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Abstract. The hyperbolic 3-manifolds fibered over the circle with fiber a
once punctured torus are considered. Surprisingly, in all of about 200 cases,
where the class numbers of their trace fields were calculated, they turned to
be equal to one.


This is a report on the work of our friend Heinz Helling during the last several
years. Unfortunately, for health problems he is unable to write about it himself.
All the main ideas and results presented in this paper belong to him, but some
technical details may be different.


In a series of preprints [1], [2], [3], H. Helling with co-authors studied some class
of hyperbolic 3-manifolds fibered over the circle, and calculated the trace fields
of these manifolds. Ten years later he came to the idea to investigate arithmetic
properties of these fields. This lead him to a surprising result: in all the cases, when
he managed to calculate the class number (with the help of a computer program),
it turned to be equal to one!


1. The construction


Let T0 = T \ {pt} be a once punctured torus. Observe that its fundamental
group is a free group F2 on two generators, say, ξ and η. A fiber bundle over the
circle with fiber T0 is defined by its monodromy, which is an element of the group


OutF2 = AutF2/IntF2
∼= GL(2,Z).


Denote by M(A) the fiber bundle defined by a matrix A ∈ GL(2,Z). The fiber
bundles M(A) and M(A′) are isomorphic if and only if the matrix A′ is conjugate
to A or its inverse in GL(2,Z) (but non-isomorphic fiber bundles can still be home-
omorphic manifolds.) The manifold M(A) is hyperbolic (of finite volume) if and
only if the matrix A is hyperbolic, i.e. has real eigenvalues distinct from ±1. It is
orientable if and only if detA = 1, i.e. A ∈ SL(2,Z).


Since any topological automorphism of the punctured torus T0 extends to an
automorphism of the torus T , the fiber bundle M(A) naturally embeds into a fiber
bundle with fiber T . The boundary of this embedding is a circle. Retracting it to a
point, we obtain a one point compactification of M(A) with connected punctured
neighborhoods of the boundary point. This means that the hyperbolic manifold
M(A) has only one cusp.


Let α ∈ AutF2 be a representative of the coset of IntF2 corresponding to A.
Then the fundamental group of M(A) is the semi-direct product 〈α〉 ⋌ F2, where
〈α〉 is the cyclic group generated by α. It is known that every automorphism of F2


takes the commutator (ξ, η) to a conjugate of (ξ, η)±1. So we may assume that α
takes (ξ, η) to (ξ, η)±1, depending on detA.
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From now on, we assume that the manifold M(A) is orientable, i.e. detA = 1,
and α((ξ, η)) = (ξ, η).


If A is hyperbolic with detA = 1, then the fundamental group of M(A) is
isomorphic to a torsion-free lattice in PSL(2,C), which is defined uniquely up to
conjugacy. It is known [5] that any such lattice can be isomorphically lifted to
SL(2,C). This means that there is a faithful linear representation


ϕ : 〈α〉⋌ F2 → SL(2.C)


such that its image is a lattice in SL(2,C). Denote this lattice with Γ(A).
Set


X = ϕ(ξ), Y = ϕ(η), L = ϕ(α).


Then X,Y and L generate Γ(A). Moreover, since the matrices L and (X,Y ) com-
mute, they generate a free abelian group of rank 2. It follows that they are unipotent
up to a sign. In particular, tr(X,Y ) = ±2. However, the case tr(X,Y ) = 2 is re-
alized, when X and Y have a common eigenvector, which implies that L has the
same eigenvector, a contradiction. Hence, tr(X,Y ) = −2. Replacing L with −L if
needed, one may assume that trL = 2, i.e. L is unipotent.


2. Calculating the traces


A standard calculation with traces shows that


tr(X,Y ) = (trX)2 + (trY )2 + (trXY )2 − (trX)(trY )(trXY )− 2


for any matrices X,Y ∈ SL(2,C). Thus, in our situation we have


(trX)2 + (trY )2 + (trXY )2 = (trX)(trY )(trXY ).


In other words, if we set


x = trX, y = trY, z = trXY.


then the point (x, y, z) belongs to the (complex) Markov surface defined by the
equation


x2 + y2 + z2 = xyz.


The traces of the matrices


α(X) := ϕ(α(ξ)), α(Y ) := ϕ(α(η)), α(X)α(Y ) = α(XY ) := ϕ(α(ξη))


can be expressed in terms of x, y, z. They do not change when α is multiplied by
an inner automorphism of F2, so they depend only on the matrix A. Moreover,
there is a natural action of the group GL(2,Z) on C3 leaving the Markov surface
invariant such that


(trα(X), trα(Y ), trα(XY )) = A(x, y, z).


It is well known that the group GL(2,Z) is generated by the matrices


R1 =


(


1 0
0 −1


)


,


R2 =


(


0 1
1 0


)


,


R3 =


(


1 1
0 −1


)


,
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acting on the hyperbolic plane H2 as the reflections in the sides of a triangle with
angles π/2, π/3, 0. They lift to the following automorphisms of F2:


ρ1 : ξ 7→ ξ, η 7→ η−1,


ρ2 : ξ 7→ η, η 7→ ξ,


ρ3 : ξ 7→ ξη, η 7→ η−1.


