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1. Introduction

To every symmetric or alternating bilinear form, and hence to every quadratic
form when the base field is not of characteristic two, we can associate a central
simple algebra with involution. In this way, the theory of quadratic forms is em-
bedded into the larger theory of algebras with involution, and through the use of
this correspondence, quadratic form theory has provided inspiration for the study
of algebras with involution (see [12]). Pfister forms are a central concept in the
modern algebraic theory of quadratic forms. It is therefore natural to look for class
of central simple algebras with involution which extends the notion of a Pfister
form. This question was first raised in [2]. Involutions adjoint to Pfister forms are
tensor products of quaternion algebras with involution. Thus, tensor products of
quaternion algebras with involution are a natural candidate.

In characteristic two, quadratic forms and symmetric bilinear forms are not
equivalent objects. The relation between bilinear Pfister forms and totally decom-
posable involutions in characteristic two was studied in [7]. In order to have an
object defined on a central simple algebra that corresponds to a quadratic form
after splitting, the notion of a quadratic pair was introduced in [12, §5]. In particu-
lar, one may use quadratic pairs to give an intrinsic definition of twisted orthogonal
groups in a manner that includes fields of characteristic two (see [12, §23.B]).

Algebras with quadratic pair associated to quadratic Pfister forms are tensor
products of quaternion algebras with involution and a quaternion algebra with
quadratic pair. One may ask whether all such totally decomposable quadratic
pairs on a split central simple algebra are adjoint to a quadratic Pfister form. In
characteristic different from two, where quadratic pairs are equivalent to orthogonal
involutions, this is known to hold by the main result of [3], which says that in this
case a totally decomposable orthogonal involution on a split algebra is adjoint to a
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Pfister form. In this article we prove the corresponding result for quadratic pairs
over fields of characteristic two.

Our approach is particular to fields of characteristic two. It allows us to capture
more information on the resulting quadratic Pfister form (see Corollary 7.2), in a
way that is not possible in general over fields of characteristic different from two (see
Example 7.4). This approach uses the unusual properties of totally decomposable
involutions in characteristic two found in [7]. In particular, we use that the isotropy
behaviour of a totally decomposable orthogonal involution can be captured in the
isotropy behaviour of an associated bilinear Pfister form (see Proposition 3.4).

The method used in [3] in characteristic different from two is based on a ramifica-
tion exact sequence for Witt groups of quadratic forms over function fields of conics
and the excellence property of these function fields. The latter result is known to
extend to the case of arbitrary characteristic, but the former is not yet available in
characteristic two in a suitable form. We intend to give a characteristic free proof
in a future article. Our solution to the missing case of characteristic two involves
several basic properties of quadratic pairs, which we did not find explicitly in the
literature. Following [12, §5], we present such statements without assumptions on
the characteristic, for ease of future reference.

2. Quadratic forms over fields

In this section we recall the terminology and results we use from quadratic form
theory. We refer to [9, Chapters 1 and 2] as a general reference on symmetric
bilinear and quadratic forms and for any basic notation and concepts not defined
here. For two objects α and β in a certain category, we write α ≃ β to indicate
that they are isomorphic, i.e. that there exists an isomorphism between them. This
applies in particular to algebras with involution or with quadratic pair, but also
to quadratic and bilinear forms, where the corresponding isomorphisms are called
isometries. Throughout, let F be a field. Let char(F ) denote the characteristic of
F and let F× denote the multiplicative group of F .

A bilinear form over F is a pair (V, b) where V is a finite-dimensional F -vector
space and b is a F -bilinear map b : V × V → F . The radical of (V, b) is the set
rad(V, b) = {x ∈ V | b(x, y) = 0 for all y ∈ V }. We say that (V, b) is degenerate
if rad(V, b) 6= {0}, and nondegenerate otherwise. Let ϕ = (V, b) be a bilinear form
over F . We say that ϕ is symmetric if b(x, y) = b(y, x) for all x, y ∈ V . We call
ϕ alternating if b(x, x) = 0 for all x ∈ V . The form ϕ is said to be isotropic if
there exists an x ∈ V \{0} such that b(x, x) = 0, and anisotropic otherwise. We
call a subspace W ⊆ V totally isotropic (with respect to b) if b|W×W = 0. If ϕ
is nondegenerate and there exists a totally isotropic subspace W ⊆ V such that
dimF (W ) = 1

2dimF (V ), then we call ϕ metabolic.
For a1, . . . , an ∈ F× the symmetric F -bilinear map b : Fn × Fn → F given by

(x, y) 7→
∑n

i=1 aixiyi yields a symmetric bilinear form (Fn, b) over F , which we
denote by 〈a1, . . . , an〉. For a positive integer m, by an m-fold bilinear Pfister form
over F we mean a nondegenerate symmetric bilinear form over F that is isometric
to 〈1, a1〉 ⊗ . . .⊗ 〈1, am〉 for some a1, . . . , am ∈ F×. We call 〈1〉 the 0-fold bilinear
Pfister form. By [9, (6.3)], a bilinear Pfister form is either anisotropic or metabolic.

