If $\langle\!\langle \alpha, \beta \rangle\!\rangle$ be an anisotropic bilinear Pfister form over F, then $\langle\!\langle \alpha, \beta \rangle\!\rangle \not\simeq \langle\!\langle \alpha + 1, \beta \rangle\!\rangle$.

Proof. As proved in [1, p. 16], two bilinear Pfister forms are isometric if and only if their pure subforms are isometric. Thus, it is enough to show that the pure subform of $\langle\!\langle \alpha, \beta \rangle\!\rangle$ does not represents $\alpha + 1$. If $\alpha + 1 \in D_F(\langle \alpha, \beta, \alpha\beta \rangle)$, then there exists $a, b, c \in F$ such that $a^2\alpha + b^2\beta + c^2\alpha\beta = \alpha + 1$. Thus, $1 + (a+1)^2\alpha + b^2\beta + c^2\alpha\beta = 0$, i.e., $\langle\!\langle \alpha, \beta \rangle\!\rangle$ is isotropic which contradicts the assumption.

Definition 4.14. For $\alpha \in F^{\times}$, define an involution $T_{\alpha}: M_2(F) \to M_2(F)$ via

$$T_{\alpha} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & c\alpha^{-1} \\ b\alpha & d \end{pmatrix}.$$

Note that T_{α} is an involution of orthogonal type on $M_2(F)$ and disc $T_{\alpha} = \alpha F^{\times 2} \in F^{\times}/F^{\times 2}$.

The following example shows that if char F = 2, the conditions $A \simeq_F A'$ and $Q^+ \simeq_F Q'^+$ don't necessarily imply that $(A, \sigma) \simeq (A', \sigma')$ (compare (3.17)):

Example 4.15. Let $\langle\!\langle \alpha, \beta \rangle\!\rangle$ be an anisotropic Pfister form over a field F of characteristic 2 and let $A = M_4(F)$. Consider the involutions $\sigma = T_\alpha \otimes T_\beta$ and $\sigma' = T_{\alpha+1} \otimes T_\beta$ on A. Then $\mathfrak{Pf}(A, \sigma) \simeq \langle\!\langle \alpha, \beta \rangle\!\rangle$ and $\mathfrak{Pf}(A, \sigma') \simeq \langle\!\langle \alpha + 1, \beta \rangle\!\rangle$, hence $\mathfrak{Pf}(A, \sigma) \not\simeq \mathfrak{Pf}(A, \sigma')$ by (4.13). Using (4.12), we obtain $(A, \sigma) \not\simeq (A, \sigma')$.

On the other hand by (4.8) there exists a set of alternating generators $\{u, v\}$ (resp. $\{u', v'\}$) of $\Phi(A, \sigma)$ (resp. $\Phi(A, \sigma')$) such that $u^2 = \alpha$ and $v^2 = \beta$ (resp. $u'^2 = \alpha + 1$ and $v'^2 = \beta$). Then $\Phi(A, \sigma) \simeq F[u, v]$ and $\Phi(A, \sigma') \simeq F[u', v']$. The linear map $f: F[u, v] \to F[u', v']$ induced by f(1) = 1, f(u) = u' + 1, f(v) = v' and f(uv) = (u'+1)v' is an *F*-algebra isomorphism. Thus, $\Phi(A, \sigma) \simeq \Phi(A, \sigma')$, which implies that $Q(A, \sigma)^+ \simeq Q(A, \sigma')^+$ by (4.4).

We conclude with some results on metabolic involutions. We recall that if char $F \neq 2$, then an involution on a central simple *F*-algebra is metabolic if and only if it is hyperbolic (see [5, (4.10)]).

Proposition 4.16. Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F of arbitrary characteristic. The following statements are equivalent:

- (1) (A, σ) is metabolic.
- (2) Q^+ or Q^- is not a division ring.
- (3) $1 \in D_F(q_{\sigma}^+)$ or $-1 \in D_F(q_{\sigma}^-)$.
- (4) q_{σ}^+ or q_{σ}^- is isotropic.

Proof. If char $F \neq 2$, by (3.11 (1)) we have $(A, \sigma) \simeq (Q^+, \sigma|_{Q^+}) \otimes (Q^-, \sigma|_{Q^-})$, where $\sigma|_{Q^+}$ and $\sigma|_{Q^-}$ are the canonical involutions of Q^+ and Q^- respectively. Thus, the equivalence (1) \Leftrightarrow (2) follows from [7, (3.1)]. The equivalences (2) \Leftrightarrow (3) and (2) \Leftrightarrow (4) both follow from (3.13 (3)) and [14, Ch. III, (2.7)].

Now, suppose that char F = 2. Then the equivalence $(1) \Leftrightarrow (2)$ follows from [15, (6.6)].

(1) \Rightarrow (3): Let *e* be a metabolic idempotent with respect to σ and let $x = e + \sigma(e)$. By (4.17), we have $x^2 = 1$. Since $x \in \text{Alt}(A, \sigma)$, (3.9) implies that $x \in \text{Alt}(A, \sigma)^+$, hence $q_{\sigma}^+(x) = 1$.