It is easy to see how they change the traces. Thus we obtain:


R1(x, y, z) = (x, y, xy − z), R2(x, y, z) = (y, x, z), R3(x, y, z) = (z, y, x).


In our situation, the matrices α(X) and α(Y ) are conjugate to X and Y by
means of L, so there must be


A(x, y, z) = (x, y, z).


In other words, (x, y, z) is a fixed point of A lying on the Markov surface.
The field K = K(A) =: Q(x, y, z) is the trace field of the group Γ(A) ⊂ SL(2,C).


Indeed, it clearly is the trace field of the subgroup ∆(A) generated by X and Y .
It follows that the K-linear span of ∆(A) is a (generalized) quaternionic algebra
over K. But it contains the unipotent matrix −(X,Y ), which implies that it is in
fact the matrix algebra. This means that X and Y (considered as linear operators)
in some basis are written by matrices over K. In the same basis, L is written by
a matrix proportional to a matrix over K, because it normalizes ∆(A). But L is
unipotent; hence, it is in fact written by a matrix over K. Thus in some basis the
group Γ(A) is written by matrices over K, so the traces of all its elements belong
to K.


One can also calculate the invariant trace field k(A) for Γ(A). By definition,
the invariant trace field of a lattice Γ ⊂ SL(2,C) is the trace field of the group
Ad(Γ), and it is the same for commensurable lattices. According to [8, Corollary
to Theorem 2],


k(A) = Q(x2, y2, xyz) = Q(x2, y2, z2).


3. A series of examples


Consider the series of matrices


An =


(


1 1
n n+ 1


)


= R2(R1R3)
nR2R1R3 ∈ SL(2,Z).


They are hyperbolic for n ≥ 1. Set


An(x, y, z) = (xn, yn, zn).


We have


(x0, y0, z0) = R1R3(x, y, z) = (z, y, yz − x),


(xn, yn, zn) = R2R1R3R2(xn−1, yn−1, zn−1) = (xn−1, zn−1, xn−1zn−1 − yn−1),


whence xn = z and
(


zn
yn


)


=


(


z −1
1 0


)(


zn−1


yn−1


)


If (x, y, z) is a fixed point of An, there must be x = z, so z0 = yz − z and


(1)


(


z
y


)


=


(


z −1
1 0


)n (
z0
y0


)


=


(


z −1
1 0


)n+1 (
y
z


)
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One can easily prove by induction that


(2)


(


z −1
1 0


)n+1


=


(


qn+1 −qn
qn −qn−1


)


for n ≥ 1


where qn are polynomials in z defined by


(3) q0 = 1, q1 = z, qn+1 = zqn − qn−1 forn ≥ 1.


By taking determinants one obtains the identity


(4) q2n − 1 = qn−1qn+1


It follows from (3) that


(5) qn(z) = Un(z/2) =


[n/2]
∑


i=0


(−1)i
(


n− i


i


)


zn−2i,


where Un is the Chebyshev polynomial of the second kind (of degree n). Note that
the polynomial qn is even (odd) for n even (odd).


From (1) and (2) we obtain


(6) yn = yqn − zqn−1, zn = yqn+1 − zqn.


We thus see that the fixed points (x, y, z) of An on the Markov surface are given
by the following equations (having in mind that x = z):


y2 + (2− y)z2 = 0,(7)


y(qn(z)− 1)− zqn−1(z) = 0,(8)


yqn+1(z)− z(qn(z) + 1) = 0.(9)


Since we are interested only in non-real solutions, we may assume that y, z 6= 0.
If qn(z) = 1, it follows from (8) that qn−1(z) = 0, and then from (3) we get that


qn+1(z) = z. Substituting this in (9) we obtain y = 2, which contradicts (7).
If qn(z) = −1, it follows from (9) that qn+1(z) = 0, and then from (3) we get


that qn−1(z) = −z. Substituting this in (8) we obtain 2y = z2, whence by (7)


y = 4 and therefore z =
√
8. However, all the roots of the polynomial qn+1 lie in


the interval (−2, 2), so this case does not occur.
Thus, we may assume that qn(z) 6= ±1. Under this assumption, equations (8)


and (9) are equivalent due to (4). Eliminating y from (7) and (8), one obtains


(10) 2(qn(z)− 1)2 − zqn−1(z)(qn(z)− 1) + qn−1(z)
2 = 0.


It follows from the obvious multiplication law for matrices (2) and from (4) that


q2k = (qk + qk−1)(qk − qk−1), q2k − 1 = qk−1(qk+1 − qk−1),


q2k−1 = qk−1(qk − qk−2), q2k+1 − 1 = (qk + qk−1)(qk+1 − qk),


In particular, this shows that if qn(z) 6= 1, then qk−1(z) 6= 0 for n = 2k and
qk(z) + qk−1(z) 6= 0 for n = 2k + 1.