By a quadratic form over F we mean a pair (V, q) of a finite-dimensional F -vector
space V and a map q : V → F such that, firstly, q(λx) = λ2q(x) holds for all x ∈ V
and λ ∈ F , and secondly, the map bq : V ×V → F , (x, y) 7−→ q(x+y)−q(x)−q(y) is
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F -bilinear. Then (V, bq) is a symmetric bilinear form over F , called the polar form of
(V, q). If bq is nondegenerate, we say that (V, q) is nonsingular, otherwise we say that
(V, q) is singular. If bq is the zero map, then we say (V, q) is totally singular. By the
quadratic radical of (V, q) we mean the set rad(V, q) = {x ∈ rad(V, bq) | q(x) = 0}.
We say that (V, q) is regular if rad(V, q) = {0}. For a symmetric bilinear form (V, b)
over F , the map q : V → F given by qb(x) = b(x, x) makes (V, qb) a quadratic form
over F . We call (V, qb) the quadratic form associated to (V, b). If char(F ) = 2 then
this quadratic form is totally singular.

Let ρ = (V, q) and ρ′ = (V ′, q′) be quadratic forms over F . By an isometry of
quadratic forms ρ → ρ′ we mean an isomorphism of F -vector spaces f : V → V ′

such that q(x) = q′(f(x)) for all x ∈ V . We say ρ is isotropic if q(x) = 0 for some
x ∈ V \{0}, and anisotropic otherwise. By a totally isotropic subspace of ρ we mean
an F -subspaceW of V such that q|W = 0. We call the maximum of the dimensions
of all totally isotropic subspaces of ρ the Witt index of ρ, denoted iW (ρ). Assume ρ
is nonsingular. Then iW (ρ) 6 1

2dim(ρ) (see [9, (7.28)]) and if iW (ρ) = 1
2dim(ρ) we

say that ρ is hyperbolic. We denote the anisotropic part of ρ by ρan (see [9, (8.5)]).
We say that the quadratic forms ρ1 and ρ2 over F are similar if there exists an

element c ∈ F× such that ρ1 ≃ cρ2. Recall the concept of a tensor product of a
symmetric or alternating bilinear form and a quadratic form (see [9, p.51]). For a
quadratic form ρ over F , we say that ϕ factors ρ if there exists a quadratic form ρ′

over F such that ρ ≃ ϕ ⊗ ρ′. Similarly, we say a quadratic form ρ′ over F factors
ρ if there exists a symmetric bilinear form ϕ over F such that ρ ≃ ϕ⊗ ρ′.

For a positive integer m, by an m-fold (quadratic) Pfister form over F we mean
a quadratic form that is isometric to the tensor product of a 2-dimensional nonsin-
gular quadratic form representing 1 and an (m− 1)-fold bilinear Pfister form over
F . Pfister forms are either anisotropic or hyperbolic (see [9, (9.10)]).

Let ρ be a regular quadratic form over F . If dim(ρ) > 3 or if ρ is anisotropic and
dim(ρ) = 2, then we call the function field of the projective quadric over F given
by ρ the function field of ρ and denote it by F (ρ). In the remaining cases we set
F (ρ) = F . This agrees with the definition in [9, §22]. For an anisotropic symmetric
bilinear form ϕ, the quadratic form ρ associated to ϕ is regular. We call F (ρ) the
function field of ϕ and we denote it by F (ϕ). Let K/F be a field extension. Then
we write (V, q)K = (V ⊗F K, qK) where qK is the unique quadratic map such that
qK(v ⊗ k) = k2q(v) for all v ∈ V and k ∈ K.

Proposition 2.1. Let ρ be a nonsingular quadratic form and let ϕ be an anisotropic
bilinear Pfister form over F . If ρF (ϕ) is hyperbolic then either ρ is hyperbolic or ϕ
factors ρan.

Proof. See [10, (5.2)]. �

3. Algebras with involution

We refer to [14] as a general reference on finite-dimensional algebras over fields,
and for central simple algebras in particular, and to [12] for involutions. Let A
be an (associative) F -algebra. We denote the centre of A by Z(A). For a field
extension K/F , the K-algebra A ⊗F K is denoted by AK . An element e ∈ A is
called an idempotent if e2 = e. An F -involution on A is an F -linear map σ : A→ A
such that σ(xy) = σ(y)σ(x) for all x, y ∈ A and σ2 = idA.
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Assume now that A is finite-dimensional and simple (i.e. it has no nontrivial two-
sided ideals). ByWedderburn’s Theorem (see [12, (1.1)]), A ≃ EndD(V ) for a finite-
dimensional F -division algebra D and a finite-dimensional right D-vector space V .
Furthermore, the centre of A is a field and dimZ(A)(A) is a square number, whose
positive square root is called the degree of A and is denoted deg(A). The degree of
D is called the index of A and denoted ind(A). We call A split if ind(A) = 1, that
is A ≃ EndF (V ) for some finite-dimensional right F -vector space V . If Z(A) = F ,
then we call the F -algebra A central simple and we call a field extension K/F such
that AK is split a splitting field of A. If A is a central simple F -algebra then we
denote TrdA : A−→F the reduced trace map and NrdA : A−→F the reduced norm
map, as defined in [12, (1.6)].

By an F -algebra with involution we mean a pair (A, σ) of a finite-dimensional
central simple F -algebra A and an F -involution σ on A (note that we only consider
involutions that are linear with respect to the centre of A, that is involutions of the
first kind, here). We use the following notation: Sym(A, σ) = {a ∈ A | σ(a) = a},
Skew(A, σ) = {a ∈ A | σ(a) = −a} and Alt(A, σ) = {a− σ(a) | a ∈ A}. These are
F -linear subspaces of A.