(3) \Rightarrow (4): Suppose that $q_{\sigma}^+(u) = 1$ for some $u \in Alt(A, \sigma)^+$. By (3.13 (1)) and (3.13 (2)), $\{u\}$ extends to an orthogonal basis $\{u, v, w\}$ of $Alt(A, \sigma)^+$ with $\begin{array}{l} w = uv. \text{ Since } Q^+ \text{ is commutative (3.11 (2)), we obtain } q_{\sigma}^+(v+w) = (v+w)^2 = \\ v^2 + (uv)^2 = 0, \text{ i.e., } q_{\sigma}^+ \text{ is isotropic.} \\ (4) \Rightarrow (2): \text{ If } q_{\sigma}^+ \text{ is isotropic, then there exists a nonzero } x \in \text{Alt}(A, \sigma)^+ \subseteq \\ Q^+ \text{ such that } x^2 = 0. \text{ Thus, } Q^+ \text{ is not a division ring.} \end{array}$

Lemma 4.17. Let (A, σ) be a central simple algebra with orthogonal involution over F and let $e \in A$ be a metabolic idempotent. Then $(e + \sigma(e))^2 = 1$.

Proof. As $(1-e)(1-\sigma(e)) = 0$, we obtain $1-\sigma(e) - e + e\sigma(e) = 0$, which implies that $e + \sigma(e) = 1 + e\sigma(e)$. Thus,

$$(e + \sigma(e))^2 = (1 + e\sigma(e))^2 = 1 + e\sigma(e)e\sigma(e) = 1.$$

Corollary 4.18. Let (A, σ) be a central simple algebra with involution over a field F of arbitrary characteristic. If σ is metabolic, then disc σ is trivial.

Proof. The result follows from (4.17) and [3, (2.3)].

Proposition 4.19. Let (A, σ) be a biquaternion algebra with involution of orthogonal type over a field F of arbitrary characteristic. Then σ is metabolic if and only if there exists $u \in Alt(A, \sigma)$ such that $u^2 = 1$.

Proof. If σ is metabolic, then by (4.18), disc σ is trivial. Thus, σ is decomposable and the result follows from (4.16). Conversely, suppose that there exists $u \in$ Alt (A, σ) such that $u^2 = 1$. Then disc $\sigma = \operatorname{Nrd}_A(u)F^{\times 2}$ is trivial, so (A, σ) is decomposable by [11, (3.7)]. Since $u^2 = 1 \in F$ and $u \in Alt(A, \sigma)$, by (3.9) we have $u \in Alt(A, \sigma)^+ \cup Alt(A, \sigma)^-$. Therefore, either $u \in Alt(A, \sigma)^+$ (i.e., $q_{\sigma}^+(u) = 1$) or $u \in Alt(A, \sigma)^-$ (i.e., $q_{\sigma}^-(u) = -1$). By (4.16), σ is metabolic.

References

- [1] J. Arason, R. Baeza, Relations in I^n and $I^n W_q$ in characteristic 2. J. Algebra 314 (2007), no. 2, 895–911.
- [2] E. Artin, Geometric algebra, Reprint of the 1957 original. Wiley Classics Library. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1988.
- [3] E. Bayer-Fluckiger, D. B. Shapiro, J.-P. Tignol, Hyperbolic involutions. Math. Z. 214 (1993), no. 3, 461–476.
- [4] A. Dolphin, Orthogonal Pfister involutions in characteristic two. J. Pure Appl. Algebra 218 (2014), no. 10, 1900–1915.
- [5] A. Dolphin, Metabolic involutions. J. Algebra **336** (2011), 286–300.
- [6] R. Elman, N. Karpenko, A. Merkurjev, The algebraic and geometric theory of quadratic forms. American Mathematical Society Colloquium Publications, 56. American Mathematical Society, Providence, RI, 2008.

- [7] D. E. Haile, P. J. Morandi, Hyperbolicity of algebras with involution and connections with Clifford algebras. *Comm. Algebra* 29 (2001), no. 12, 5733–5753.
- [8] N. Jacobson, Finite-dimensional division algebras over fields. Springer-Verlag, Berlin, 1996.
- [9] M.-A. Knus, A. S. Merkurjev, M. Rost, J.-P. Tignol, *The Book of In*volutions. American Mathematical Society Colloquium Publications, 44. American Mathematical Society, Providence, RI, 1998.
- [10] M.-A. Knus, R. Parimala, R. Sridharan, A classification of rank 6 quadratic spaces via Pfaffians. J. Reine Angew. Math. 398 (1989), 187– 218.
- [11] M.-A. Knus, R. Parimala, R. Sridharan, Involutions on rank 16 central simple algebras. J. Indian Math. Soc. (N.S.) 57 (1991), no. 1-4, 143–151.
- [12] M. A.- Knus, R. Parimala, R. Sridharan, On the discriminant of an involution. Bull. Soc. Math. Belg. 43 (1991) 89-98.
- [13] M.-A. Knus, R. Parimala, R. Sridharan, Pfaffians, central simple algebras and similitudes. *Math. Z.* 206 (1991), no. 4, 589–604.
- [14] T. Y. Lam, Introduction to quadratic forms over fields. Graduate Studies in Mathematics, 67. American Mathematical Society, Providence, RI, 2005.
- [15] M. G. Mahmoudi, A.-H. Nokhodkar, On totally decomposable algebras with involution in characteristic two. LAG preprint server, http://www.math.uni-bielefeld.de/LAG/man/549.html.

A.-H. Nokhodkar, anokhodkar@yahoo.com

Department of Pure Mathematics, Faculty of Science, University of Kashan, P. O. Box 87317-51167, Kashan, Iran.