We will use the above formulas to simplify the polynomial Fn from the left hand
side in (10) as follows.
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For n = 2k we have


q−2
k−1Fn =2(qk+1 − qk−1)


2 − z(qk − qk−2)(qk+1 − qk−1) + (qk − qk−2)
2


=2(qk+1 − qk−1)
2 − (qk+2 − qk)(qk − qk−2)


=(qk+1 − qk−1)
2 −


∣


∣


∣


∣


qk+2 − qk qk+1 − qk−1


qk+1 − qk−1 qk − qk−2


∣


∣


∣


∣


=(qk+1 − qk−1)
2 − (z2 − 4)


For n = 2k + 1 we have


(qk + qk−1)
−2Fn =2(qk+1 − qk)


2 − z(qk − qk−1)(qk+1 − qk) + (qk − qk−1)
2


=2(qk+1 − qk)
2 − (qk+2 − qk+1)(qk − qk−1)


=(qk+1 − qk)
2 −


∣


∣


∣


∣


qk+2 − qk+1 qk+1 − qk
qk+1 − qk qk − qk−1


∣


∣


∣


∣


=(qk+1 − qk)
2 − (z − 2)


The evaluation of the determinants is obtained in both cases by observing that


the underlying 2× 2 matrix Qk obeys Qk =


(


z −1
1 0


)


Qk−1, so detQk = detQk−1


and hence detQk = detQ1 (assuming q−1 = 0).
Thus, under the assumption qn(z) 6= 1, the solutions to (10) are the roots of the


polynomial


fn(z) =


{


(qk+1(z)− qk−1(z))
2 − (z2 − 4) if n = 2k


(qk+1(z)− qk(z))
2 − (z − 2) if n = 2k + 1


These formulas have been given also, without proof, in [3] and [4].
The trace field of Γ(An) is Q(z), where z is a suitable root of fn. The invariant


trace field is Q(y2, z2) = Q(y, z2). For n even, it follows from (8) that y ∈ Q(z2);
in this case the invariant trace field coincides with Q(z2).


By means of the computer program Pari[7] (used also by H. Helling), in all the
cases checked so far (n ≤ 46), it was found that the polynomial fn is irreducible and
the trace field Kn = Q(z) has class number one. Moreover, it is purely imaginary
and for n odd has no nontrivial subfield. For n even, it has exactly one nontrivial
subfield kn ⊂ Kn of index two, which also has class number one. The field kn has
at most one real embedding. It is the invariant trace field of Γ(An).


For n = 47, Pari gave up because it could not cope with the large discriminants
showing up, but for several higher values it succeeded, and we never found any class
number > 1 for these fields. The irreducibility of the factor fn has been verified for
n ≤ 2000.


In the table below, we give the polynomial fn and the discriminant of the trace
field Kn for n ≤ 12 as computed by Pari. Note that in [6] the fields Kn had been
calculated for n = 1 (p. 138), n = 2 (p. 143), and n = 3 (p. 143, Ex. 4.6).


The discriminants of the invariant trace fields kn for n = 2, 4, 6, 8, 10, 12 are


−7, −44, 2917, 7684, −315544, −2985968.
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n fn Discriminant


1 z2 − 3z + 3 -3


2 z4 − 5z2 + 8 392


3 z4 − 2z3 − z2 + z + 3 697


4 z6 − 6z4 + 8z2 + 4 -123904


5 z6 − 2z5 − 3z4 + 6z3 + 2z2 − 5z + 3 -453683


6 z8 − 8z6 + 20z4 − 17z2 + 8 68071112


7 z8 − 2z7 − 5z6 + 10z5 + 7z4 − 14z3 − 2z2 + 3z + 3 628432401


8 z10 − 10z8 + 35z6 − 50z4 + 24z2 + 4 -60460908544


9 z10 − 2z9 − 7z8 + 14z7 + 16z6 − 32z5− -1537714619747


−13z4 + 26z3 + 3z2 − 7z + 3


10 z12 − 12z10 + 54z8 − 112z6 + 105z4 − 37z2 + 8 79654564209992


11 z12 − 2z11 − 9z10 + 18z9 + 29z8 − 58z7 − 40z6+ 5910843534832201


+40z6 + 80z5 + 22z4 − 44z3 − 3z2 + 5z + 3


12 z14 − 14z12 + 77z10 − 210z8+ -146079824232841216


+294z6 − 196z4 + 48z2 + 4


4. Conclusion


Heinz Helling calculated the trace fields of the groups Γ(A) in about 200 cases,
and in all the cases they turned to have class number one. However, he had no time
to prove or disprove this for all the groups Γ(A), and did not dare to formulate this
as a conjecture.


A vague indication to the reason why this phenomenon takes place is the known
theorem that the class number of an imaginary quadratic field is equal to the number
of cusps for the corresponding Bianchi group (see, for example, [6, Theorem 9.1.1,
p. 276]). As was explained above, the group Γ(A) has only one cusp. However, it
is not arithmetic, unless the invariant trace field is quadratic, and the known proof
for Bianchi groups does not go.
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