Let (A, σ) and (B, τ) be F -algebras with involution. By an isomorphism of F -
algebras with involution Φ : (A, σ) → (B, τ) we mean an F -algebra isomorphism Φ :
A→ B satisfying Φ◦σ = τ ◦Φ. On the F -algebra A⊗FB we obtain an F -involution
σ ⊗ τ , whereby (A⊗F B, σ ⊗ τ) is an F -algebra with involution, which we denote
by (A, σ)⊗ (B, τ). For a field extension K/F we write (A, σ)K = (A⊗F K,σ⊗ id).

We call (A, σ) isotropic if there exists a ∈ A\{0} such that σ(a)a = 0, and an-
isotropic otherwise. An idempotent e ∈ A is called metabolic with respect to σ if
σ(e)e = 0 and dimF eA = 1

2dimFA. We call (A, σ) metabolic if A contains a meta-
bolic idempotent element with respect to σ. For more information on metabolic
involutions, see [6].

To every nondegenerate symmetric or alternating bilinear form ϕ = (V, b) over F
we can associate an algebra with involution in the following way. Let A = EndF (V ).
Then there is a unique involution σ on A such that

b(x, f(y)) = b(σ(f)(x), y) for all x, y ∈ V and all f ∈ A.

We denote this F -involution on A by adb. We call (A, adb) the F -algebra with
involution adjoint to ϕ and we denote it by Ad(ϕ). For every split F -algebra with
involution (A, σ), there exists a nondegenerate symmetric or alternating bilinear
form ψ over F such that (A, σ) ≃ Ad(ψ) (see [12, (2.1)]). The following is well-
known, but we include a proof for completeness.

Proposition 3.1. Let ϕ and ψ be nondegenerate symmetric bilinear forms over F .
Then Ad(ϕ⊗ ψ) ≃ Ad(ϕ)⊗Ad(ψ).

Proof. Let ϕ = (V, b) and ψ = (W, b′). Let f ∈ EndF (V ) and g ∈ EndF (W ). Then
for all u, v ∈ V , w, t ∈ W we have

(b ⊗ b′)(f ⊗ g(u⊗ w), (v ⊗ t)) = (b ⊗ b′)((f(u)⊗ g(w)), (v ⊗ t))

= b(f(u), v) · b′(g(w), t)

= b(u, adb(f)(v)) · b
′(w, adb′(g)(t))

= (b ⊗ b′)((u⊗ w), (adb(f)(v)⊗ adb′(g)(t))) .

Therefore, by bilinearity of b ⊗ b′, we have that adb⊗b′(f ⊗ g) = adb(f) ⊗ adb(g).
Using this, it follows from the linearity of adb⊗b′ that the natural isomorphism of
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F -algebras Φ : EndF (V )⊗F EndF (W ) → EndF (V ⊗F W ) is an isomorphism of the
F -algebras with involution in the statement. �

We distinguish two types of F -algebras with involution. An F -algebra with
involution is said to be symplectic if it becomes adjoint to an alternating bilinear
form over some splitting field of the associated F -algebra, and orthogonal otherwise.
In characteristic different from two, these types are distinguished by the dimensions
of the spaces of symmetric and alternating elements. However in characteristic two
these dimensions do not depend on the type (see [12, (2.6)]).

An F -quaternion algebra is a central simple F -algebra of degree 2. Let Q be an
F -quaternion algebra. By [12, (2.21)], the map Q → Q, x 7→ TrdQ(x) − x is the
unique symplectic involution on Q; it is called the canonical involution of Q. Any
F -quaternion algebra has a basis (1, u, v, w) such that

u2 = u+ a, v2 = b and w = uv = v − vu ,

for some a ∈ F with −4a 6= 1 and b ∈ F× (see [1, Chap. IX, Thm. 26]); such a
basis is called an F -quaternion basis. Conversely, for a ∈ F with −4a 6= 1 and
b ∈ F× the above relations uniquely determine an F -quaternion algebra (up to
F -isomorphism), which we denote by [a, b). By the above, up to isomorphism any
F -quaternion algebra is of this form. The following result can be recovered from
[8, p.104, Thm. 4], but we include a direct argument.

Lemma 3.2. Let Q be an F -quaternion algebra and v ∈ Q\F be such that v2 ∈ F×.
There exist an element and u ∈ Q such that uv = v(1−u) and u2−u = a for some
a ∈ F with −4a 6= 1. That is, (1, u, v, uv) is an F -quaternion basis of Q.

Proof. If char(F ) 6= 2 then it is well-known that there exists an invertible element
x ∈ Q such that xv + vx = 0 and we set u = x + 1

2 . Assume that char(F ) = 2.
Consider the F -linear map Q → Q, x 7→ xv + vx. Its kernel and its image are
equal to F [v]. Hence uv + vu = v for some u ∈ Q, and it follows that u2 + u ∈
F [v] ∩ F [u] = F . �

With an F -quaternion basis (1, u, v, w) of Q, we define F -involutions γ, σ and τ
on Q via their action on u and v as follows. We let

γ : u 7→ 1− u, v 7→ −v

σ : u 7→ 1− u, v 7→ v

τ : u 7→ u, v 7→ −v .

Note that γ is the canonical involution on Q. Further, if char(F ) = 2, then γ = σ
and hence σ is symplectic. Otherwise σ is orthogonal. We use the notation

[a ·|· b) = (Q, γ), [a ·| b) = (Q, σ), [a |· b) = (Q, τ) .

Proposition 3.3. Let (Q, σ) be an F -quaternion algebra with orthogonal involu-
tion. Then there exists a ∈ F with −4a 6= 1 and b ∈ F× such that (Q, σ) ≃ [a |· b).

Proof. Let γ be the canonical involution of Q. By [12, (2.21)], we have σ = Int(v)◦γ
for some invertible element v ∈ Skew(Q, γ)\F . Then v2 = −γ(v)v ∈ F× and we set
b = v2. By Lemma 3.2, there exists an element u ∈ Q such that uv = v(1− u) and
u2 − u = a for some a ∈ F with −4a 6= 1. Hence (1, u, v, uv) is an F -quaternion
basis of Q and we have that γ(u) = 1 − u and γ(v) = −v. Hence σ(u) = u and
σ(v) = −v, and further (Q, σ) ≃ [a |· b). �
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We call an F -algebra with involution totally decomposable if it is isomorphic to
a tensor product of F -quaternion algebras with involution. Note that by Proposi-
tion 3.1, the F -algebra with involution adjoint to a bilinear Pfister form over F is
totally decomposable.

Let (A, σ) be an F -algebra with orthogonal involution. By [12, (7.1)], for any F -
algebra with orthogonal involution (A, σ) with deg(A) even and any a, b ∈ Alt(A, σ)
we have NrdA(a)F

×2 = NrdA(b)F
×2. Therefore, as in [12, §7], we may make the

following definition. The determinant of (A, σ), denoted ∆(A, σ), is the square class
of the reduced norm of an arbitrary alternating unit, that is

∆(A, σ) = NrdA(a) · F
×2 in F×/F×2 for any a ∈ Alt(A, σ) ∩ A×.

For the rest of this section, we assume that char(F ) = 2. Let (A, σ) be a totally
decomposable F -algebra with orthogonal involution. That is

(A, σ) ≃

n⊗

i=1

(Qi, σi)

where (Qi, σi) are F -algebras with involution for i = 1, . . . , n. Note that we
must have that (Qi, σi) is orthogonal for all i = 1, . . . , n by [12, (2.23)]. Let
di = ∆(Qi, σi). Then the bilinear Pfister form π = 〈〈d1, . . . , dn〉〉 over F does not
depend on the choice of the F -quaternion algebras with involution (Qi, σi) in the
decomposition of (A, σ) by [7, (7.3)]. We call this bilinear Pfister form the Pfister
invariant of (A, σ) and denote it by Pf(A, σ). Note that by [7, (7.3)], for any field
extension K/F we have that Pf((A, σ)K) = (Pf(A, σ))K .

Proposition 3.4. Assume char(F ) = 2. Let (A, σ) be a totally decomposable F–
algebra with orthogonal involution. Then (A, σ) is anisotropic (resp. metabolic) if
and only if Pf(A, σ) is anisotropic (resp. metabolic).

Proof. See [7, (7.5)]. �

4. Algebras with quadratic pair

We now recall the definition of and basic results we use on quadratic pairs. Let
(A, σ) be an F -algebra with involution. We call an F -linear map f : Sym(A, σ) → F
a semi-trace on (A, σ) if it satisfies f(x + σ(x)) = TrdA(x) for all x ∈ A. By [4,
(4.3)], if char(F ) 6= 2, then 1

2TrdA|Sym(A,σ) is the unique semi-trace on (A, σ). On
the other hand, if char(F ) = 2, then the existence of a semi-trace on (A, σ) implies
that TrdA(Sym(A, σ)) = {0} and hence by [12, (2.6)] that (A, σ) is symplectic.

Given an element ℓ ∈ A with ℓ+ σ(ℓ) = 1, the map f : Sym(A, σ) → F given by
x 7→ TrdA(ℓx) is a semi-trace on (A, σ), and conversely every semi-trace on (A, σ)
is of this form by [12, (5.7)] (although the case where char(F ) 6= 2 and (A, σ) is
symplectic is excluded there, the same proof applies). In this case, we say that
the semi-trace f on (A, σ) is given by ℓ. For another element ℓ′ ∈ A such that
ℓ′ + σ(ℓ′) = 1, we have that ℓ and ℓ′ give the same semi-trace on (A, σ) if and only
if ℓ− ℓ′ ∈ Alt(A, σ) (see [12, (5.7)]).

An F -algebra with quadratic pair is a triple (A, σ, f) where (A, σ) is an F -algebra
with involution, which is assumed to be orthogonal if char(F ) 6= 2 and symplectic
if char(F ) = 2, and where f is a semi-trace on (A, σ). In char(F ) 6= 2 the concept
of an algebra with quadratic pair is equivalent to the concept of an algebra with
orthogonal involution, as then the semi-trace given by 1

2 is the unique semi-trace
on (A, σ).
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Given two F -algebras with quadratic pair (A, σ, f) and (B, τ, g), by an iso-
morphism of F -algebras with quadratic pair Φ : (A, σ, f) → (B, τ, g) we mean
an isomorphism of the underlying F -algebras with involution satisfying f = g ◦ Φ.

Let (A, σ, f) be an F -algebra with quadratic pair. We call (A, σ, f) isotropic
if there exists an element s ∈ Sym(A, σ)\{0} such that s2 = 0 and f(s) = 0, and
anisotropic otherwise. In particular, if (A, σ, f) is isotropic, then A has zero divisors.
We call an idempotent e ∈ A hyperbolic with respect to σ and f if σ(e) = 1− e and
f(eA ∩ Sym(A, σ)) = {0}. We say that the F -algebra with quadratic pair (A, σ, f)
is hyperbolic if A contains a hyperbolic idempotent with respect to σ and f .

We describe, following [12, §5], how a nonsingular quadratic form gives rise to
an algebra with quadratic pair. Let ρ = (V, q) be a nonsingular quadratic form over
F with polar form (V, bq). By declaring

(v1 ⊗ w1) ∗ (v2 ⊗ w2) = bq(w1, v2) · (v1 ⊗ w2) for v1, v2, w1, w2 ∈ V

a product ∗ is defined on the tensor product V ⊗F V making it into an F -algebra.
By declaring σ(v ⊗ w) = w ⊗ v for v, w ∈ V we obtain an F -involution σ on the
F -algebra V ⊗F V . Then by [12, (5.1)], the F -linear map Φ : V ⊗F V → EndF (V )
determined by

Φ(u⊗ v)(w) = bq(v, w)u for u, v, w ∈ V

yields an isomorphism of F -algebras with involution Ad(V, bq)−→(V ⊗F V, σ). Ac-
cording to [12, (5.11)] there is a unique semi-trace fq : Sym(Ad(V, bq)) → F such
that fq(Φ(v ⊗ v)) = q(v) for v ∈ V, which yields an F -algebra with quadratic pair

Ad(ρ) = (EndF (V ), adbq , fq) ,

called the adjoint F -algebra with quadratic pair of ρ. We say that an F -algebra with
quadratic pair (A, σ, f) is adjoint to ρ if (A, σ, f) ≃ Ad(ρ). By [12, (5.11)], for any
split F -algebra with quadratic pair (A, σ, f), there exists a nonsingular quadratic
form ρ over F such that (A, σ, f) ≃ Ad(ρ), and for two nonsingular quadratic forms
ρ and ρ′ over F , we have that Ad(ρ) ≃ Ad(ρ′) if and only if ρ and ρ′ are similar.

Proposition 4.1. Let ρ be a nonsingular quadratic form over F . Then ρ is
isotropic (resp. hyperbolic) if and only if Ad(ρ) is isotropic (resp. hyperbolic).

Proof. The statement on isotropy follows from [12, (6.3) and (6.6)]. See [12, (6.13)]
for the statement on hyperbolicity. �

For any field extensionK/F we will use the notation (A, σ, f)K for theK-algebra
with quadratic pair (AK , σK , fK) where fK : Sym(AK , σK)−→K is the canonical
extension of f to a K-linear map.

5. Tensor products of involutions and quadratic pairs

In this section we consider the tensor product of an algebra with involution with
an algebra with quadratic pair. This corresponds to notion of the tensor product of
a symmetric bilinear form and a quadratic form. We show that this tensor product
is associative with the tensor product of algebras with involution. This property
underlies our definition of a totally decomposable quadratic pair in the following
section.

Proposition 5.1. Let (A, σ, f) be an F -algebra with quadratic pair and (B, τ) an
F -algebra with involution. Then there is a unique semi-trace g on (B, τ) ⊗ (A, σ)
such that g(s1 ⊗ s2) = TrdB(s1) · f(s2) for all s1 ∈ Sym(B, τ) and s2 ∈ Sym(A, σ).
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Moreover, if the semi-trace f on (A, σ) is given by ℓ, then g is the semi-trace on
(B, τ)⊗ (A, σ) given by 1⊗ ℓ.

Proof. If char(F ) 6= 2 then this result is trivial. Assume that char(F ) = 2. Note
that as 1 ⊗ ℓ + (τ ⊗ σ)(1 ⊗ ℓ) = 1 ⊗ 1, the element 1 ⊗ ℓ gives a semi-trace on
(B ⊗F A, τ ⊗ σ) by [12, (5.7)]. For all s1 ∈ Sym(B, τ) and s2 ∈ Sym(A, σ) we have
that

TrdB⊗FA((1 ⊗ ℓ)(s1 ⊗ s2)) = TrdB(s1) · TrdA(ℓ · s2) = TrdB(s1) · f(s2) .

For the uniqueness statement, see [12, (5.18)]. �

Let (A, σ, f) be an F -algebra with quadratic pair and let (B, τ) be an F -algebra
with involution, which is assumed to be orthogonal if char(F ) 6= 2. Then by [12,
(2.23)], (B, τ)⊗ (A, σ) is orthogonal if char(F ) 6= 2 and symplectic if char(F ) = 2.
We denote by (B, τ)⊗(A, σ, f) the F -algebra with quadratic pair (B⊗F A, τ⊗σ, g),
where g is the semi-trace g on (B, τ) ⊗ (A, σ) characterised in Proposition 5.1.

Proposition 5.2. Let ϕ be a symmetric bilinear form over F and ρ a nonsingular
quadratic form over F . Then Ad(ϕ⊗ ρ) ≃ Ad(ϕ)⊗Ad(ρ).

Proof. See [12, (5.19)]. �

Proposition 5.3. Let (B, τ) and (C, γ) be F -algebras with involution that are
assumed to be orthogonal if char(F ) 6= 2 and let (A, σ, f) be an F -algebra with
quadratic pair. Then

((B, τ) ⊗ (C, γ))⊗ (A, σ, f) ≃ (B, τ) ⊗ ((C, γ)⊗ (A, σ, f)) .

Proof. Let Φ : (B ⊗F C) ⊗F A → B ⊗F (C ⊗F A) be the natural F -algebra iso-
morphism. Clearly Φ is compatible with the involutions in the statement. By
[12, (5.7)], f is given by some ℓ ∈ A with ℓ + σ(ℓ) = 1. It follows from Proposi-
tion 5.1 that the semi-trace associated with ((B, τ)⊗ (C, γ))⊗ (A, σ, f) is given by
(1⊗1)⊗ℓ and the semi-trace associated with (B, τ)⊗((C, γ)⊗(A, σ, f)) is given by
1⊗ (1⊗ ℓ). It then easily follows that Φ is an isomorphism between the F -algebras
with quadratic pair. �

By Proposition 5.3, the tensor product of two algebras with involution on the one
hand, and the tensor product of an algebra with involution with an algebra with
quadratic pair on the other hand, are mutually associative. That is, for F -algebras
with involution (A, σ) and (B, τ) and an F -algebra with quadratic pair (C, γ, f),
the expression (A, σ)⊗ (B, τ) ⊗ (C, γ, f) is unambiguous.

Proposition 5.4. Assume char(F ) = 2. Let (B, τ) and (C, σ) be F -algebras with
symplectic involution. Then there exists a unique semi-trace h on (B, τ) ⊗ (C, σ)
such that h(s1 ⊗ s2) = 0 for all s1 ∈ Sym(B, τ) and s2 ∈ Sym(C, σ). Moreover, for
any semi-trace f on (C, σ), h is the semi-trace associated with the F -algebra with
quadratic pair (B, τ) ⊗ (C, σ, f).

Proof. For the existence and uniqueness of the semi-trace h, see [12, (5.20)]. Let
f be any semi-trace on (C, σ). By [12, (5.7)], f is given by an element ℓ ∈ C with
ℓ + σ(ℓ) = 1. Let g be the semi-trace associated with (B, τ) ⊗ (C, σ, f). Then by
Proposition 5.1, g is given by 1⊗ ℓ. By [12, (2.6)], as (B, τ) is symplectic we have
TrdB(Sym(B, τ)) = {0}. Hence for all s1 ∈ Sym(B, τ) and s2 ∈ Sym(C, σ) we have

TrdB⊗FC((1 ⊗ ℓ)(s1 ⊗ s2)) = TrdB(s1) · TrdC(ℓ · s2) = 0 .
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That is, g satisfies the characterising property of h in the statement. Therefore by
the uniqueness of the semi-trace h, we have that g = h. �

Given two F -algebras with symplectic involution (B, τ) and (C, σ), we may define
a semi-trace h on (B, τ) ⊗ (C, σ) in the following manner. If char(F ) 6= 2, then
(B, τ)⊗(C, σ) is orthogonal by [12, (2.23)] and we let h = 1

2TrdB⊗FC . If char(F ) =
2, let h be the semi-trace on (B, τ) ⊗ (C, σ) characterised in Proposition 5.4. We
denote the F -algebra with quadratic pair (B ⊗F C, τ ⊗ σ, h) by (B, τ) ⊠ (C, σ). If
char(F ) = 2, then by Proposition 5.4 we have that (B, τ)⊠(C, σ) ≃ (B, τ)⊗(C, σ, f)
for any choice of semi-trace f on (C, σ). In particular, by Proposition 5.3, for an
F -algebra with symplectic involution (A, σ), the expression (A, σ)⊗ (B, τ)⊠ (C, γ)
is unambiguous.

Hence given a tensor product of two F -algebras with symplectic involution, there
is natural choice of a semi-trace making this product into a quadratic pair. We now
consider this quadratic pair in the case where the F -algebras with involution are
F -quaternion algebras with their canonical involutions. Let a ∈ F with −4a 6= 1
and b ∈ F× and let (Q, γ) = [a ·| b). Recall that this F -algebra with involution is
orthogonal if char(F ) 6= 2 and symplectic if char(F ) = 2. Let u ∈ Q be such that
u2 = u+a and γ(u) = 1−u and let f be the semi-trace on (Q, γ) given by u. Then
we denote the F -algebra with quadratic pair (Q, γ, f) by [a || b).

Proposition 5.5. Let a, c ∈ F such that 4a 6= −1 6= 4c and b, d ∈ F×. Then

[a ·|· b)⊠ [c ·|· d) ≃ [a+ c+ 4ac |· b)⊗ [c || bd) .

Proof. Let (B, σ, f) = [a ·|· b)⊠ [c ·|· d), (Q1, γ1) = [a ·|· b) and (Q2, γ2) = [c ·|· d). Let
i, j ∈ Q1 be such that i2 = i+ a, j2 = b and ij = j − ji and let u, v ∈ Q2 be such
that u2 = u+ c, v2 = d and uv = v− vu. In B we have that σ(i⊗ 1) = 1⊗ 1− i⊗ 1,
σ(j ⊗ 1) = −j ⊗ 1, σ(1 ⊗ u) = 1⊗ 1− 1⊗ u and σ(1 ⊗ v) = −1⊗ v.

Let i′ = i ⊗ 1 + (1 − 2i) ⊗ u, j′ = j ⊗ 1, u′ = 1 ⊗ u and v′ = j ⊗ v. Then one
easily checks that

Q′

1 = F ⊕ Fi′ ⊕ Fj′ ⊕ Fi′j′ and Q′

2 = F ⊕ Fu′ ⊕ Fv′ ⊕ Fu′v′

are σ-invariant F -subalgebras of B that commute elementwise with one another.
We set τ1 = σ|Q′

1
and τ2 = σ|Q′

2
. We have

(Q′

1, τ1) ≃ [a+ c+ 4ac |· b) and (Q′

2, τ2) ≃ [c ·| bd) .

Hence (B, σ) ≃ [a+ c+ 4ac |· b) ⊗ [c ·| bd). If char(F ) 6= 2, then the semi-trace on
(B, σ) is uniquely determined, and in this case there is nothing further to show.

Assume char(F ) = 2. Then (B, σ, f) ≃ (Q1, γ1) ⊗ (Q2, γ2, h) for any choice of
semi-trace h on (Q2, γ2) by Proposition 5.4. Let h to be the semi-trace given by u.
Then for all s ∈ Sym(Q1 ⊗F Q2, γ1 ⊗ γ2) = Sym(Q′

1 ⊗F Q
′
2, τ1 ⊗ τ2) we have that

TrdQ1⊗FQ2
((1 ⊗ u) · s) = TrdQ1⊗FQ2

(u′ · s) = TrdQ′

1
⊗FQ′

2
((1 ⊗ u′) · s) .

Hence (Q1, γ1)⊗ (Q2, γ2, h) ≃ (Q′
1, τ1)⊗ (Q′

2, τ2, g) for the semi-trace g on (Q′
2, τ2)

given by u′ by Proposition 5.1. That is, (B, σ, f) ≃ [a+ c+ 4ac |· b)⊗ [c || bd). �

6. Totally decomposable quadratic pairs

We call an F -algebra with quadratic pair totally decomposable if it is isomorphic
to a tensor product of a totally decomposable F -algebra with involution and an
F -quaternion algebra with quadratic pair. It follows from Proposition 5.3 that
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taking the tensor product of a totally decomposable F -algebra with involution and
a totally decomposable F -algebra with quadratic pair gives a totally decomposable
algebra with quadratic pair.

Let (A, σ, f) be a totally decomposable F -algebra with quadratic pair. Then
there exists a totally decomposable F -algebra with quadratic pair (B, τ) and an F -
quaternion algebra with involution (Q, γ, g) such that (A, σ, f) ≃ (B, τ)⊗ (Q, γ, h).
If char(F ) 6= 2 then (B, τ) is necessarily orthogonal. We now show that, even
if char(F ) = 2, we may always find a decomposition as above where (B, τ) is
orthogonal. This will allow us in the next section to use the Pfister invariant of
(B, τ) to study the quadratic pair (A, σ, f).

Proposition 6.1. Let (A, σ, f) be a totally decomposable F -algebra with quadratic
pair. Then there exists a totally decomposable F -algebra with orthogonal involu-
tion (B, τ) and an F -quaternion algebra with quadratic pair (Q, γ, g) such that
(A, σ, f) ≃ (B, τ) ⊗ (Q, γ, g).

Proof. The result is trivial if char(F ) 6= 2. Assume that char(F ) = 2. As (A, σ, f)
is totally decomposable, there exist F -quaternion algebras with involution (Qi, σi)
for i = 1, . . . , n−1 and an F -quaternion algebra with quadratic pair (Qn, γ, h) such
that

(A, σ, f) ≃ (Q1, σ1)⊗ . . .⊗ (Qn−1, σn−1)⊗ (Qn, γ, h) .

Suppose σi is symplectic. In particular, it is the canonical involution on Qi, for
some i ∈ {1, . . . , n− 1}. Then by Proposition 5.4, we have that

(Qi, σi)⊗ (Qn, γ, h) ≃ (Qi, σi)⊠ (Qn, γ) .

Hence, by Proposition 5.5, there exists an F -quaternion algebra with orthogonal
involution (Q′

i, τ) and an F -quaternion algebra with quadratic pair (Q′
n, γ

′, h′) such
that

(Qi, σi)⊗ (Qn, γ, h) ≃ (Q′

i, τ)⊗ (Q′

n, γ
′, h′) .

Using this argument repeatedly for all i = 1, . . . , n − 1 such that σi is symplectic,
we modify our expression of (A, σ, f) above to obtain the result. �

For interest, we also record a characteristic two specific counterpart of the pre-
vious statement, which produces a symplectic instead of an orthogonal factor.

Proposition 6.2. Assume that char(F ) = 2. Let (A, σ, f) be a totally decomposable
F -algebra with quadratic pair with deg(A) = 2n, where n > 2. Then there exist F -
quaternion algebras with canonical involution (Qi, γi) for i = 1, . . . , n such that
(A, σ, f) ≃ (Q1, γ1)⊗ . . .⊗ (Qn−1, γn−1)⊠ (Qn, γn) .

Proof. By Proposition 3.3, for every F -quaternion algebra with orthogonal involu-
tion (Q, τ), there exists an a ∈ F and b ∈ F× such that (Q, τ) ≃ [a |· b). Similarly,
by [4, (5.6)], for every F -quaternion algebra with quadratic pair (Q, γ, f) there
exists an c ∈ F and d ∈ F× such that (Q, γ, f) ≃ [c || d). The result thus follows
using the isomorphism in Proposition 5.5 in a similar way as to how it is used in
Proposition 6.1, but in the opposite direction. �

7. Totally decomposable quadratic pairs on a split algebra

We now prove our main result, that over fields of characteristic two a split
algebra with totally decomposable quadratic pair is adjoint to a Pfister form. We
use the following result, which is an approach unique to fields of characteristic two.
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This approach gives more information on the m-fold Pfister form π adjoint to a
totally decomposable quadratic pair on an algebra of degree 2m over a field F of
characteristic 2 after extending to splitting field K. Specifically, we show that we
can always find an (m − 1)-fold bilinear Pfister form ϕ defined over F such that
ϕK factors π.

Proposition 7.1. Assume char(F ) = 2. Let (B, τ) be a totally decomposable
orthogonal F -algebra with involution, (Q, γ, h) be an F -quaternion algebra with
quadratic pair and (A, σ, f) = (B, τ) ⊗ (Q, γ, h). Then for any field extension
K/F such that AK is split, there exists a 1-fold Pfister form π over K such that
(A, σ, f)K ≃ Ad((Pf(B, τ))K ⊗ π).

Proof. Let ϕ = Pf(B, τ) and ρ a quadratic form over K with (A, σ, f)K ≃ Ad(ρ).
Note that dim(ρ) = 2dim(ϕ).

Assume first that (B, τ)K is metabolic. Then by [5, (A.5)] we have that (A, σ, f)K
is hyperbolic and by Proposition 4.1 that ρ is hyperbolic. We may thus take π to
be the hyperbolic 2-dimensional quadratic form.

Assume now that (B, τ)K is not metabolic. Then the bilinear Pfister form ϕK

is anisotropic by Proposition 3.4. We consider its function field L = K(ϕK). Since
ϕL is metabolic, it follows by Proposition 3.4 that (B, τ)L is metabolic. Hence,
(A, σ, f)L is hyperbolic by [5, (A.5)] and therefore ρL is hyperbolic by Proposi-
tion 4.1. By Proposition 2.1, there exists a non-trivial nonsingular quadratic form
π′ over K such that ρan ≃ ϕK ⊗ π′. We have

dim(ϕ) · dim(π′) = dim(ρan) 6 dim(ρ) = 2dim(ϕ) .

As char(F ) = 2, by [9, (7.32)] dim(π′) is even. It follows that dim(π′) = 2 and
ρan ≃ ρ. In particular, π′ is similar to a 1-fold Pfister form π and ρ ≃ ρan ≃ ϕK⊗π′.
Hence ρ is similar to ϕK ⊗ π. �

Corollary 7.2. Assume that char(F ) = 2. Let n ∈ N, let (A, σ, f) be a totally
decomposable F -algebra with quadratic pair with deg(A) = 2n+1 and let K/F be a
field extension such that AK is split. Then there exists an n-fold bilinear Pfister
form ϕ over K and an (n + 1)-fold Pfister form ρ over K such that ϕK factors ρ
and (A, σ, f)K ≃ Ad(ρ).

Proof. For n = 0, this is trivial. Otherwise, by Proposition 6.1, there exists a totally
decomposable F -algebra with orthogonal involution (B, τ) and an F -quaternion
algebra with quadratic pair (Q, γ, h) such that (A, σ, f) ≃ (B, τ) ⊗ (Q, γ, h). The
result then follows from Proposition 7.1 with ϕ = Pf(B, τ). �

Theorem 7.3. Let ρ be a nonsingular quadratic form over F with dim(ρ) > 2.
Then Ad(ρ) is totally decomposable if and only if ρ is similar to a Pfister form.

Proof. If ρ is a Pfister form over F , then we can write ρ ≃ ϕ ⊗ π for a bilinear
Pfister form ϕ and a 1-fold quadratic Pfister form π over F . Then by Proposi-
tion 5.2 we have that Ad(ρ) ≃ Ad(ϕ) ⊗ Ad(π). The F -algebra with involution
Ad(ϕ) is totally decomposable by Proposition 3.1. As Ad(π) is an F -quaternion
algebra with quadratic pair, it follows that Ad(ρ) is totally decomposable. Assume
conversely that Ad(ρ) is totally decomposable. If char(F ) 6= 2, then any quadratic
pair is equivalent to an orthogonal involution and thus the result corresponds to [3,
Thm. 1]. If char(F ) = 2, then ρ is similar to a Pfister form by Corollary 7.2. �
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Let (A, σ, f) be a totally decomposable F -algebra with quadratic pair with
deg(A) = 2m and let K/F be a field extension such that AK is split. Let π be
the m-fold Pfister form over K such that (A, σ, f)K ≃ Ad(π). In general, it is
not possible to find an (m − 1)-fold quadratic Pfister form ρ over F such that ρK
factors π. This is illustrated by the following example, which is a variation of an
example in [2, (3.9)]. In particular, this example shows that Corollary 7.2 cannot
be extended to cover fields of characteristic different from 2, where quadratic and
bilinear Pfister forms are equivalent.

Example 7.4. Let n ∈ N with n > 4. By [9, (38.4)] and its proof, there exists a
field F such that all 3-fold quadratic Pfister forms over F are hyperbolic and there
exist F -quaternion algebras Q1, . . . , Qn such that A = Q1⊗F · · ·⊗F Qn is a division
F -algebra. In particular, we have deg(A) = ind(A) = 2n. For i = 1, . . . , n, let γi be
the canonical involution on Qi if char(F ) = 2 and an orthogonal involution on Qi

if char(F ) 6= 2. We obtain a totally decomposable F -algebra with quadratic pair

(A, σ, f) = (Q1, γ1)⊗ · · · ⊗ (Qn−1, γn−1)⊠ (Qn, γn) .

By [11, (3.3) and §2.4] there exists a field extension K/F such that AK is split
and (A, σ, f)K ≃ Ad(ρ) for some quadratic form ρ over K such that ind(A) divides
iW (ρ). As for any such ρ we have that dim(ρ) = 2n = ind(A) and iW (ρ) 6 1

2dim(ρ),
it follows that iW (ρ) = 0, that is, ρ is anisotropic. In particular, ρ is not factored
by πK for any (n− 1)-fold Pfister form π over F , as all such π are hyperbolic.
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